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We address the problem of estimating parameters in systems of ordinary differential equations
which give rise to chaotic time series. We claim that the problem is naturally tackled by boundary-
value-problem methods. The power of this approach is demonstrated by various examples with ideal
as well as noisy data. In particular, Lyapunov exponents can be computed accurately from time
series much shorter than those required by previous methods.
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I. INTRODUCTION

Experimental data produced by nonlinear dynamical
systems in the chaotic regime are most often evaluated
by various methods of time-series analysis [1]. Typical
applications are the dynamics of laser emission [2], of gly-
colysis [3], and of electroencephalogram waves [4]. The
aims of the analysis include the reconstruction of state-
space representations [5, 7], the estimation of Lyapunov
exponents (e.g. , [6 ), of Hausdorff and correlation dimen-
sions of attractors [1,7], and the analysis of power spectra
[1]. These methods describe some characteristic features
of the system but, in general, they do not give physical
insight into the mechanism. If one can, however, derive a
differential-equation model from more fundamental prin-
ciples, one is in a potentially more powerful situation
because the local representation can now be replaced by
a global one. This situation arises, for example, with the
dynamics of laser emission in a specific case (see, e.g. ,

[2]), for which the Haken-Lorenz system [8] is derived
as the effective equation with as yet undetermined pa-
rameters. Please note that local properties or Lyapunov
exponents are not sufficient to fix those parameters. In
order to judge the quality of such a model, the statistical
properties of its numerical solution are compared with
those of the original time series.

It would be desirable to fit the free parameters of the
ordinary differential equation (ODE) to the observed dy-
namics directly, but this is often considered impossible
because of the dif5culties in predicting the behaviour of
a chaotic system [9]: Numerical error propagation means
that it is certainly not promising to apply a so-called
single-shooting approach, i.e. , to couple numerical algo-
rithms for initial-value problems and least-squares prob-
lems. This is one reason why the analysis in terms of local
discrete systems has been favored and highly developed

(see, e.g. , [10—12], and references above). Nevertheless,
this is not fully satisfactory in our opinion, as one may
be discarding important information concerning the as-
sumed underlying mechanism.

However, recovering the parameters has been success-
ful in discrete systems by means of embedding and local
polynomial fitting [6], see also [12]. From the relation-
ship of discrete and continuous dynamical systems via the
Poincare map, the immediate treatment of ODE's might
also be expected to be possible. One method has recently
been proposed [13] which is similar to the discrete case
in the sense that it works its way piecewise along the
time series. Since, so far, this procedure seems to work
only for simple examples, we pursue a different strategy
here by applying the boundary-value-problem approach
for parameter estimation in ODE s and difFerential alge-
braic equations [14—17]. Our approach is powerful enough
to identify, e.g. , the Lorenz system from the most gen-
eral class of three-dimensional quadratic systems and to
estimate its parameters accurately, even with noisy data.

Let us now formulate the problem we are concerned
with more precisely. We start from the following three
key assumptions.

(i) The dimension of the ODE system is either known
or reliably guessed. (ii) The model or the model class to
describe the data is specified. (iii) The sampling rate of
the data is sufficiently high with respect to all relevant
frequencies occurring.

In this article, we do not intend to answer the question
of what happens if one of these assumptions is violated,
a situation where one expects new assumptions and ad-
ditional techniques to be necessary. Since this article
essentially describes the straightforward though impor-
tant application of the algorithm mentioned above to the
difficult case of chaotic time series, we will be brief in
describing the method (Secs. II and III) and present a
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couple of examples in Sec. IV rather than reproducing
the theory from [16].

II. CLASS OF PROBLEM

where g is a function relating the ODE components to
the measured quantities, g;j is the observed value of g&

at instant t;, and u;& its standard deviation.
If the ODE (1) is nonlinear and if we consider a

chaotic regime, the numerical solution of the correspond-
ing initial-value problems should be spoiled by error
propagation due to positive Lyapunov exponents. Con-
sequently, the parameter estimation problem (1) and (2)
is expected to be ill-posed when treated in a "forward"
manner.

