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Nearest-neighbor distribution functions characterize the probability of finding a nearest neighbor at
some given distance from a reference point in systems of interacting particles and are of fundamental im-

portance in a variety of problems in the physical and biological sciences. We extend the formalism of
Torquato, Lu, and Rubinstein [Phys. Rev. A 41, 2059 (1990)] for identical spheres to obtain exact series
representation of nearest-neighbor functions (Uoid and particle probability densities) and closely related
quantities for systems of interacting D-dimensional spheres with a polydispersivity in size. Polydisper-
sivity constitutes a basic feature of the structure of random systems of particles and leads to a wider
choice of possible definitions for nearest-neighbor functions. The most relevant definition for a po-
lydispersed system of particles involves the "nearest particle surface" rather than the "nearest particle
center" and thus we refer to them as "nearest-surface distribution functions. " For the special cases of
D-dimensional hard and overlapping spheres, we obtain analytical expressions for the nearest-surface
functions that are accurate for a wide range of sphere concentrations. Employing these results, we are
able to compute the corresponding mean nearest surface d-istances for polydispersed hard spheres. Final-
ly, we determine the nearest-surface functions for bidispersed systems from Monte Carlo computer simu-
lations and find that our theoretical results are in very good agreement with the data.

PACS number(s): 47.55.Mh, 05.20.—y, 61.20.Gy

I. INTRODUCTION

In many-body systems, nearest-neighbor distribution
functions characterize the probability of finding a nearest
neighbor at some given distance from a reference point in
the system. Knowledge of nearest-neighbor distribution
functions (and their close relatives) is of fundamental im-
portance in a host of problems in the physical and biolog-
ical sciences, including liquids and amorphous solids
[1—9], transport properties of suspensions and composite
materials [10—13], stellar dynamics [14], and the struc-
ture of some cell membranes [15], to mention but a few
examples. From such nearest-neighbor functions, one
can obtain other important statistical measures of the
system such as the mean nearest-neighbor distance and, in
the case of hard-sphere systems, the random close-
packing density.

Virtually all previous theoretical results have treated
systems of identical spheres with hard-sphere interac-
tions. Recently, Torquato, Lu, and Rubinstein [8] have
obtained exact series representations of various types of
nearest-neighbor functions for systems of identical
spheres that interact with an arbitrary potential. Unfor-
tunately, since these series cannot be summed for general
potentials, exact solutions are generally out of the ques-
tion. One must therefore resort to various approximation
schemes, even in the simple case of hard-sphere interac-
tions [1,4,8,9]. As it turns out, the approximation
schemes can yield very good agreement with Monte Car-
lo simulations [8,9].

The purpose of this paper is to extend the formalism of
Torquato, Lu, and Rubinstein [8] for monodisperse
spheres to study the case of spheres with a polydispersivi-
ty in size. Polydispersed-sphere systems are useful mod-
els of the many random heterogeneous media character-
ized by many length scales [16]. Polydispersivity leads to
a wider choice of possible deftnitions for nearest neighbor-
functions For exam. ple, one can speak of the "nearest
center" or the "nearest surface, " which are not generally
the same in a polydispersed system. It will be shown that
the definition based upon the nearest surface is the most
useful. We shall consider the two types of "reference
points": one involving the centers of the particles them-
selves (particle quantities) and another involving points
that may lie anywhere exterior to the particles (void
quantities)

In Sec. II, we define for polydispersed systems the
nearest-neighbor functions (and closely related quantities)
for both the void and particle quantities, mean nearest-
neighbor distance, and (in the case of hard-sphere sys-
tems) the random close-packing density. In Sec. III, we
give exact series representations of the void and particle
nearest-surface functions for D-dimensional systems of
polydispersed spheres. In Secs. IV and V, we obtain ac-
curate approximations of the aforementioned quantities
for hard-sphere systems, respectively. In Sec. VI, we
derive explicit expressions for mean nearest-neighbor dis-
tances for D-dimensional systems of hard spheres. Final-
ly, in Sec. VII, we obtain the nearest-neighbor functions
for bidispersed systems from computer simulations and
compare the data to our theoretical results.

45 5530 1992 The American Physical Society



45 NEAREST-SURFACE DISTRIBUTION FUNCTIONS FOR. . . 5531

II. DEFINITIONS AND FUNDAMENTAL RELATIONS

A. Dift'erent types of nearest-neighbor functions

For a polydispersed particle system, a variety of
definitions for the nearest-neighbor functions can be
given. There are, however, essentially two different kinds
of nearest-neighbor functions for D-dimensional spherical
particle systems: (i) one specifying the nearest sphere sur-
face to a reference point, and (ii) the other specifying the
nearest sphere center to a reference point. For a mono-
dispersed particle system, the nearest sphere surface and
the nearest sphere center involve the same sphere and
therefore these two nearest-neighbor functions contain
the same information. This monodispersed case was
treated by us in an earlier study [8] using the center-based
quantities. The nearest-surface distribution function for
the monodispersed case has recently been applied in con-
nection with the problem of diffusion among traps [17].
For polydispersed D-dimensional spherical systems, how-
ever, the nearest-surface distribution functions and
nearest-center distribution functions are generally dis-
tinctly different. An example is shown in Fig. 1. The
nearest surface to point A is on the particle to the left of
point A, but the center of this particle is not the closest
sphere center to point A because of its large radius rela-
tive to the other particles. The nearest sphere center to
point A is the one to the right of point A. Clearly, the
nearest-surface distribution functions are the most
relevant for polydispersed systems and will be the focus
of this paper. Possible definitions of the nearest-neighbor
functions can also be given for polydispersed spherical
systems (see the Appendix).

B. Polydispersed spherical particle systems

We shall study nearest-surface distribution functions
and closely related quantities for a system of N interact-
ing D-dimensional polydispersed spheres. In general, po-

FIG. 1. Local environment around a reference point A. The
nearest surface to point A is on the particle to the left of point
A. The nearest sphere center to point A is the one to the right
of point A.

lydispersivity may manifest itself because of variation in
charge, chemical properties, and mass, as well as size. In
this paper, we are interested in systems of spherical parti-
cles with polydispersivity in radii or diameters. The
method applied here can also be used to study other
kinds of polydispersivity.

