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Incoherent inelastic neutron scattering from liquid water:
A theoretical investigation
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A theory of incoherent inelastic neutron scattering from liquid water is presented, and recent
experimental data obtained by employing the spallation sources are interpreted. This theory is a
statistical theory, similar to those describing optical spectra of liquids. The experimental spectra
of liquid H20 and D20 are reproduced theoretically. The incoherent neutron- and light-scattering
spectra of water are compared. The suitability of this type of experiment to study high-frequency
modes of translational-rotational motion of molecules in liquids is emphasized.

PACS number(s): 61.20.Lc, 61.12.Bt, 61.25.Em

I. INTRODUCTION

Until recently, the production of neutrons for scientific
use was centered on fission reactors in which the neu-
trons are generated in a continuous stream by the fission
of the uranium in the reactor core. As the needs of the
scientific community have grown, an alternative neutron
production method has been developed. A high-energy
accelerator is used to bombard the U target with
pulses of high-energy protons. In the resulting process
of spallation, neutrons are produced, which can then be
used for experiment. Combined with strongly improved
neutron detection technology, this new method has per-
mitted considerable progress in various fields of neutron
spectroscopy. For information on spallation sources, see
Refs. [1—3].

The inelastic incoherent neutron-scattering studies of
water began in 1958 when Brockhouse, using a reactor
source, observed the low-energy part of the inelastic-
scattering spectra of this liquid [4]. Eleven years later, in
1969, Harling measured its high-energy component due
to internal vibrations [5]. However, the flux of epither-
mal neutrons was too weak, and the momentum trans-
fer too large, to get more than a mere detection of the
vibrational effect on the neutron scattering. An impor-
tant step was accomplished when Chen et al. applied
spallation-source technology to this problem [6]. The ex-
perimental method was further developed by Toukan et
al. [7], and was also employed by Giordano, Salvato, and
Wanderling [8]. The similarity between the neutron- and
light-scattering spectra then appeared clearly. One could
then envisage performing a band-shape analysis.

As far as the theory is concerned, the first attempt
to interpret the inelastic incoherent neutron scattering
of slow neutrons from water was published by Nelkin

[9]. Starting from the theory of Zemach and Glauber
[10, 11] and considering hindered rotations of the water
molecules as harmonic oscillations, he examined the low-

energy part of the inelastic spectrum. Harling [5] applied

the Egelstaff-Schofield theory of incoherent neutron scat-
tering [12] to the region of bending motions. Later Still-
inger and Rahman [13] and Toukan and Rahman [14]
published computer-simulation studies of water in which
they calculated the proton velocity autocorrelation func-
tion. Finally, Bansil et al. [15] and Toukan el al [7].
carried out a molecular-dynamics calculation of the k-
dependent proton density of states Gs(k, E) Models.
have also been proposed to refine the analysis [16, 17].
Although the analytical theories refer to polycrystalline
materials rather than to liquids, and the classical simula-
tions are not really adapted to study internal vibrations,
these calculat, ions permitted an interpretation of high-
energy data. Nevertheless, a genuine liquid-state theory
of these processes is still lacking.

The purpose of the present paper is to fill this gap by
transposing the statistical theories of band shapes in liq-
uids from light [18,19] to neutron scattering, and to inter-
pret the new material collected by employing spallation-
source technology. Experimental neutron spectra of nor-
mal and heavy water are discussed and are compared to
the corresponding optical spectra. The suitability of the
neutron spectroscopy for analyzing librational motion is
emphasized. A preliminary account of this research was
published elsewhere [20].

