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Controlling chaotic scattering: Impulsively driven Morse potential
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We investigate classical chaotic scattering between two atoms interacting via a Morse potential
in the presence of a laser field. We find that stable resonance islands appear in phase space above
the field-free dissociation energy in an impulsively driven model. A local expansion relating this
model to the Henon map predicts the existence of such resonance islands within some finite domain
in parameter space for any similar impulsively driven potential model. By switching on the external
field during the collision we show how stable field-dressed molecules can be formed with energy above
the field-free dissociation threshold. The experimental and quantum relevance of such phenomenon
Is discussed.
PACS number (s): 05.45+b

I. INTRODUCTION

This paper is the first in a series of two papers [1]
describing the process of atomic collisions in the pres-
ence of a laser field which exhibit chaotic scattering and
which, at the same time, can be controlled. The chaotic
scattering occurs as a result of stable structures in phase
space, whose energy lies above the field-free dissociation
energy. This novel property suggests a control mecha-
nism by which to trap the system within the field-free
continuum. This is carried out by switching on the laser
during the collision, creating a stable resonance island
within the continuum. We refer to this process as con-
trolled chaotic scatten'ng. This control mechanism would
be relevant to the process of stimulated molecular recom-
bination.

Chaotic scattering [2—4] and the control of chaos [5]
have recently become exciting research areas. Recent
studies in chaotic scattering have delineated the roles
played by chaotic repellers and homoclinic tangling in
this type of transient chaos. Several routes to chaotic
scattering have been presented in the literature. Most
of our understanding of chaotic scattering is derived
from studying time-independent two-(or higher-) degree-
of-freedom systems, often with purely repulsive poten-
tials. For potential systems with coexisting bound and
continuum spectra we might expect dift'erent mechanisms
and routes to chaos [4]. We show in this paper that for
two atoms interacting via a Morse potential bound-state-
like structures are generated in the field-free continuum
in the presence of an external electromagnetic field [6].
We also show how these structures influence the scatter-
ing process between these two atoms.

Collisions between atoms with subsequent photon
emission is an important process for the formation of
molecules in the interstellar medium. The probability
of such a radiative association process is usually very

sinail, except at extremely low temperature [7]. On the
other hand, controlling chemical reactions by using a
laser field of arbitrary amplitude, frequency, and pulse
shape is an actively pursued area of research [8]. In par-
ticular, it would be very interesting if one could enhance
the molecular association rate by employing an external
field. It would be even more interesting if one could sta-
bilize a pair of atoms with the total energy above the
field-free dissociation energy, by irradiating the collision
region with an external laser field. To this end the second
purpose of this paper is to show how this can be achieved
within the context of a simple classical model. These pro-
cesses, if experimentally feasible, could also find applica-
tions in enhancing chemical reactivity by forming highly
energetic field-dressed molecules. Unfortunately, as will
be discussed below, the required field strength for the
controlling mechanism proposed here seems very high.

The Morse oscillator has been extensively used as a
model for many physical processes, including infrared
multiphoton excitation, dissociation, and overtone ab-
sorption of diatomic molecules [9—25]. In all of these stud-
ies bound init, ial states were involved. In this paper we
are focusing strictly on collisional processes, emphasizing
the unbound motion. Chemical reactions influenced by
an external laser field were studied since the mid 1970s;
atom-atom collisions [26, 27] and atom-diatom reactions
were studied [28—30], as well as larger systems [31]. Most
of these studies involved field-induced electronic transi-
tions between two or more states, with the exception of
Orel and Miller [29], who treated infrared enhancement
of chemical reactions using a single electronic state and
a dynamical treatment of the field variables as classical
harmonic oscillators. We restrict ourselves in this pa-
per to processes involving only a single electronic state
and emphasize the occurrence of chaotic scattering due
to invariant phase-space structures.

This first paper in a series of two treats the electromag-
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netic laser field as a series of 6-function impulses. The
advantage is that the resulting Poincare map is piece-
wise analytic and easily implemented, allowing a more
intuitive understanding of the chaotic scattering and its
control with minimal computational expense. The sec-
ond paper in the series will treat the continuously driven
model, which is more closely related to the experimental
situation.