Let the N-particle system be composed of M different
types of spherical particles (M components). N and R
denote the number and radius of o. types of particles, re-
spectively. The N particles are spatially distributed in the
D-dimensional space of volume V according to the N-
particle density Pz(r ), which is in turn determined by
the system Hamiltonian and, in general, dynamical pro-
cesses. Pz(r ) characterizes the probability of finding
the particles labeled 1,2, . . . , N with configuration
r =—r„r2, . . . , rz, respectively. The ensemble average of
any many-body function F(r ) is given by

F(r )=fF(r )P~(r )dr (2.1)

eJ, (r) =1—f hz(y)dy . (2.3)

The integrals of (2.2) and (2.3), respectively, represent the

As we have shown in previous work [8], according to
whether or not there is a particle center at the reference
point, there are two different types of nearest-neighbor
distribution functions: the uoid nearest-neighbor distri-
bution function and the particle nearest-neighbor distri-
bution function. For polydispersed spherical systems, the
void nearest-surface distribution function hz(r) is defined
such that h~(r)dr is the probability that at an arbitrary
point in the system the nearest particle surface lies at a
distance between r and r+dr. The particle nearest-
surface distribution function h~ (r) is defined such that

I

h~ (r)dr is the probability that, given any D-dimensional

sphere of radius R; at some arbitrary position in the sys-
tem, there is a nearest particle surface at a distance be-
tween r and r +dr. The closely related void "exclusion"
probability ez(r) can then be defined as the probability of
finding a region Qz, which is a D-dimensional spherical
cavity of radius r (centered at some arbitrary point), emp-
ty of particle material. The particle exclusion probability
e~ (r) is defined as the probability of finding a region Q~,

E

which is a sphere of radius r encompassing a central par-
ticle of radius R;, empty of particle material. Since it is
clear that the particle quantities are associated with the
center of a specified-type particle as the reference point,
henceforth we will simply write e& (r) as ep(r) and hz (r)
as h~(r), unless otherwise stated. Note that for continu-
ous polydispersed systems with an infinite range of sizes,
r generally will lie in the closed interval [ —ao, 00]. The
significance of negative values of r follows from our
definition that the reference point can sometimes lie in
the particle phase itself and thus may involve an infinitely
large particle (see Sec. IV for further details of this point).

The exclusion probabilities are related to the nearest-
neighbor distribution functions by the expressions

ez(r) = 1 —f h v(y)dy, (2.2)
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probabilities of finding at least some portion of a particle
in regions Ov and Qz. Differentiating the exclusion-
probability relations with respect to r gives

and

d—ev(r)
hv(r)=

iver

dep(—r)
hp(r)=

Br

(2.4)

(2.5)

hp(r)=gp(r)ep(r) . (2.7)

Equations (2.6) and (2.7) are expressions involving con-
ditional probabilities. The quantity gi(r) in (2.6) is the
probability, given that region Ai, (spherical cavity of ra-
dius r) is empty of particle material, of finding particle
surface in the spherical shell of volume sD(r)dr encom-
passing the cavity. The quantity sD is the surface area of
a D-dimensional sphere of radius r:

s, (r)=2,
s2(r) =2m.r,
s3(r) =4mr

(2.8)

(2.9)

(2.10)

The quantity gp(r) in (2.7) is the probability, given that
region Qp (sphere of radius r encompassing the particle
centered at some arbitrary position) is empty of particle
material, of finding particle surface in the D-dimensional
spherical shell of volume sD(r)dr surrounding the central
particle.

The exclusion probabilities ev(r) and ep(r) are related
to g„(r) and gp(r), respectively, via the expressions

The nearest-neighbor distribution functions may be
written as a product of two different correlation func-
tions. For D-dimensional spherical particles let

hv{r) =gv{r)ez(r)

and

C. Specific nearest-surface distribution function

In this section we describe the "specific" nearest-
surface distribution functions. The specific void nearest-
surface distribution function hi (r) can be defined as the
probability that at an arbitrary point in the system, the
nearest surface of particle of type j lies at a distance be-
tween r and r +dr. In the same way, the specific particle
nearest-neighbor distribution function hp J(r) is defined
as the probability that, given any D-dimensional sphere
(of radius R, ) at some arbitrary position in the system,
one finds the nearest surface of particle of type j at a dis-
tance between r and r +dr. The specific void and particle
nearest-surface distribution function can be expressed in
the following way:

hv (r)=gi (r)ei, (r) (2.15)

and

gives the probability that given a particle at the origin,
the region Q,~, a sphere of radius r encompassing this
central particle, is empty of particle centers. The quanti-
ty Hi, (r)dr is the probability that at an arbitrary point in
the system the center of the nearest particle lies at a dis-
tance between r and r +dr. Similarly, Hp(r)dr is the
probability that, given a particle at the origin, the center
of the nearest particle lies at a distance between r and
r +dr T.he quantity psD(r)G&(r)dr is the probability
that, given a region A v empty of particle centers, particle
centers are contained in the shell of volume sD(r)dr en-
compassing the cavity. Similarly, psD(r)Gp(r)dr is the
probability that, given a region Az empty of particle
centers, particle centers are contained in the shell of
volume sD(r)dr surrounding the central particle. For
identical particles of diameter o. , it is simple to relate
surface-based quantities to center-based quantities, e.g. ,
ei,(r)=EV(r +o i2), hi, (r) =H&(r +o l2), and

gi,(r) =Gi,(r +cr l2). As noted earlier, the surface-based
quantities are the most natural to employ when the parti-
cles have polydispersivity in size .

ei (r) =exp —f g„(y)dy (2.11) hp (r)=gp~ep(r) . (2.16)

ep(r) =exp — gp(y)dy (2.12)

which are obtained by use of (2.4)—(2.7). The coinbina-
tion of (2.4), (2.5), (2.11),and (2.12) yields

hi, (r}=gi,(r)exp —f gi, (y)dy (2.13)

hp(r)=gp(r)exp —f gp(y)dy (2.14)