From the "inverse" point of view, however, things look
more promising. To see this, let us consider the initial-
value problem

Il(f) = f(f, II, p), &(fo) = Ilo (4)

and the derivatives of its solution y(f;fp, yo, p) with
respect to parameters and initial values (compare [19]
where the notion of "sensitive dependence on parame-
ters" is coined and discussed):

The problem of parameter fitting in ODE's can be for-
mulated in a rather general but simple way [18] as fol-
lows. Determine a vector of parameters p g R, and a
trajectory y: [f„f&]~ lR" such that the ODE

& = f(f, w, p)
is fulfilled, and a least-squares functional is minimized:

&(II p) —= ll~(II(f I) II(f.), p)11~2= minimum (2)

Here, = indicates that equality is the aim of the numer-
ica1 treatment, and v p K is the vector of least-squares
conditions, which depends on the ODE components at
specified instants t;, and on the parameters. In the most
common case, the objective functional reduces to

p v

&(9,p) = ) .) . , [9 —~ (f, Il(f ),p)]',
i=1 j=l

This implies that, at least as long as the time scale of
measurement is sufficiently small as compared to the time
scale of oscillations in G or f&, the derivatives with re-
spect to parameters may profit from the derivatives with
respect to initial va1ues, some of which are large in chaotic
systems. Put differently, an observed trajectory may be
expected to contain a large amount of information about
the parameters. So parameter estimation in chaotic sys-
tems may indeed be a well-posed problem, if there is a
way to cope with error propagation.

III. NUMERICAL METHOD

The error-propagation problem can adequately be
tackled by the boundary-value-problem methods for pa-
rameter estimation in ODE [14—16]. The multiple-
shooting algorithm PARFIT as the most versatile mem-
ber of this class of methods is described, e.g. , in [14],
and a comprehensive treatment can be found in [16]. Its
basic idea is to regard the ODE in Eqs. (1) and (2)—
independently of its specific nature —not as an initial-
value problem but as a multipoint boundary-value prob-
lem, and to treat this in discretized form as a nonlinear
constraint in the optimization process. To this end, the
measuring interval [f~, fg] is covered by a suitable grid of
multiple-shooting nodes rj, such that rq & r2 « r~,
[f„fg] C [rq, r~], and m —1 initial-value problems are
considered:

=f(f» ) &( ) =

where the additional variables s& represent the state vari-
ables at the nodes; initial guesses for them are suitably
chosen to match with the observations, and to exploit
any further knowledge about the process, but ingenious
guesses are in general not needed. Equation (8) means
that the problem is integrated piecewise, starting at the
s~, which yields, with the initial guesses for the s& and

p, a discontinuous initial trajectory (see Fig. 1). The
task then consists in determining the s& and p such
that the objective function is minimized and the final
trajectory is made continuous. The basic problem (1)

G(f, fo, Ilp, p) = &(f;fo, &p p),
JJQ 60

G'(f, f Q, yp, p) = f„(f,y, p) . G'(f, fp, yo, p),
G'(f„fo, ~„p)=a,
H(f fp, 'gp, p) = f&(f p p) 'H(f fo Ilp p)

+f„(f,v, p),
H (f Q f Q Ilo, p) = 0,

that

(6)

H(f, fp, yp, p) = y(f; fp, yp, p).
p

It then follows from the variational dift'erentiaI equations
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FIG. 1. Operation of multiple-shooting algorithm
PARFIT on Lorenz data (test L4 of Table II). o,x,*: x, y, z
data, respectively. Discontinuous lines: initial trajectory.
Continuous lines: final trajectory.
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and (2) is thus reformulated as a large constrained least
squares problem in the augmented vector of variables
x = (st, . . . , s,p ), where R. corresponds to v in
Eq. (2):

1

([R{si,. . . , s, p)([z
——minimum,

t

p(7j+t&7j&sj &p) sj+i: 0& p: 1&. . . Di 1.
(9)

Note that this formulation is similar to that one given in
[12] for the treatment of numerical shadowing in discrete
systems.

A crucial property of this approach in the context of
chaotic dynamics is that, with a sufBciently fine multiple
shooting grid, error propagation on subintervals can be
kept within arbitrary bounds [16].

Equations (9) and (10) represent a constrained nonlin-
ear least-squares problem of the general form

I

ug z 2 ——minimum,

ug(x)= 0,

when some of the state variables are not measured at
the nodes. In this "hidden-variable" case (see examples
L2 and R2 below), a very rough initial guess of the sj is

usually sufhcient, as long as identifiability is guaranteed,
which depends on the mutual coupling of the ODE's and
on the actual condition number of the discretized prob-
lem.

This method should be more powerful than the method
proposed in [13]for at least two reasons: First, no numer-
ical derivatives are needed in the case of hidden variables.
Secondly, the number of free variables is drastically re-
duced by the continuity constraints (10).

It can be shown that the condition of the large con-
strained least-squares problem is asymptotically that of
the presumably well-posed inverse problem, and that it
can be solved in a numerically stable way by the gen-
eralized Gauss-Newton method. Note that the solution
variables can thus be determined with high accuracy, al-

though local integration errors lead to (small) violations
of Eq. (10).