II. BASIC FORMULATION

A. Description of the model

The problem to be investigated is the incoherent in-
elastic scattering from a system formed by a sample of
liquid water. The following model is used to study this
problem. (i) The internal vibrations of the tagged water
molecule are described by three normal coordinates n„,
v = 1, 2, 3. They are perturbed by a potential V(n, t) ex-
pressing the effect of intermolecular forces on molecular
vibrations. The EIamiltonian
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H(n, t) = ) ((2p„+ 2A„n, ) + [V„(t)n„+2V, (t)n„])
v=1

3 3

=) (H()+V(")) =) H(")(
v=1

is a quantum-mechanical operator where Ay = ~2 and
u„ is the vth normal frequency of the water molecule,
V„= OV/On„, Vr = O V/On, etc. (ii) The molecules
of the liquid execute classical reorientation and transla-
tion, which makes V(n, t) and H(n, t) time dependent.
(iii) The correlations between vibration and translation-
rotation are neglected.

The above model is a semiclassical model in which
the translational and rotational degrees of freedom are
treated classically. These degrees of freedom are in fact
quasiclassical in liquid water, but their quantum charac-
teristics cannot be wholly neglected in neutron-scattering
experiments and are examined in Sec. III C. Other com-
ments are as follows. The resonant vibrational interac-
tion that couples the vibrations of diA'erent molecules
is certainly present in a dense liquid [21], but, as only
the self-motions are probed in an incoherent neutron-
scattering experiment, it is not expected to play a major
role in this problem. Moreover, the symmetry of the wa-
ter molecule forbids the presence of any coupling term
VyyI other than that between the symmetric hydrogen
stretching and bending modes. As this interaction is non-
resonant, it can safely be neglected. H(n, t) can thus be
written as a sum of three Hamiltonians associated with
the three normal modes. Finally, the separability of vi-
brational and rotational-translational motion has been
checked by detailed calculations [22, 23]. Thus, the as-
sumptions of the present model do not seem really re-
strictive.

B. Description of the scattering process

If a monochromatic beam of neutrons is scattered by
a liquid sample, the incoherent-scattering cross section

is expressible as a Fourier transform of the intermediate
scattering function I(k, t) [24]:

( O'o'. i I k, , +—'2Nn „. Ct c-* 'I(l, t), (2a)
i, O~OO&;„, 2tr k;

I(l t) (&
—ik.r(0) ik r(t)) (2b)

Here, a;„, is the incoherent scattering length of the pro-
ton, k; and k, are the wave vectors of the incident and
scattered neutrons, respectively; k = k; —k„and r(t) is a
Heisenberg operator of the position vector of an arbitrar-
ily chosen proton in an arbitrarily chosen water molecule.
The problem thus reduces to the determination of the
correlation function (2b). The details of this calculation
are given below.

III. THEORY

A. The intermediate scattering function I(k, t)
for liquids

The first problem is to extend the Zemach-Glauber
theory from gases to liquids. The following steps are
involved in this operation. Considering the semiclassical
nature of the present theory in which rotation-translation
is classical whereas vibration is quantum mechanical, the
averaging operation () „ in Eq. (2b) is executed sepa-
rately for these two groups of degrees of freedom. The
first is represented by an angle bracket, and the second by
the trace operation Tr. The vibrational density matrix p0
is built on the nonperturbed vibrational wave functions
of H0( ), H0( ), and H0( ). Then, (i) recalling that in all
cases of practical interest, only the vibrational ground

state is populated, and (ii) writing r = R + P„ i p, ,

where R indicates the equilibrium position of one of the
two protons of a specified molecule, whereas p„describes
its displacement in the normal vibration v, one can write

I(k t) e-ik [R(0)-R(t)]T

v=1

&-ik p„{0) ik p„(t)

I&-ik [R(0)-R(t)] t -ik.px(0)] t ik py(t)l r -ik p~(0)l [ ik'pz(t)l r -ik.pz(0)1 [' ik p (t)i

+(e-ik.[R(0)-R(t)][ -ik Pq(0)l I ik.Pq(t)i r -ik p~(0)i r ik.p~(t)i r -ik p3(0)q r tk.p (t)~

+(e—'k. [R(0)—R(t)][e-ik P, (0)i r ik.p, (t)i r —ik p~(0)i r ik.p~(t)i r ik p3(0)i —r .ik p (t)i

+(e—ik. [R(0)—R(t)][ ik Pr(0)i —r .ik.p, (t)i r —ik p~(0)q r ik.p~(t)a r -ik p3(0)z r ik p(t)i.
+higher-order terms.