In our earlier work on monodispersed spherical parti-
cle systems, we examined the corresponding center-based
"void" functions E„(r), Hv(r), and Gv(r), and center-
based "particle" functions Ep(r), Hp(r), and Gp(r). The
function Ev(r) gives the probability of finding a region
Q~, a spherical cavity of radius r centered at some arbi-
trary point, empty of particle centers. Similarly, Ep(r)

The quantity gi J in (2. 15) is the probability, given that
region 0 v (spherical cavity of radius r) is empty of parti-
cle material, of finding the surface of j-type particles in
the spherical shell of volume sDdr encompassing the cavi-
ty. The quantity gp in (2.16) is the probability, given a
region Qp (sphere of radius r encompassing the particle
centered at some arbitrary position) empty of particle
material, of finding the surface of j-type particles in the
spherical shell of volume sL, (r)dr surrounding the central
particle. Because of independence, the generic distribu-
tion functions h~, hp, gv, and gp are related to the
specific distribution functions hi, (r), hp .(r), gi, (r), and

gp (r) by the relations

(2.17)

(2.18)
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gv(r) =g gv J(r),
J

(2.19) D. Mean nearest surface-surface distance and the
random-close-packing density

gt, (r)=ggt, j(r) .
J

(2.20)

The relations immediately above and expressions (2.2),
(2.3), (2.11),and (2.12) yield

ev(r)=1 —f ghv (y)dy,
J

e~(r)=1 —f" ght, j(y)dy,
1

(2.22)

ev(r) =exp —f g gv J(y)dy
J

(2.23)

T

er( r) =exp — g gp (y)dy
J

(2.24)

gv J(r}=pjsD(r +RJ )Gv J(r +RJ )

gp J( ) rpjsD(r +RJ )G~ J(r +RJ).(2.25)

(2.26)

where R. is the radius of a j-type particle. The relations
(2.17)—(2.26} are of basic importance in understanding
and calculating the nearest-surface distribution functions
and related quantities.

An important dimensionless parameter that will be
used throughout the following sections is the reduced
density g in D dimensions defined by

We define further p sD(r)Gv (r) as the probability
that, given a region Qv (spherical cavity of radius r) emp-

ty of particle centers, j-type particle centers are con-
tained in the spherical shell of volume sD(r}dr encom-
passing the cavity. In the same way, we define

pjsD(r)G~~(r) as the probability that, given a region Qt,
(sphere of radius r encompassing reference particle cen-
tered at some arbitrary position) empty of particle
centers, j-type particle centers are contained in the spher-
ical shell of volume sD(r)dr surrounding the central parti-
cle. We then have the following relations:

Another quantity of fundamental interest in a many-
particle system is the mean nearest surface sur-face dis
tance defined as the mean distance between the surface of
a reference particle i and the nearest particle surface. It
is given in terms of the nearest-surface distribution func-
tion by

lt, =f rht, (r)dr —R; .
l 0 l

(2.30)

The integral in (2.30) represents the distance from the
center of the reference particle of radius A; to the nearest
surface of another particle. Henceforth, we will simply
write lt, as lp. A basic quantity of hard-particle systems

t

is the random close-packing density, which to our
knowledge has not been properly defined and quantita-
tively investigated for polydispersed particle systems.
For polydispersed systems, when the density of particles
increases, the mean nearest surface-surface distance asso-
ciated with any reference particle i will decrease, and
eventually a critical point will be approached at which
the mean nearest surface-surface distance associated with
any of the reference particles tends to zero. We then
define the random close-packing density as the density at
which lz tends to zero for any of the reference particles.
The definition and the evaluation of the random close-
packing density is of great interest.

Another quantity of interest is the mean Uoid nearest-
surface distance. The mean void nearest-surface distance
l~ can be defined as

lv= f rhv(r)dr . (2.31)
0

Integrating (2.26) by parts, we have

lv= f ev(r)dr . (2.32)
0

We will calculate l~ and l~ for systems of fully penetrable
spheres and totally impenetrable spheres in Sec. VI.

M ~/2

, I (1+D/2) (2.27)
III. SERIES EXPANSIONS FOR THE VOID

AND PARTICLE QUANTITIES

D
I (1+D/2) (2.28)

where the average of any function A (% ) is given by

(A(%)) =f A(W)f(W)dW .
0

(2.29)

In the case of included particles with a continuous distri-
bution radius % characterized by the normalized proba-
bility density f (% ), we have

For a monodispersed particle system, Torquato, Lu,
and Rubinstein [8] have obtained exact series expansions
for the void quantities Hv(r), Ev(r), and Gv(r) for sys-
tems of monodispersed spheres that interact with an arbi-
trary potential. For the general n-point distribution func-
tion H„defined below, Lu and Torquato [18] found that
there is a simple prescription for mapping monodisperse
results into polydisperse results. The H„contain, as spe-
cial cases, the nearest-surface functions. In what follows,
we shall give exact series expressions for nearest-surface
distribution functions and related quantities for po-
lydispersed systems of spheres.

Note that one can obtain the discrete result (2.27) from
(2.28) by letting f(A)=+M &(p,. /p)5(A —R,. ). Finally,
we note that only in the case of hard spheres is g equal to
the sphere volume fraction $2. For penetrable-sphere
systems, ri & $2.

A. Void quantities

Torquato [19] has developed a methodology to
represent and compute a general n-point distribution
function M„ for random media composed of statistical
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hv(r)=H, (x,;8;8),
ey(r)=H, (8;x„'8) .

(3.1)

(3.2)

Here the radius of the test particle is equal to r, as op-
posed to b, the notation used in Ref. [18]. From the gen-
eral expressions [18] of H„, we have the following expan-
sion for e~(r):

where

s=0
(3.3)

distributions of D-dimensional identical spheres.
H„(x;x~;r~) characterizes the correlation associated
with finding m points with positions x —= [x&, . . . , x
on certain surfaces in the system, p —m points with posi-
tions x =—[x + &, . . . , x ] in certain regions exterior
to the spheres, and any q of the spheres with
configuration r~, where n =p+q. The general n-point
distribution function H„contains as special cases a
variety of different types of correlation functions that
arise in the study of the transport and mechanical proper-
ties of disordered composite media [20], liquid-state
theory [21], and amorphous solids [5]. A representation
of the general n-point distribution function for a po-
lydispersed system was subsequently given [18]. The void
nearest-surface distribution functions are special cases of
the general n-point distribution functions [18]

(3.8)

Note that the function m defined here is slightly different
from the one defined in Ref. [16] in that it is the surface
indicator function.