2

~~(~("))+ (x("))b,z(") =' minimum,a

rjx

( (kl) + ~z
( (k))g~(tl '

0

(14)

which is solved with a generalized Gauss —Newton method
as described and analyzed in [16]: Starting from an initial
guess xt ), the vector of variables x is iterated via

(&+1) (k) + p(k) ~ (k)

where the A(") g [0, 1] are damping factors which are
determined via so-called level functions to ensure global
convergence, and Ax~ ) solves the linearized problem:

IV. RESULTS AND DISCUSSION

Let us illustrate these ideas by some examples. As
model systems we choose the Lorenz system

i = o(y-z), y: —Zz+ PZ —y, z =zy —bz

(16)

Z = —y —Z) y = @+ay, z = b+ (z —c)z

with initial values zo ——5.76540, yo ——10.50547, zo ——

30.58941, and parameters o = 10, r = 46, b = 3,. and
the Rossler system

The integrations required for the nonstiff examples
treated here are carried out with an integrator (based
on the Bulirsch —Stoer extrapolation method) which also
performs the diR'erentiation via so-called internal numer-
ical differentiation as introduced in [14].

Although this multiple-shooting approach has many
more variables than a single-shooting approach, the lin-
earized problem exhibits a special structure which, if
carefully exploited, means that the integration and lin-
earization eA'ort is essentially not increased in comparison
with single shooting [21].

The algorithm proceeds in precisely the same way

with initial values zo ——1.13293,yo
——1.74953, zo ——

0.02207, and parameters a = 0.15, b = 0.2, c = 10, and
generated "data" by numerical integration of the initial
value problem (requested local relative accuracy: 10 t~)

at intervals of At = 0.1 and At = 0.2 for the Lorenz and

the Rossler system, respectively.
Let us brieHy comment on the question of what may

be the meaning of "data" in this context. No problems
arise if, for the system considered, a suitable shadowing
property is known to guarantee that the numerical orbit
is close to a true one (e.g. , [20]). If this is not the case,
however, we may rely on a generalization of the boundary

TABLE I. Lorenz system. Comp: components used to determine parameters ("noise" indicates

Gaussian random numbers of standard deviation 2 are added to all components). Absolute errors:
modulus of deviation of estimated parameters from true values. Confidence intervals: half widths

of symmetric intervals, applicable to noisy data only. Data used: number of observations used for

each component of column 2.

Test

L1
L2

L3

Comp.

X) g, Z

X) g) Z

plus noise

Absolute errors in cr, r, b

(95% confidence intervals)

5 x 10,1 x 10,8 x 10( 1 x 10,3 x 10,8 x 10
2 x 10,1 x 10 ', 4 x 10

(0.5, 1.0, 0.1)

Data
used

40

Lyapunov
exponents

1.24, —0.01, —14.90
1.22, 0.00, —14.88

1.23, 0.00, —14.92
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TABLE II. Lorenz system. For explanations, see Table I. Here, the number of data used is 40,
and the Gaussian noise is of standard deviation 0.0125.

Test Comp. Absolute errors in

A;, b;, c;, i=1,2, 3
Lyapunov
exponents

X)y) Z

(9x10

(4 x 10

(1 x10

Sx10
2x10

4x10
2x10

1 x 10
3x10

3 x 10
5 x 10
1 x10 )
2 x 10
1 x 10
2x10 )
3 x 10
1x10
1 x10

(I x103x10, 6x10
l6x10
(1 x 10

3 x 10 , 2 x 10
llx10 )
(2x 10
1x10

l5x10 )

1.24
0.00

—14.91

x, y) z
Plus
Noise

(1 x10

(2 x10

(4 x 10

3x10
1x10

2x10
4x10

7x10
3x10

9x10
4x10
2x10 j
6x10
5 x 10
1 x 10
1 x 10
8 x 10
8 x 10

, 3x10 ~

(5x10
3 x 10 ~, 2 x 10

llx10 )
(3x10
7x10

l3x 10
(Vx 10

~
4 x 10 , 2 x 10

l9x10

1.24
0.00

—14.93

value problem approach to multiple experiments [21], in
which the time range is split and the corresponding data
are treated as separate time series.

The numerical experiments performed are summarized
in Tables I—IV. We choose the multiple-shooting nodes to
be identical with the instants of "measurement" and use
the simulated "data" as initial guesses for the state vari-
ables sz at the nodes, if these quantities are available.
Otherwise (for unobserved variables), the si are initial-
ized at zero.

We consider two scenarios.
(1) A model of the underlying dynamics is available,

with only individual parameters unspecified (Tables I and
III)—an advantageous situation as, e.g. , in the laser ex-
periment already mentioned.