Following this introduction, in the following section
we describe the model and the methods of solution. In
Sec. III the bound-state-like structures found in the field-
free Morse continuum are discussed. Section IV contains
an approximation of the scattering Morse map in the
vicinity of the minimum of the forcing function by a
quadratic (Henon) map. In Sec. V we show how reso-
nance islands within the continuum influence the scatter-
ing process. The control mechanism that we propose to
form field dresse-d moiecutes as well as normal molecules
is discussed in Sec. VI. Section VII deals with our choice
of the dipole function. We conclude in Sec. VIII.

II. MODEL AND SOLUTION

The Hamiltonian describing the collision of two non-
identical atoms under the influence of an external laser
field consists of two parts: an interaction Hamiltonian
between the two atoms and an interaction term between
the atoms and the external field,

p. These parameters will be taken as a=b=2 (in dimen-
sionless units) in most of what follows; p(z) then peaks
at the Morse potential equilibrium distance (z=0). We
will study the case a g b in Sec. VIII.

From a practical point of view, a great advantage of the
interaction Hamiltonian (3) is that it transforms Hamil-
ton s equations explicitly into a stroboscopic map syn-
chronized with the external field period T. There is a
natural simplicity in using this externally synchronized
map instead of using a map based on some frequency
of the Morse oscillator [33]. In this map the dynamical
variables can be taken either as (z,p) or the energy and
an extended angle variable (E,O). If we synchronize the
map on the time just prior to the impulse, the map M is
naturally decomposed into an impulse K, followed by a
free evolution F under the Morse potential for one period
T of the external field, namely

This map is piecewise analytic. The first term, the
kicking term K, is obtained by solving Hamilton's equa-
tions from just before the kick to just after the kick; it
changes the momentum impulsively and keeps z fixed,

(6)

The free-evolution term F propagates the trajectory for
a period T ahead along the constant energy E curve,

We consider in this paper the interplay between the exter-
nal field and the relative motion (or vibrational) degree of
freedom of the diatomic system; we assume a decoupling
from the orbital (or rotational) motion. We use the time-
honored Morse potential to describe the relative motion,
namely

where u = u(E) is the frequency of the Morse oscillator.
The free trajectory is obtained by integrating dz/p

from energy conservation

J" 1
eo ——"+—(1 —e- )'.

2 2 (2)
dz

r(z, p) r(z;„,p = 0—) = sgn(p)
&man

Here all variables are dimensionless as defined in Ref.
[9] and the form of the Morse potential is universa/, its
depth and range having been scaled away. The dissocia-
tion energy is 0.5 in these units. Within the dipole ap-
proximation the interaction Hamiltonian consists of an
infinite series of one-sided 6 functions and can be written

H;„, = —Ap(z) ) b(r —nT),

where p(z) is the dipole moment of the diatomic system
and 7. is the scaled time. The field is characterized by
its scaled strength A and period T =

& . It is assumed
that the electric field is linearly polarized along axis of
the diatomic system. The dipole moment of the molecule
takes the realistic form [32]

where E is the total energy and sgn(p) takes the values
+1 or —1 for p positive or negative. If the time ori-
gin is chosen at z~;„= —ln(1+ +2E), then the time
parameter has the following symmetry under time rever-
sal: r(z, p) = r(z, —p). The —integral has two differ-
ent regimes depending on whether the system is bound
(E ( 0.5) or unbound. For the bound case, integrating
Eq. (8), and solving for z we obtain

1 —/2E cos 0)

where the angle variable

0 = cur(z, p)

p(z) = (z + a)e ( +'l~ (4) parametrizes the position on the trajectory and

where a and b are related to the zero and the width of
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is the Morse frequency. The momentum is

cu/2E sin 0

1 —y'2E cos 0

For the unbound case if we define ~ as

~=/2E —1,

and follow the same procedure we obtain

—1+v 2E cosh rji
)

~/2E sinh rj
P & I —1 + /2E cosh r)

with the extended angle variable g defined as

(12)

(14)

2.0 .

1.0-

0.5—

0.0:—

—0.5:—

—1.0:—

—2.0
—2

(x p.)

(& P')

0 2 4 6
X

(a)

g = w7(z, p). (16)

In this case the variable g spans the range —oo & g &
oo. Equations (14) and (15) can be obtained by analytic
continuation from Eqs. (9) and (12), namely, by applying
the following substitution: 0 ~ ig and u ~ i~.