In the special case of a monodispersed spherical system
with particle diameter 0., we have

er (r)=EV(r +cr/2),

hv(r)=Hv(r +o /2),

gz(r)=psD(r +cr/2)G&(r +o /2),

(3.9)

(3.10)

(3.11)

continuous case, one can easily obtain the results of the
discrete case. For example, in the discrete homogeneous
case with M different components, the size distributions
f (% ) in relation (3.6) become g &(p /p)5(%~ —& ~)
where p is the number density of type 0. particles and
5(J7 ) is the Dirac delta function. In (3.7),
p„(r";%&, . . . , A „)f(A

&
) f(%„) is the probability

density function associated with finding an inclusion with
radius A, at r„another inclusion with radius %2 at r2,
etc. The case n =1 is degenerate in the sense that
p, (r„A, ) is independent of r, and in the instance of sta-
tistically homogeneous media is simply equal to the total
number of density p. The quantity m( lx —r; I;r) is an in-

dicator function defined as

Xp, (r',R„.. . , %, )

S

X g m(lx —r, l;r)«,
j=1

(3.4)

where E~(r), H„(r), and Gr (r) have been defined in Ref.
[8] and in Sec. II.

The evaluation of the void quantities is generally non-
trivial because of the appearance of the p„. For the spe-
cial case of "overlapping" or "randomly centered" (i.e.,
spatially uncorrelated) homogeneous sphere systems, the
p„are especially simple:

and

The series expansion for h v(r) is given by

(3.5)
p„(r";A„.. . , A„)=g p, (rJ, AJ ) .

j=l
We then have the following results:

(3.12}

N

hv(r)= g ( —I)'h~ (r),
s=1

with

(3.6)
ez(r) =exp[ —p( uD(r +%)B(r+A) ) ],
h (r)=p&s (r+A)e(r+X))

(3.13)

Xexp[ —p(vD(r +%)e(r +&))] (3 14)

Xp, (r', %„.. . , %, }

S

X Q m(lx rjl;r)«J .
j=1

(3.7)
v, (%)=2%, (3.15)

Here uD(Q ) is the volume of a D-dimensional sphere with
radius %, i.e.,

u~(% ) =a% (3.16)
The results above have been expressed for a system of

included particles with a continuous distribution in ra-
dius %' characterized by the normalized probability den-
sity f (%'). It will sometimes be convenient to employ the
diameter of the particle denoted by o =28. The continu-
ous representation is more general and concise than the
one for the discrete case. From the expressions for the

(Au3)
=3~%— (3.17)

and B(x) is the Heaviside step function. Note that rela-
tions (3.13) and (3.14) are valid for both r &0 and r &0.
In the case of r )0, the distance between the nearest sur-
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face and the reference point can be obtained by subtract-
ing the radius of the nearest particle from the distance
between the reference point and the center of the
nearest-surface particle. When the distance between the
reference point and the center of the nearest particle is
smaller than the radius of the particle, the reference point
is in the particle phase, and we have that r (0. The ex-
clusion probability ez(r) for r &0 is then the probability
that there is no particle material that penetrates the refer-
ence point with a depth larger than —r. The nearest-
surface distribution hz(r) is the probability density asso-
ciated with finding the nearest surface a distance —r
away while the reference point is in the particle phase.

Another useful model is a system of totally impenetr-

able (hard) spheres whose corresponding results are re-
ported in Sec. V.

B. Particle quantities

N —1

e~(r)= g (
—1)'e~"(r),

s=0

where

(3.18)

The exact integral representations for the particle
quantities ez(r), hz(r), and gp(r) for systems of spheres
that interact with an arbitrary potential can be obtained
in the same way as the void quantities. We have

s+1
Xp, +,(r'+';%„. . . , %,+, ) g m(~r, —

r~ ~(;r)dr
1=2

(3.19)

and

(3.20)

The particle nearest-surface distribution function is given
by

for arbitrary density that are accurate over a wide range
of densities. The probability density hz(r) shall be made
dimensionless by multiplying it by the average diameter,
but instead of writing (o )h v( r ) we will simply write
hr(r), taking (cr ) = l.

N —1

h~(r)= g (
—1)'+'h "(r), (3.21) A. Formula for calculating the void quantities

where

s=1
Since for impenetrable spheres the reference point can

only be inside one of the particles with radius
0 & r&%, we t—hen have

e„(r)=1—p(v (r+%)8(r+%)), r &0 (4.1)

Xp, +,(r'+', A„. . . , W, +, )

s+1
X g m(~r& —

r~. ;r)dry .
1=2

(3.22)

where vD(A) is the volume of the D-dimensional sphere
and 8(x} is the Heaviside step function. The corre-
sponding nearest-surface distribution function can then
be expressed as

For statistically homogeneous media, the conditional pair
distribution function g~(r) can be obtained through the
relations (2.6) and (2.7).

For the simple case of fully penetrable spheres, it is
straightforward to obtain the following expressions from
(3.18)—(3.22):

hv(r)=p(sD(r+%)8(r+A)), r &0. (4.2}

The general formula for calculating the void exclusion
probability function for the case of r & 0 can be obtained
easily from (2.23) as

ep(r) =exp[ —p(vD(r +JR)8(r +R) ) ],
h (r)=p(s (r A+} (8r %+))

(3.23}
(r)=(1—exe))exp —p(f xe(y+ ) (yy)+Gdyy))

0

r)0. (4.3)

Xexp[ —p(vz(r+R)8(r+A))] . (3.24)

As expected [8], these relatons are identical to (3.13) and
(3.14).