The matrix elements [e '" P ]pp~ are taken between the
eigenfunctions of H0, H0, and II0 . The first term
of this expansion describes the quasielastic neutron scat-
tering, and the three others, the inelastic scattering in
which the first, second, and third normal vibrations are
singly excited. Higher-order excitations are not treated
explicitly.

The second step of calculation consists of determin-

ing the matrix elements [e '"'P (')]pp~ that appear in the
above series. One has p„(t) = l„(t)n„(t) where l„(t)
indicates the direction of the proton motion in the nor-
mal vibration v; this vector depends on the orientation of
the tagged molecule. As the Hamiltonian H(n, t) is addi-
tive in H(")(n„,t), the calculation of the matrix elements
can be performed separately for each normal vibration.
The theory is further simplified by the fact that the vi-
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brational energy levels are widely spaced as compared
with k~T: the adiabatic approximation is thus appro-
priate. Then, dropping for convenience the subscripts or
superscripts v in H~ ~, n„, p„, l„, and denoting ~o and
6(d = h ([V]&& —[V]&o) the nonperturbed vibrational
frequency and the interaction induced shift, respectively,
one can write

[eik l(t)R(t)] —1/2[g r, (i)]0
)

[
ik l(t)n(f)] .

(k L(]))
—1/2[k re(t)) i~( )i

(5)

abatic approximation. Then, applying the above equa-
tions to the present problem and integrating over the
harmonic-oscillator wave functions involved in the tran-
sition gives

x exp
~

i dt'b, ~(t') ~,
0

= [n],oe' 'exp
~

i dt'b, ~(t')
~

.
0

(4b)

Similar equations govern the time evolution of n2(t),
ns(t), . . ., and, as a consequence, that of the operator 1

+ik l(t)n(t)+1/2[ik l(t)n(t)]2+ = exp[ik l(/)n(t)].
Only the diagonal matrix elements [H] have been re-
tained in Eqs. (4a) and (4b), in agreement with the adi-

where L(]I) = l(t) [n]o& is the vibrational amplitude of the
proton.

The final expressions may be obtained by collecting
the partial results given in Eqs. (4) and (5) and inserting
them into Eq. (3). Let Iq(k, t) designate the interme-
diate scattering function appropriate to the low-energy
spectrum, and I„(k,t) that associated with the funda-
mental v. The following formulas may be found in this
way:

Iq(k, t) = (exp( —ik [R(0) —R(/)]) exp( —&[k L„e(0)] —
& [k L„e(t)] )),

~l i
(6)

3

1„(k,() = (exp{—ik [R(0) —R(t)]) {k.L (0)] {k L (t)]
v'=1

exp{-l]k L. (o)]' —
e (k L"(~)I'))

x exp(i~( )t) exp
~

i dt'b~„(t')
~

0
(7)

The quantities L„,u„, and A~„have the same meaning
as in Eqs. (4) and (5), but refer to a specific normal vibra-
tion v. Similar expressions can be derived for overtone
and combination bands.

The above theoretical results merit some comments.

(i) The quantum and the classical degrees of freedom of
this problem are disentangled in Eqs. (6) and (7). As
the translations and rotations are essentially classical,
these equations are well adapted to molecular-dynamics
simulations. If desired, semiclassical corrections may be
introduced; compare with Sec. IIIC. (ii) Although the
present theory is developed for liquids, it has several fea-
tures in common with the Zemach-Glauber theory of neu-
tron scattering in gases; compare e.g. , Eqs. (6) and (7)
of this paper with Eqs. (3.21)—(3.22) of Ref. [10]. The
main difference between the two theories is the presence
of a factor in Eq. (7) describing the vibrational relax-
ation: the delta peaks of a Zemach-Glauber spectrum
thus spread into bands.