In all cases tested, the parameters (and initial values;
not shown in the Tables for brevity) are correctly recov-
ered from a small number of data points, not only in the
case of complete observation of the Lorenz system (tests
Ll and Rl), but also from the z component (L2) or from
the z and z components (R2) alone. The procedure even
copes with a considerable amount of noise added to the
data (L3 and R3). To be more specific, the noise is Gaus-
sian distributed with standard deviation 2 for the Lorenz

y; = —y (A;+ A; )y+6; y+c;, i = 1, 2, 3, (18)

system (which corresponds to roughly 20%, 20%, and 5%
of the average modulus of the z, y, and z component, re-
spectively) and with standard deviation 1 for the Rossler
system (20%, 20%, and 200% of the average modulus of
the z, y, and z component, respectively). In no case do
the estimated parameters deviate from their true values
by more than 1.5'%%uo.

(2) Only the class of model is specified, with all coeffi-
cients to be determined. Such a case occurs frequently in
practice. Consider, for example, (chemical) mass-action
kinetics. Here, only polynomials up to second order occur
in the right-hand side of the ODE [22), and a good guess
concerning the number of reactants, i.e. the embedding
dimension, is often available. In physical examples, har-
monic or next-to-harmonic approximations will also pro-
duce an ansatz with a polynomial of bounded order on
the right-hand side. If a guess for the embedding dimen-
sion is not provided, it may be arrived at by state space
reconstructions [7], but this is not our concern here.

For our examples, we assume a three-dimensional sys-
tem with the most general quadratic right-hand side:

TABLE III. Rossler system. For explanations, see Table I. Here, noise is of standard deviation

Test

R1
R2

Comp.

z, y, z
X $ Z

x, y, z
plus noise

Absolute errors in a, b, c
(95Fo confidence intervals)

6 x 10,2 x 10,2 x 10
& 1 x 10,4 x 10,& 1 x 10

8 x 10,2 x 10,3 x 10
(9 x 10,6 x 10,4 x 10 )

Data
used

200
200

200

Lyapunov
exponents

0.09, 0.01, —9.88
0.10, 0.03, —9.74

0.07, 0.01, —9.81
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TABLE IV. Rossler system. For explanations, see Table I. Here, the number of data used is
200, and noise is of standard deviation 0.005.

Test Comp. Absolute errors in
A.„b,, c„ i = 1, 2, 3

Lyapunov
exponents

X) g, Z

(8x10

(2 x 10

4 x 10
1 x 10

9x10
2x10

1x10
2x10

5 x 10
3x10
2x10 )
2x10
8x10 '
3x10 )
2 x 10
2x10
1x10 )

(2 x 10
1 x 10 , 2 x 10

l7x10
(1x10

2 x 10 , 5 x 10
l9x10 )
(5x10

1 x 10 , 4 x 10
l3x 10

0.09
0.01

—9.79

X) 'JJ) Z

Plus
Noise

(3x10

(2 x 10 '

~
(1 x10

7x10 4

3x10 4

3x10 '
3x10

3x10
3x10

6 x 10
4 x 10
9x10 j
1x10
jx10
2 x10-')
4x10 ')
2 x 10-'
1 x 10

(6x 10
3 x 10 , 3 x 10

ll x10
(1x10

5 x 10 I, 1 x 10
llx10
(1x 10

1 x 10 , 7 x 10
l2 x 10-')

0.08
0.00

—9.68

with real numbers c;, real vectors 6;, and real upper tri-
angular matrices A.; (for technical reasons, we prefer this
to working with symmetric matrices), which amounts to
30 parameters altogether (L4 and R4, Fig. 1). As might
be expected, however, this approach is sensitive to noise.
Noise of standard deviation 0.0125 (L5) and 0.005 (R5)
already leads to non-negligible errors in the parameter
estimates. Nevertheless, the parameters together with
their confidence intervals (not included in the tables) lead
to an unambiguous identification of the correct model
within the class considered [23]. It turned out that this
approach is much more robust against "relative" noise as
often used in numerical examples (e.g. , [6], and references
therein), but the assumption of noise proportional to the
signal amplitude is rather artificial on physical grounds.