IV. CALCULATIONS OF THE VOID
QUANTITIES

Similarly,

h (r) =(1 7/)p(s (r +% )G(r +—%) )

X exp —p f sD(y +% )G(y +Q )dy

r)0 (4.4)

We now consider the evaluation of the void nearest-
surface functions for D-dimensional hard-sphere models

where G(r+A) is the value of the radial distribution
function at contact for pairs of particles with radii r and
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B. Hard rods

G(r+A) = 1

1 —q
r&0, (4.5)

which is in fact independent of the size of the test parti-
cle. %e then have

2pre~(r) =(1—g)exp
1 —g

r&0, (4.6)

—2prhv(r)=2gexp P, r)0
1 —g

(4.7)

where q is the reduced density defined by (2.24) and
(2.25). For r & 0, we have the result

ev(r)=1 —2p&(%+r)8(%+r)&, r &0 . (4.8)

A commonly employed size distribution function f (J7 )

is the Schulz distribution function, which is defined as

For an equilibrium distribution of one-dimensional
impenetrable spheres, i.e., hard rods, one can evaluate the
series (3.4) and (3.6) through all orders in density. This is
true because in one dimension the n-particle probability
densities are known exactly. The two-particle probability
density pz was first given by Zernike and Prins [22].
Higher-order probability densities are given in terms of
products of two-particle probability densities. For po-
lydispersed systems, Lebowitz, Helfand, and Praesegaard
[23] have given the scaled-particle theory of fluid mix-
ture. The expression for the contact value for pairs of
particles with radius r and % is

1 z+1
r(z+1)

—(z+ 1)%

z & —1 (4.9)

where I (x) is the gamma function. The nth moment of
the Schulz distribution function is

g(.+ ).
i =0

(4. 10)

For two- and higher-dimensional systems of hard
spheres, exact evaluation of the series (3.4)—(3.6) are im-
possible for arbitrary density because the n-particle prob-
ability densities are not exactly known. One must there-
fore settle for an approximate means of computing these
series. The scaled-particle (SP) theory [23] provides one
approximation scheme. For D =2 the scaled-particle ap-
proximation gives the radial distribution function at the
contact value as

( +~) 1 mp&A &Ar

(1—g) (r+A)
The exclusion probability function is then from (4.1)

and (4.3) given by

(4.11)

By increasing z, the variance decreases, i.e., the distribu-
tion becomes sharper. In the monodisperse limit z~ ~,
f(A) =5(R —

& J7 & ). It is easy to see that (4.6) and (4.7)
agree with (4.12) and (4. 13) of Ref. [8] in the mono-
disperse case.

C. Hard disks

e~(r)= .
(1—

71 )exp —
m p

1 ~i &(r+S)28(r+X)&, r &0

r'+2&% &r np&N &'r'+ r&0.

(4.12)

(4. 13)

The void nearest-surface distribution function in this case can then be written as

h~(r)=
2np (&r +%) 8(r +A) ,&r &0

2 +2&& &+ 2r~p&& &' r'+2r && & + &~ &2Kp r exp 7l ID Tlp r&0.

(4.14)

(4. 15)

In the special case of a system with monodispersed particles, we have

~p=4g . (4.16)

Introducing the scaled distance x =r/(2&% &) and taking 2&% & =1, we have the following expressions for a mono-
dispersed system:

e~(x)= .

1 —4'(x+ —,') 8(x+ —,'), x &0

(1—g)exp (x +x —xrj), x &0
—4g

(1—q)

(4.17)

(4.18)
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8'(x + —,
' )e(x + —,

' ), x & 0

hv(x) = 4g —4g(2x+1—r))exp (x +x —xrI), x)0.
(4.19)

(4.20)

Equations (4.18) and (4.20) can be obtained from (4.21)
and (4.24) of Ref. [8], by using the relationship
ei, (x)=Ev(x +—,

' ). Note, in expressions (4.19) and (4.20)
h v was made dimensionless by multiplying by the diame-
ter of inclusions, but instead of writing oh~ we simply
wrote hi„ taking rr = l. In Fig. 2, the results of ev(r) for
two-dimensional systems are shown for the Schulz distn-
bution with z =0 (solid lines) and z = ae (dashed lines) for
$2=0.2 and 0.6, respectively. Note that ev(r) is a mono-
tonic decreasing function of r for the same reasons as in
the monodisperse case (z = ae ), as explained in Ref. [8].
For large r, the effect of polydispersivity is to increase
both ev(r) and hir(r) relative to the monodisperse result.
The reason for this behavior can be seen by referring to
(2.28) and noting that, at fixed rI, the dimensional number
density p will be smaller in the polydispersed system than
for the monodispersed system, whereas the average
volume of a particle will be larger in the polydispersed
case than in the monodisperse case. Therefore, the prob-
ability of finding a large void region in the polydispersed
system is larger than in the monodispersed system.

G( +~) 1 + 6r% 4
1 —

g3 r +A (1—
g3)

'2 22rX
r +% (1—g3)2

(4.21)

where

2k —1(~k) (4.22)

with A =2 being the Carnahan-Starling (CS) approxima-
tion, A =3 being the SP approximation, and A =0 being
the Percus-Yevick (PY) approximation. The void ex-
clusion probability is then according to (4.1) and (4.3)
given by

D. Hard spheres

1 — p((r+%) e(r+%)), r &0
ev(r)= '

(1—ri)exp[ rrp(cr+d—r +gr )], r)0
(4.23)

(4.24)

For the case of three-dimensional spherical systems, we
have, according to Refs. [23—25], that the radial distribu-
tion function at contact is given by

with

e„(r)
0.5

3-

&a&h„(r)2

I
J1

I1
I 1

I I

I I

I

I I

I 1

I l

'1
I

0—2

r/&0')

0 I

FIG. 2. Void exclusion probability eI (r) for the two-
dimensional hard-sphere polydispersed system characterized by
a Schulz distribution with z =0 (solid lines) and z = ~ (dashed
line) for particle volume fractions Pz =0.2 and 0.6, respectively.

FIG. 3. Void nearest-surface distribution function hI (r) for
the three-dimensional hard-sphere polydispersed system charac-
terized by a Schulz distribution with z =0 (solid lines) and z =3
(dashed lines) for particle volume fractions $&=0.3 and 0.5, re-
spectively.
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(4.25) + ',+,(X') . (4.27)
3(1 g) (1—q) 3 (1—q)

(A')
(1—g3)'

(4.26) The void nearest-neighbor distribution function is given
by

4mp((r+A) e(r+%)), r &0
hv(r)= .

m'p(c+2dr+3gr )(1—ri)exp[ mp(—cr +dr +gr3)], r )0 .