B. Application to water

The present theory takes a particular form in the prob-
lem under study. In fact, the experiment [6] of Chen e/,

al. is characterized by large k vectors with a modulus
between 5 and 10 A. ~. As the length scale probed in

a neutron-scattering experiment is of the order of I/k,
molecular motions are followed only over a fraction of an

angstrom and over very short, subpicosecond time inter-
vals. The above experiment is thus a short-time experi-
ment in which only internal and rapid external vibrations
are detectable. This simplifying feature makes the theory
practicable without any restrictive assumption.

It is convenient to start the analysis by noticing that,
for large k, the dynamical variables e '~ ~('), Eu„(R(f)),
and e ( / )[" "(')l behave very differently. The correla-
tion times of the former two quantities are 7q 1/kV
10 sec and 7p d /6D 10 ~2 sec, where V is

the mean thermal velocity of the proton, D the diffu-

sion constant of a water molecule, and d a length of the
order of intermolecular distances. Moreover, the vari-

able e & ~ ~~" "~ is virtually constant in the time inter-
val of interest. As slow and fast variables are efFectively
decorrelated, it is possible to average them separately.
It is even legitimate to suppress the time dependence of
the slow variables altogether. Then, designating the pro-
ton velocity in absence of any internal vibration by V,
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Eqs. (6) and (7) may be rewritten in the following way: I = 2$o (V ) /u)[), one finds

['.
ttt(k, t) = (exp [

ik dt'V(t')
[

o
3

x exp[—(k.L„) ]),
v'=1

3
x k L„

x (exp (ib.~„t)) .

ext [-( L„,)'[)

I„(k,t) = e' " ' exp
~

ik dt'V(t')
~

;(),
p

(8)

(9)

4(t) = ) t e""= ) '( + g (e*""+ -*"')
P P

= (1 —2(p) + 2(p cos ~ot (11)

(
t

exp
~
ik dt'V(t')

~l o

= exp (—-'[t Lz) exp —ip2 ((Vz) —~&I&) t&

Io sk I + 2 ) .I), s& I. ' cos p~pt

(12)

It remains to determine expressions (8) and (9). Their
translational-rotational factor may be calculated by re-
calling that, at the short times typical of this experiment,
Gaussian characteristics of the variable V are dominat-
ing. The cumulant expansion may thus be employed and
truncated after its second-order term. There results

(
(

exp
~

ik dt'V(t')
I

o

y2
= exp

~

—— dt'dt" (V(t')V(t"))
~

lf kz= exp
~

——(V ) dr(t —r)t/)(r) ~, (10)
p

where dt)(r) is the normalized proton velocity auto-
correlation function. This function decays in several
translational-rotational modes. As only short times are
detectable by the present experiment, the time depen-
dence may, here too, be suppressed in all but the fastest
librational modes. These modes correspond to restricted
rotational motions of HzO in the H-bond network of liq-
uid water. Then, attributing to them a single decay con-
stant Ap where ReAp && Im Ap

——up and de6ning L by

In these equations,

exp(z cos8) = Ip[z]+2) I)t[z]cosp8
p=1

and I„[z] is the modified Bessel function of order p.
Moreover, (~ is the amplitude of the mode p, fp the
amplitude summed over the three librational modes, clap

their average frequency, and L is the average amplitude
of the proton motion in these three librational modes.
The above development relies heavily on the fact that k
is large. The expansion of P(t) is not a phonon expan-
sion and g„, A„are averaged properties of the liquid. No
quasicrystalline model is required to calculate I.