As an application, we now discuss Lyapunov-exponent
estimates, which have been used in previous attempts to
diagnose chaos in experimental data [1,6, 24]. Actually,
these attempts have not been successful when applied to
real, noisy data. The present ODE fitting method sug-
gests a new possibility: once the ODE's have been fitted,
the Lyapunov exponents can be calculated directly and
accurately by the method of Wolf et al [25]. W.e cal-
culated the exponents from the fitted parameters in the
Lorenz and Rossler system (see tables). We believe that
the values are suKciently accurate to allow the diagno-

sis of sensitive dependence on initial conditions (i.e. , the
largest exponent is positive). From the Lyapunov expo-
nents, we calculated the Kaplan-Yorke dimension DKY
[1] for the Lorenz and the Rossler system and found that
DKY ——2.083 + 0.001 and DK~ ——2.009 + 0.002, re-
spectively, covers all examples of the tables. They are
unambiguously noninteger, suggesting the presence of a
fractal attractor, which is a powerful conclusion from a
small amount of data.

V. CONCLUDING REMARKS

We have demonst, rated by means of examples that the
multiple-shooting method is appropriate to the specific
problem of parameter estimation in chaotic ODE's. Im-
portant remaining questions include the applicability of
the method in dimensions higher than three, the treat-
ment of very long-time series, and the tractability of real
data. We hope to tackle these aspects in the near future.

ACKNOWLEDGMENTS

We wish to thank R. Delbourgo and J. Roberts for
critically reading the manuscript and J. P. Schloder for
helpful discussions. Financial support from Deutsche
Forschungsgemeinschaft is gratefully acknowledged.

Present address: Max-Planck-Institut fiir Entwicklungs-
biologie, Spemannstrasse 35/IV, 7400 Tiibingen, Ger-
many.

[1] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

[2] U. Hiibner, N. B. Abraham, and C. O. Weiss, Phys. Rev.
A 40, 6354 (1990).

[3] M. Markus, Biophys. Chem. 22, 95 (1985).
[4] D. Gallez and A. Babloyantz, Biol. Cybern. 64, 381

(1991).
[5] F. Takens, in Dynamical Systems and Turbulence, edited

by D. Rand and L. S. Young (Springer, Berlin, 1981).
[6] K. M. Briggs, Phys. Lett. A 151, 27 (1990).
[7] T. Sauer, 3. A. Yorke, and M. Casdagli, 3. Stat. Phys.



45 FITTING ORDINARY DIFFERENTIAL EQUATIONS TO. . . 5529

65, 579 (1991).
[8] H. Haken, Phys. Lett. A 53, 77 (1975).
[9] M. Markus, Habilitationsschrift, Universitat Dortmund

1988.
[10] E. Kostelich and J. Yorke, Phys. Rev. A 38, 1649 (1988).
[11] E. Kostelich and J. Yorke, Physica D 41, 183 (1990).
[12] J. D. Farmer and J. J. Sidorowich, Physica D 47, 373

(1991).
[13] J. L. Breeden and A. Hubler, Phys. Rev. A 42, 5817

(1990).
[14] H. G. Bock, in Modelling of Chemical Reaction Systems,

edited by K. H. Ebert, P. Deuflhard, and W. Jager,
Springer Series in Chemical Physics Vol. 18 (Springer,
Heidelberg, 1981).

[15] H. G. Bock, in Automatic Control in Petrol, Petrochemi
cal and Desalination Industries (IFAC), edited by P. Ko-
tobh (Pergamon, Oxford, 1986).

[16] H. G. Bock, Ph. D. thesis, in Bonner Mathematische
Schriften, edited by E. Brieskorn et al. (internal report,
Bonn, 1987), Vol. 183 (in German).

[17] H. G. Bock, E. Eich, and J. P. Schloder, in Numer
ical Treatment of Differential Equations, edited by B.
Strehmel (Teubner, Stuttgart, 1988).

[18] This is the unconstrained case with instants t; given
explicitly. Much more general problems, which include
equality and inequality constraints and implicitly deter-
mined switching functions, are tractable with the algo-
rithms described in [14].

[19] J. D. Farmer, Phys. Rev. Lett. 85, 351 (1985).
[20] S. M. Hammel, J. A. Yorke, and C. Grebogi, Bull. AMS

19, 465 (1988).
[21] J. P. Schloder, Ph. D. thesis, in Bonner Mathematische

Schriften, edited by E. Brieskorn et al. (internal report,
Bonn, 1988), Vol. 187 (in German).

[22] P. Erdi and J. Toth, Mathematical Models of Chemi
cal Reactions (Manchester University Press, Manchester,
1989).

[23] A similar result has been obtained with polynomial fit-
ting of time series generated by discrete maps [6], e.g. ,

the full recovery of the Henon map from the class of two-
dimensional quadratic systems.

[24] X. Zeng, R. Eykolt, and R. A. Pielke, Phys. Rev. Lett.
66, 3229 (1991).

[25] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,
Physica D 16, 285 (1985).