(4.28)

(4.29)

In the special case of a monodispersed particle system, we
have

isotropic distributions of D-dimensional impenetrable in-
clusions.

(cr'& =1,
k=4=v

(4.30)

(4.31)

A. Fundamental relationships between void quantities
and particle quantities

e v(x ) = 1 —8g(x +—,
'

) e(x +—,
' ), x &0,

h v(x) =24'(x + —,
'

) e(x + —,
' ), x & 0,

(4.32)

(4.33)

The expressions for the exclusion probability and the
nearest-surface distribution function in terms of scaled
x =rl(237) are

As we have revealed in a previous paper [8] for mono-
dispersed systems, the void and particle quantities are re-
lated for statistically homogeneous hard-sphere distribu-
tions. For polydispersed systems, a similar relationship
exists. The essence of the relationship is that ep(r) can be
expressed as a conditional probability that, in the ther-
modynamic limit, yields an exact relationship, namely,

ev(x) =(1—rI)exp —g + x6x 12+6g
1 —g (1—g)

e,(r)ep(r)=, r )A
ev

(5.1)

8[( A —2)r) +rj+1]
(1—rj )'

where A is the radius of the reference particle. From the
relationship above, we have the following relationship for
the nearest-surface distribution function:

x )0, (4.34)

6+ (24+12') 24[(A —2)q +rI+1)]hvx =g 6+ x+
1 —r)

hv(r)hp(r)=, r)% .
ev

We also have the relationship for gp(r) and gv(r),

(5.2)

6x 12+6gX exp —q + x
(1—g)'

(A —2)g +q+I
(1—g)

, x)0.
(4.35)

gp(r}=gv(r» (5.3)

B. Hard rods

These relationships state that the environment around a
hard sphere of radius % is the same as the environment
around a sphere void region of radius % for statistically
homogeneous media.

Equations (4.34) and (4.35) can be obtained from the ex-
pressions (4.33) and (4.34) of Ref. [8] using the relation-
ships (3.9) and (3.10).

Figure 3 shows the void nearest-surface distribution
function for a three-dimensional hard-sphere system with
a Schulz distribution z =0 (solid lines) and z = ~ (dashed
lines} for $2=0.2 and 0.6, respectively. A broader distri-
bution for h v has been found for polydispersed systems
for the same general reasons described above for Fig. 2.

V. CALCULATIONS OF THE PARTICLE QUANTITIES

Here we consider computing the particle quantities
ep(r), hp(r), and gp(r) for statistically homogeneous and

ep(r) =exp
—2p(r —A )

1 —g
(5.4)

2php(r) = exp
1 —g

—2p(r —A )

1 —
Yl

(5.5)

Note that the given expressions immediately indicate the
dependence of hp(r) on the radius of the reference parti-
cle A.

The particle quantities for one-dimensional systems
can be obtained from relationships (5.1) and (5.2) using
the expressions (4.6}and (4.7) for the void quantities. We
have that
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C. Hard disks

In the case of hard disks (D =2), we make use of the
void SP approximation (4.13) and (4.15). These expres-
sions combined with Eqs. (5.1) and (5.2) yield

ep(r)=exp (r —A +2(r —%)(A&
(1—7))

—4
Ep (x ) =exp [(x —1 )

—2}(x —1)]
(1—2})

4g(2x —
2})

(1—rI)

(5.10)

These results correspond to the monodisperse results
(5.13) and (5.14) of Ref. [8], i.e.,

np&R &'(r' —(% &'}

1 —g
(5.6)

—4
Xexp [(x —1)—2}(x —1)]

(1—q)'
(5.11)

g2

hp(r) = 2r +2(% &+1-~ 1 —g

Recall in (5.10) and (5.11) that x is the sum of the radius
of the test particle and the inclusion radius scaled to the
diameter of inclusion particles.

X exp (r %+—2(r —% )
(1—

2})

+ n p(% &'(r' —(% &')

1 —g
(5.7)

D. Hard spheres

For the case of hard spheres (D =3), we obtain the
particle quantities in three different approximations: PY,
CS, and SP approximations corresponding to A =0,2, 3,
respectively, in the following expressions:

For the special case of monodispersed particles of unit di-
ameter, the expressions (5.6) and (5.7) become

e~(r)=exp[ —mpc[(r —%)+d(r R)+g(—r R)]j,—

ez(x)=exp [x +x —
—,
' —(x —

—,')ri]
—4g

1 —ri
(5.8) (5.12)

and

h~(x) = (2x +1—ri)
4g

(1—rj )

hr(r)=op(c+2dr+3gr )

X exp[—npc[(r —%)+d(r %)+g(r R—3)]], —

(5.13)

X exp [x +x —
—,
' —(x —

—,')g] . (5.9)
(1—rI)

where c,d, g are given in (4.25) —(4.27).
In the case of monodispersed particles, we have

T~) 12+62} 2, (A —2)r} +r)+ I
e~(x) =( I —

21 )exp —ri + (x —
—,
' )+ (x —

—,
'

)
'g (1—7J)

' (1—
21)

(5.14)

(24+122})x 24[(A —2}2} +2}+1)]hex =rl 6+ +
(1—q) (1—q)'

x exp
6(x ——')T 12+62}

1 —
7} (1—&)2

8[(A —2)q +21+1]
(1—2})

(5.15)

Figure 4 shows the particle exclusion probability ez for
a Schulz distribution with z =3 and 0 at two different
particle volume fractions. As expected, polydispersivity
increases ez at fixed r. In Fig. 5, the particle nearest-
surface distribution function hp(r} is shown for the

Schulz distribution with z =0 for $2=0.3 and 0.5 with
reference particle diameters o. =0.5 and 2, respectively.
For large reference particles, h~ has a large value near
the surface of the reference particle, but it decreases more
rapidly than hz for smaller reference particles.
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upon integration, the following simple result:

lp=
2p

(6.2)

e (r)
0.5—

0 4

0

0.5

0.5 1.5

Equation (6.2) indicates that for one-dimensional hard-
rod systems, the mean nearest surface-surface distance is
independent of the type of reference particle.