The vibrational factors of Eqs. (8) and (9) can be deter-
mined by employing the cumulant expansion techniques

again. In fact, the cumulant expansion in (k L~) is
expected to be rapidly convergent: in the experiment of
Chen et al. , as well in all others in which the vibrational
structure is well resolved, all k Lv are less than 1. The
cumulant expansion in Luv is also expected to converge
rapidly, although the underlying argument is different:
Au„can be thought of as being composed by a number
of more or less uncorrelated increments, and by virtue
of the central-limit theorem it can be taken as approxi-
mately Gaussian. Then,

( -).(K ") ]).+-,').([(k r,„.)')[(k. r,.„)']),+. . .
v V IVll

(
exp —) A„t(k L„t)

v I( . ), ,

'„-p -).~. ([(k ")']) +l):~"~.-([(k L")'][(k L. )']).+
tt lv' v'v"

([(k . L„) ]),—) ([(k . L„) ][(k.L„t)~]),+ . .

—) .([( L.)']) + -' ) .(Kk. L. )'][(k .L.-)']).+ ".
v'v"
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(exp(ib. ~„t))= exp(i(A~„) t —~((b,to„) ),t + ), (15)

where the symbol (), designates ordinary cumulants and A = 1 is a shorthand notation for A& ——A2 ——As ——1.
The calculation of the cumulants which appear in Eqs. (13) and (14) is straightforward and does not need a further
explanation. This is no longer true for those in Eq. (15) and no attempt was made here to determine them a priori

The final expressions may be obtained by combining Eqs. (8)—(15). Only the leading cumulant is retained in the
exponentials of Eqs. (13) and (14) as well as in the prefactor of Eq. (14). The omitted terms were found to be one order
of magnitude smaller than those which were retained. Let then I~(k, t) designate the intermediate scattering function
describing the librational portion of spectrum, I„(k,t) that associated with the fundamental v, and let Iiy (k, t) refer
to the combined vibrational and librational motions. Then

k21~
Ii(k, t) = Iy

3
exp —sk L + ) L, exp (idiot) exp —sk ((V ) —uoL ) t

V

(16)

I„(k,t)= (
"i Ioi

exp —sk L +) Li
l

k2
x exp (i (~„)t) exp —

—,
'

I

—((V ) —~oL') + (&~„')
l

t'

exp —sk I, + ) L„,").
k2

x exp [i((to ) 6 cus)t] exp —
q ~

—((V ) —~oI ) + (A~„), ~

t (18)

where (u„) = to„+ (Aid„), These . formulas represent(o)

the final result of the theory as far as the translation and
rotation is treated classically.

C. Semiclassical corrections

Although the translational and rotational motions of
molecules in liquid water are essentially classical, their
quantum characteristics cannot be neglected altogether.
The simplest way to describe them would be to apply
the Schofield [25], EgelstaA' [26], or Rosenbaum-Zweifel
[27] prescriptions. Unfortunately, the energy of the libra-
tional modes is comparatively high, which makes a series
expansion in powers of h impracticable. An alternative
approach is thus employed resting, once more, on the fact
that, for time scales characteristic of this experiment, the
proton velocity V is a quasi-Gaussian, quasiclassical pro-
cess. Then

-ik R(0) ik.R(i))~e e

—([R(0) R(t)])

dt'dt" V t' V t"

This expression may be obtained by writing the left-hand
side of Eq. (19) in the form (e') and by expanding z, with
the help of the Baker-Campbell-Hausdorff formula [28],
into a series involving the noncommuting operators R(0),
R(t). It is next expressed by introducing a series of com-
muting cumulants [29]. As the process V is quasiclassi-
cal, only the leading "quantum-mechanical" term of this
expansion, i.e. , a term that vanishes when h ~ 0, needs
to be retained; and as the process V is quasi-Gaussian,
only the second-order "classical" term, i.e., a term which
survives when h ~ 0, must be considered. Compare the
expression (19) with its classical analog (10).

The practical evaluation of Eq. (19) involves the fol-
lowing steps. (i) The argument of the exponential on the
right-hand side of Eq. (19) is transformed into the form

t
-'k ([R(0),V(0)]) t ——'k' dt'(t —t') (V(0).V(t')) .