For two-dimensional systems of hard spheres, by em-
ploying expressions (5.7) and (6.1), we obtain the follow-
ing results:

1/2l~=, exp[ a(W+b/2) ]erfc[a'~ (A+b/2)], (6.3)
2a 1 /2

where erfc(x) is the complementary error function and

r/ v&)

FIG. 4. The particle exclusion probability ep(r) for the
three-dimensional hard-sphere polydispersed system character-
ized by a Schulz distribution with z =3 (solid lines) and z = ~
(dashed lines) for particle volume fractions $,=0.2 and 0.6, re-

spectively. The diameter of the reference particle is (o ).

VI. MEAN NEAREST SURFACE-SURFACE DISTANCE
AND MEAN VOID NEAREST-SURFACE DISTANCE

lp = J ez(r)dr . (6.1)

In the case D =1, substitution of (5.4) into (6.1) yields,

Here we sha11 compute the mean nearest surface-
surface distance l~ defined by (2.30), for distributions of
D-dimensional impenetrable inclusions using the results
of the preceding section. Integration of (2.30) by parts
and using (2.5) gives the following general expression:

~p(1 rl+—harp(JP) )

(1—il)

b= 2(% )(1—i))
1 —q+~p(W &'

(6 4)

(6.5)

In relation (6.3), % is the radius of the reference particle.
For two-dimensional systems, the mean nearest surface-
surface distance is a function of the radius of the refer-
ence particle. When W is very large, lp is proportional to

On average, bigger particles have more neighbors
than smaller particles, and therefore such bigger particles
have a better chance of having a nearest particle a shorter
distance away. For infinitely large particles, the probabil-
ity that one of the other particles will touch it will tend to
unity. The expression (6.3) is shown for the Schulz distri-
bution in Fig. 6. We plot lp/(cr) as a function of P2
for the Schulz distribution with z =0 (solid lines), and
z = ac (dashed line). For z =0, we plot the results for the
diameters of reference particles (o ) (lower solid line) and
0.01(cr ) (upper solid line). The eff'ect of the polydisper-
sivity is to increase the surface-surface distance between

20-

I I I

2

15- 0.5 1.5—

&o)h (r)
10-

0.5—

0
0 0.5 1.5

0
0

~ i I I ~ ~ i I a ~ ~ ~ I ~ a

5 10 15

FIG. 5. Particle nearest-surface distribution function hp(r)
for the three-dimensional hard-sphere polydispersed system
characterized by a Schulz distribution with z =0 for particle
volume fractions II2=0.3 and 0.5. The diameters of the refer-
ence particle are 0.5(o. l and 2(o').

I/ (I,

FIG. 6. Mean nearest surface-surface distance lp vs Pz
' for

the two-dimensional hard-sphere polydispersed system charac-
terized by a Schulz distribution with z =0 (solid lines) and
z = oo (dashed line). Here the diameters of the reference parti-
cles for z =0 are (o) and 0.01(o ).
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+g(r3 R—}]]dr . (6.6}

This integration is carried out num y.ericall . The numeri-
cal results are summarized in Fig. 7, demo7 demonstrating how

s the avera e surface-the composition of particles affects e g
f d' tance for three-dimensional hard-sphere sys-sur ace is a

the articlems. A ain, because of the polydispersivity, e p
ed. From the meansurface-surface distance is increase . r

nearest surface-surface distance, yone ma calculate the
random close-packing density through extrapolation.
This is a diScult task for particles with a continuous size

a roximate welldistribution, since it is dii5cult to appr
in nitesima y
'

fi 't '
ally small particles at high densities.

Th "void" nearest-surface distance can eThe mean voi "
in (2.32) through known results of eI ~r& inculated using . r

ave the followingSec. IV. For systems of hard rods, we have t e o ow'

simple result:

particles. The figure also clearly shows that smaller refer-
'

1 ield larger surface-surface distances.
. 2) and (6.1) weFor three-dimensional systems, from (5.12) an . w

have

2 2I = exp[ —~pc[(r —%)+d(r

P
(6.9)

4For two-dimensional fully penetrable disks, the result is

I = ~ ' exp(pn/4)erf. c(n'~ p' /2) .v 2 P (6.10)

For fully penetrable sphere systems withith D =3 and the
Schulz distribution in particle size, we have

24' 3 3T
lI, =(1—2))f exp — r +

&

f (2.31) and expression (2.32), the mean
void nearest-surface distance is an integration o
For the function (4.24) numerical integration is require
The numerical results of lv as a func f h f tunction of the fraction
of partice p ase 2

'
1 h ~ for hard-sphere systems with a

Schulz distribution z =0 and 3 are shown in Fig. . e
same effect of polydispersivity as for the surface-surface

n beThe results of lv for fully penetrable spheres can e
calculated similarly. For one-dimensional fully pene-
trable rods, we have

(1—q)
V

For systems of hard disks, we find

(6.7) 3T 2+2
(&2) z+1

(6.11)
l = [p(1 —t)+Irp(%) )]V

IrP&% )'
(1—

~+~p& X )'
Xerfc[(~p)'~ (A)(1—2)+Irp(%) )

'~
) . (6.g)

For three-dimensional hard-sphere systems,ms accordin„ to

The numerica resu s o1 lt f I for three-dimensional fully
enetrable spheres are shown

' 'g.in Fi . 9 as a function open
f t' z for the Schulz distributionparticle volume fraction 2 or

enetrable
'

h =0 and 3, respectively. Note, for fully penetra ewit z = an
chulz distri-three-dimensional sphere systems with t e

bution function, the particle number density can be ex-
pressed as

~ ~ ~ ~ I ~ ~ ~ ~ I~ ~ ~ ~ I

3 (z+ 1)
(Q)3 ( +2)(z+3} (6.12)
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&cr&
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FIG. 7. Mean nearest surface-surface sdistance I as a func-
f y

' for a three-dimensional hard-sphere polydispersedtiono z, ora
system characterize yh t '

d by a Schulz distribution with z=
~. The diameter of the reference particle is (o ).
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IG 8 M n "void" nearest-surface distanc e I as a func-FIG. . ean v

heretion of particle ractionz for three-dimensional hard-sph
systems by a Schulz distribution with z =0 and 3.
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VII. RESULTS FOR DISCRETE-SIZE
DISTRIBUTIONS AND COMPUTER SIMULATIONS

In this section, we give general expressions for
nearest-surface distribution functions for spherical sys-
tems with a finite number of components. We then corn-
pute these functions for the case of bidispersed systems
and compare them to computer simulations.

0
0 0.2 0.4 0.6 0.8

A. General expressions for the discrete case

FIG. 9. Mean "void" nearest-surface distance l& as a func-
tion of particle fraction P2 for a fully penetrable polydispersed
sphere system characterized by a Schulz distribution with z =0
and 3.

Particle systems with M components can be viewed as
a special case of continuously distributed particle systems
with a size distribution function f(W)=g &(p /M

p)5(R —% ). Substituting this expression into relations
(4.1), (4.2), (4.3), and (4.4) yields the following expressions
for e~(r) and hv(r):

1 —g p; VD(r +%, )8(r +R;), r (0 (7.1}

(1—g)exp —I gp;sD(r+R;)G(r+R;)dr, r)0
0 (7.2)

and

h~(r) = .
g p;sD(r +R, )8(r +R, ), r (0

(1—g) g p sD(r +R; )G(r +R; }exp —J p sD(r +R, )G(r +R; )dr, r )0 .
I

(7.3}

(7.4)

Expressions for particle quantities can be easily obtained
by using the relationships (5.1) and (5.2).

B. Bidispersed systems

f(W) =
—,'5(A —R, )+ —,'fi(% R2) . —(7.5)

The average value of the radius of the particles can be
easily obtained:

(7.6)

The second moment is given by

(7.7)

Here we consider a specific three-dimensional bi-
dispersed system of particles with the reduced density of
the two types of particles g, =g2 and radii R, =2R2.
This is a system in which pp Sp, and the particle size
distribution function can be written as

The results for the void and particle quantities can then
be easily obtained. We obtain results for different g by
changing the size of particles in the system with

1/3
1 50 (7.8)

C. Computer-simulation procedure

To test our theoretical results, computer simulation is
performed. Here we describe the simulation procedure
employed to compute the exclusion probabilities er(r)
and ep(r). The simulation procedure consists of two
basic steps: (i) generating equilibrium realizations of
configurations of the particle system, and (ii) sampling for
the desired quantities.

We employed a conventional Metropolis algorithm to
generate equilibrium distributions of the impenetrable
spheres of two different types of particles of radii R, and
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0.8

e„(r)

0.6

R, /2. Particles were initially placed in a cubical system
of volume L, on the sites of a regular lattice with big par-
ticles and small particles arranged uniformly. Periodic
boundary conditions were employed. Each particle was
moved by a randomly determined small distance to a new
position, provided that no particle overlap occurred.
This process was repeated until equilibrium was achieved.
The simulations were carried out for systems consisting
of 540 particles for various values of the reduced density
r1=4n(p, R, +p2Rz)/3. Among the 540 particles, 60
particles were the large particles with a radius R& as
determined by (7.8). The radius of the other 480 smaller
particles is R2=Rt/2. To ensure that equilibrium was

achieved, every particle was moved 1000 times before we
sampled. For every new realization, every particle was
then moved 20 times.

The sampling procedure is very much like the case of
the simulation of the monodispersed system [17]. How-
ever, here we determine the nearest surface as opposed to
the nearest center as in Ref. [9]. To evaluate the void ex-
clusion probability, 1000 void points have been randomly
chosen for every configuration. We surrounded each
reference point in the central system with concentric
spherical shells of radii r, =ihr, i =1,2, 3, . . . , and
thickness b, r (where hr «R, ). For every reference
point, the particle that has the nearest surface to the
reference point is found and the distance between the
reference point and the nearest surface is measured. The
number of shells containing nearest-surface points is then
ascertained. Subsequently, all the shells with distances
smaller than the shell of radius r, are counted as a suc-
cess. For the ith shell the total number of successes di-
vided by the total number of the experiments, multiplied
by 1 —g, is the void exclusion probability. For particle
exclusion probabilities, the same procedure is employed,
except that instead of using void points as reference
points we use the centers of the real particles as reference

e ()
0.5-

0.4

0
0.7 0.8 0.9 1.2

FIG. 11. Particle exclusion probability ep(r) for a three-
dimensional hard-sphere system with two components as de-
scribed in Sec. VII. The particle volume fractions are $2=0.2
and 0.4. The diameter of the reference particle is 1.8(o ). The
circles are computer-simulation results and the solid lines are
our analytical results.

D. Computer-simulation results

The results of the computer simulation are shown in
Figs. 10 and 11, in conjunction with the corresponding
analytical results. Figure 10 plots the results of the void
nearest-surface exclusion probability ev(r) for r )0 for
g=0.2 and 0.4, respectively. Figure 11 compares the
computer-simulation data with analytical results for the
particle exclusion probability for the bigger particles with
g=0.2 and 0.4, respectively. It is seen that all the results
of computer simulation agree well with the analytical re-
sults.
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APPENDIX: OTHER DEFINITIONS
OF NEAREST-SURFACE DISTRIBUTION FUNCTIONS

As we mentioned in Sec. II, for polydispersed spherical
particle systems, a number of different definitions of
nearest-surface distribution functions can be given. Let
us consider a different type of nearest neighbor, referred
to as a "nearest j-type neighbor, " i.e., the nearest neigh-
bor among the j-type particles only. Based on such a
definition, the void nearest j-type surface distribution
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function hi, (r) may be defined as the probability that at
an arbitrary point in the system the nearest j type of par-
ticle surface lies at a distance between r and r+dr.
Whereas fv z(r) is concerned with the nearest j-type par-

ticles, hv/(r) (used in the main text) is concerned with

nearest particles of any type. The "j-type particle ex-

clusion probability" er (r) can then be defined as the

probability of finding a region 0z, which is a D-

dimensional spherical cavity of radius r (centered at some

arbitrary point), empty of j-type particle material. We
clearly have the following relationship:

et, , (r)=1 —j fi, (x.)dx . (Al)

In the same way, we can define fp (r), et, (r) and

gi, /(r), gp (r) with similar relationships as those for the
monodisperse case.
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