The commutator ([R(0),V(0)]) is then approximated
by applying the standard commutation formula between
two conjugated variables R, P. (ii) The semiclassi-
cal expression for the proton velocity autocorrelation
function is obtained by using the well-known relation
Gas(to) = 2(l + e ~" ) G,z~(w) between the Fourier
transforms of the asymmetric and symmetrized corre-

TABLE I. Raman data on liquid water [30, 33, 34]: uo indicates the average librational Raman
frequency, u the frequency of the fundamental v, and (Au ) its half-width (in cm ).

4Pp

600 3225

(&~~)i~2

250 1640

(K~2), (2

126 3431

(&~a) i~2

250
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lation functions G~(t) = (V(0) . V(t)) and G,z (t) =
( z [V(0) . V(t) + V(t) . V(0)]), and by replacing the lat-
ter by the classical velocity autocorrelation function

(V ) P(t) of Eq. (10): G,z (t) is a real and pair function
of time as are the classical autocorrelation functions, but
this is not the case for G (t). The calculation is straight-

forward and does not need to be reproduced here.
The final results take the simplest form if the quan-

tity k~L~/Scosh(&Phup), which appears in the general
expression of I(k, t), is much smaller than unity. The for-
mulas (16)—(18) for I~(k, t), I„(k,t), I„y~(k, t) may then
be replaced by the expressions

I~(k, t) =
&& ~ ~

exp —sk L + ) L„i

x exp(it{~p+ sk hP(V ) —2~pL tanh(&Phcup) ))exp —sk ((V~) —u&~L2) t (20)

k~L2
I„(k,t) =

~

"
i
exp —-k L + ) L„, exp(it{(~„)+ ~sk hP(V ) —2~pL tanh(&Ph~p) ))

x exp{—
z sk ((V ) —~pL ) + (b,~„') t'),

v'

x exp(it{(~„)+~p+ sk [hP (V ) —2upL tanh(-,'Ph~p)]))
x exp{——,

' '-,'k' ((V') —u p2L') + (b,~„') t'). (22)

As expected, Eqs. (20)—(22) take into account the con-

straint of detailed balancing; they also describe the recoil
eRect, i.e. , the frequency shift

k~
hP (V ) —2~pL tanh (-,'Ph~p)

which is absent in the classical treatment. If &Ph~p (( 1,
these corrections reduce to those given by the above-
mentioned prescriptions. Equations (20)—(22), together
with similar expressions obtained for overtone and co-
ordination bands, are employed in the analysis of the
experiment of Chen et al which .follows.

IV. RESULTS AND DISCUSSION

A. Choice of parameters

The above theory was applied to the study of the
neutron-scattering spectra in the following conditions.
The frequencies ap, (u„), and ((Au~s) ) I of H20 were
taken as equal to the Raman frequencies ~0, w„, and

(Eu„)»2 [30] (Table I); the amplitudes L„of internal
vibrations were calculated by performing the normal-
coordinate analysis with a force field associated with the
frequencies u„; and the mean-square velocity (V2) of a

proton was expressed in terms of the molecular mass M
of H~O, the mass m of a proton, and the temperature T.
The resulting formula is

3k~T ( Mb
M g 2m)

'

The quantity L was considered as an adjustable parame-
ter and was extracted from the spectral data. The corre-
sponding quantities for D20 were calculated by reducing
the values of urp, (u„), ((b,u~) )~~s, L2 by a factor of

~2; moreover, Eq. (23) was applied with the new val-
ues of m and M, and L was adjusted again (Table II).
This theory thus contains only one adjustable parameter,
the mean amplitude L of the proton motion in the libra-
tional modes; all other quantities are either calculated or
are transferred from optical spectra.

B. Results

The theoretically reconstructed incoherent, inelastic
neutron scattering spectra of the liquid HqO and D20
at 0 = 8' are illustrated in Figs. 1 and 2. The cal-
culated quantity is the k-dependent proton density of
states Gs(k, E) = (E /I&~)Ss(k, E), where Ss(k, E) is
the dynamical structure factor. The proton amplitudes

TABLE II. Amplitude of the proton and the deuteron motions in the librational, the symmetric

stretching, the bending, and the antisymmetric stretching modes, respectively (in angstroms). The

temperature is 313 K for H20 and 298 K for D20.

HgO
D20

0.16
0.11

Lg

0.05
0.04

L2

0.07
0.06

L3

0.05
0.04
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experiment
I

'
I

s

quantum theory
I

I
I

I

T = 353 K
L= 0.17k

I i I i I g I

~W

~lee
~ o o

Q ~o e
pe e~o

~Q
C

T=313K
L = 0.16 A.

I i I i I ss I

I
'

I
'

I

'
I

* **

* * * * * *
*

I

T = 258 K
L= 0.15k

100 200 300 400 500 600 100 200 300 400 500 600

ENERGY (meV) ENERGY (meV)

FIG. 1. Quantum-mechanical reconstruction of the k-dependent proton density of states Gs(k, E) for liquid water (HsO)
and its comparison with the experiment. The energy of the incident neutrons is equal to 800 meV and 8 = 8'. In order
to facilitate the comparison, the theoretical spectra are convoluted with an instrumental function corresponding to Fig. 1 of
Ref. [7].

L and L„ involved in this calculation are those of Table
II. In order to facilitate comparison with experiment,
the theoretical spectra were convoluted with an instru-
mental function corresponding to Fig. 1(c) of Ref. [7].
These calculations are in good agreement with the ex-
periment of Toukan et al. [7]. Our theory is thus suc-
cessful in interpreting the new information provided by
the spallation-source technology. The early data by Har-
ling [5] are correctly reproduced too; this is illustrated in
Fig. 3.

A second important point is the comparison of the
neutron- and light-scattering spectra. Figure 4(a) illus-
trates the neutron spectrum of water generated by the
present theory, and Fig. 4(b) its experimental Raman

analog, reproduced by assigning to each band a Gaus-
»an profile [31). The following points are worth noticing.

(i) The energies occurring in these two spectra are sim-
ilar, but not identical. In the experiment of Toukan et
al. , the differences are of the order of, or smaller than 10
meV. This effect is due to the k2 dependent molecular
recoil; compare with Eqs. (20)—(22).

(ii) The band intensities of the two spectra are entirely
diA'erent. The Raman intensities depend on the polariz-
ability tensor cx of the water molecule and on its deriva-
tives Bn/Bn„with respect to the normal coordinates n„.
On the other hand, the spectral intensities of the neutron
spectra are given by the following formulas, obtained by
combining Eqs. (2) and (20)—(22):

experiment quantum theory
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FIG. 2. Quantum-mechanical reconstruction of the k-dependent deuteron density of states Gs(k, E) for heavy water (D20)
and its comparison with the experiment. These spectra are averaged over an angular range between 4 and 20 . Other
indications are the same as in Fig. l.
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FIG. 3. Quantum-mechanical reconstruction of the incoherent inelastic-scattering cross section for liquid water (H20) at
299 K ( ) and its comparison with Harling's experimental data [5] (e). The energy of the incident neutrons is equal to 608
meV and 8 = 125.5', 45', and 30' (from top to bottom).
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Si(k) = Ii(k, 0) =

x exp —-k L +)I, (,
dephasing of molecular vibrations by the intermolecular
noise [32]. In the neutron spectra of Chen et al. , two
band-shaping mechanisms are in action. One of them
is the vibrational relaxation, described in Eqs. (21) and
(22) by the exponential exp (—2 (b~s) t2). The second
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They depend, essentially, on the proton amplitudes L and
L „As L is larger . than are the L„(Table II), the libra-
tional bands are prominent in neutron-scattering spectra,
a feature which is not observed in Raman spectra. Note
that the values of L obtained here correspond to those of
a tridimensional harmonic oscillator of frequency uo. li-
brations thus appear as harmonic oscillations on the time
scales of the present neutron-scattering experiment.

(iii) The band profiles are different in the two spectra.
In a Raman spectrum of water, only one band-shaping
mechanism operates, the vibrational relaxation due to

1000 3000

~ (cm ')
2000

I

4000

FIG. 4. Comparison of the neutron- and light-scattering
spectra of liquid water. (a) The theoretically determined
neutron-scattering cross section (B n/MBE). is plotted

inc
against the transfer energy E for 8 = 8'. In (b) the experi-
mental Raman cross section (B o/BQBu) is plotted against
the transfer wave number u at 8 = 90 . The energy of the
incident neutrons is equal to 0.8 eV, and that of the incident
photons to 2.7 eV. The intensity scales are chosen arbitrarily.
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mechanism is the Doppler broadening, due to the motion
of the water molecules during the scattering process; it
is described by the factor exp —k2/6 ((V2) —uo2I2) t~

in Eqs. (20)—(22). The effects of these two band-shaping
mechanisms on the half-width of the fundamentals are
comparable. For example, the contribution of the vi-

brational relaxation to the half-width of each stretching
band is of the order of 30 meV, whereas the Doppler
broadening provides about 50 meV at k = 6.5 A i. One
concludes that the bands are intrinsically broader in a
neutron- than in a light-scattering spectrum.

The last question is whether classical mechanics is

suitable for the study of inelastic-neutron-scattering by
water. The answer to this question is required to de-

cide whether the standard molecular-dynamics simula-

tions are applicable to this problem. Hy repeating the
treatment of Secs. III A and III D but considering the in-

ternal vibrations as classical, one obtains a completely
classical theory, in which vibrational amplitudes L are

reduced by a factor of (2/Ph (u„))i~2 whereas the ampli-
tude I of the librational mode is more or less correctly re-
produced. The integrated intensity of the 200-meV band
is thus reduced by a factor of the order of 5, and that
of the bands at 400 and 430 meV by a factor close to
10. The integrated intensity of the whole 50—600-meV
region decreases to about half of its value. The spec-
tral distribution changes dramatically, deviates from the
experiment, but approaches that calculated by molecu-
lar dynamics (Fig. 5). These results are in agreement
with the observation reported in Ref. [7] that the com-
bination band at 525 meV is absent from the simulated
spectra. On the contrary, even a crude, but quantum-
mechanical, one-dimensional model assuming a breaking
of the H bond and a simultaneous excitation of the OH
vibration predicts correctly the ratio of the stretching
and the satellite peak intensities [16, 17]. One concludes
that classical mechanics is not appropriate for the present
problem and molecular-dynamics simulations cannot be
employed in the standard way. On the contrary, Eqs. (6)
and (7) are well adapted to this technique.

C. Discussion

The most important contribution of the neutron-
scattering experiments employing the spallation sources
concerns the librational motion of H20. Figures 4(a) and

4(b) illustrate this point in a spectacular way. However,
to observe the librational band in optimum conditions,
the scattering vector k must be chosen to satisfy the

molecular dynamics classical theory
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FIG. 5. Classical reconstruction of the incoherent,
inelastic-neutron-scattering spectra of water and their com-

parison with molecular-dynamics data of Refs. [7, 15]. The
conversion of the present theory into a classical form is

straightforward.
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relation 1/k L; this condition can never be satisfied in

optical spectra where 1/k )) I, It is then .possible to use
the inelastic neutron scattering to measure the amplitude
of librational motions in the 8-bond network in water, or
study its rupture by molecular motions and related prob-
lems. More generally, inelastic-neutron-scattering spec-
troscopy will certainly prove useful in analyzing rapid,
nondiffusive modes of translational-rotational motions of
molecules in t,he liquid phase.
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