The algorithm for the time evolution through one p e-
riod of the external field proceeds according to the follow-
ing steps: (i) From a given point (z, p) on a free trajec-
tory, apply It', i.e. , Eq. (6); this is illustrated in Fig. 1(a).
(ii) Compute the energy E„+q knowing z„and p'„,

/2 1 I 2PnE„+g — + — 1 —e
2 2

0.5:—

p&0
8&0
27T+

—0.5—
p&0
8&0
7T—8

: 3vr/2
0.0:—

p&0
8&0
8

7T/2

(b)

p&0
8&0
7T—8

This allows us to decide on the form of the subsequent
free evolution. (iii) Find the corresponding angle variable
for the given z and new p values: if E„+~( 0.5, then 0„'

is determined by

1 —e "(1—2E„pg)
/2E„+1

2,0 .

1.5—

-0.5 0.0 0.5 1,0 1.5 2.0
X

(c)

p e "V(I 2E +&).
/2E„+)

if E„+»0.5, then g„' is determined by

1+ e "(2E„+1—1)
cosh 'g~

+2E„+,

(19)

(2o)

0.5:—

—0.5—

—1.0.

p'„e*"/(2E„p 1
—1)

/2E„+ t
(21)

x„+i —ln
1 —Q2E„+g cos (0„' + cu„+ q T) l

1 —2E„+g )
' (22)

+2E„~& (1 —2E„p&) sin (0„' + ~„+qT)
pn+1

1 —/2E„+q cos (0„' + cu„+ qT)

as illustrated in Figs. 1(b) and 1(c). (iv) Apply the free
evolution part of the map for either bound or unbound
motion. For bound motion we obtain

—1.5-

—2.0-
—2

1
I

2 4 6 8 10
X

FIG. 1. (a) Impulsively driven part of the map K pro-
duces a, transition to a free propagation (bound or unbound)
with an energy that can be easily evaluated knowing x and p.
(b) The choice of 0 such as to make Eqs. (9)—(12) consistent
when solving for 0, given x and p values. (c) The angle g
corresponding to a given phase-space location (x, p) is found
for the free unbound case by inverting Eq. (14) for the given

x(E, gl and Eq. (15) for the given p(E, g) and keeping the
overlapping solution.
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For unbound motion

z„+g ——ln
t —1+ /2E +q cosh (g + u +qT) ~

l 2E„+) —1 )

+2E„+q (2E„+& —1)»nh (g„' + ~„+&T)
PA+1 = —1 + +2E„+g cosh (g„' + ~„+,T)

Therefore the map can be expressed analytically.

(24)

(25)

orientation reversing involutions. The factorization (27)
signals the reversibility of the map M.

The fixed sets of Ip and I~ are known as fundamental
symmetry lines. Symmetry lines organize the periodic
orbits in reversible maps. Let I'p and ry be the fixed sets
of Ip and Iq, respectively. rp is easily obtained from the
map K; it takes the form

t' AdA I
I'o ——

~ (z, p) p = ——
2 dz)

III. STRUCTURES IN THE FIELD-FREE
CONTINUUM

2:—FRFR, (26)

where R reverses the momentum, R(z, p)—:(z, —p).
Therefore F = RE R and the map can be written as

M = RF RA = IyIp,

where Iq ——RF and Ip ——RK. These operators sat-
isfy the relations I& ——Ip ——2 and detDI~ —detDIp ———1,
where D is the diA'erential operator. They are known as

Based on the analysis of conservative scattering sys-
tems, where unstable periodic orbits play important roles
in determining the scattering behavior [4, 34], we set out
in this section to find periodic orbits in phase space. In
particular we look for structures in the field-free con-
tinuum since one of the aims of this work is to demon-
strate the feasibility of stabilizing field dress-ed molecules,
i.e. , molecules with energy greater than the dissociation
threshold.

In the absence of an external field (A = 0) the tra-
jectory E=0.5 constitutes a separatrix which demarcates
clearly the closed invariant curves of the bound trajecto-
ries from the unbound ones. The latter describe atomic
collisional trajectories with E & 0.5, which can never
bind, the energy being conserved. With the field turned
on this picture changes drastically. A previous classical
study [9] revealed the very complicated dependence of
phase-space structures as functions of A and T in the
bound region. It was shown classically that dissocia-
tion occurs following the breakup of Kolmogorov-Arnold-
Moser (KAM) curves, allowing trajectories to escape to
the region with E & 0.5 [22, 35].

We now set out to find structures in the field-free con-
tinuum. The orbits symmetric in p of low periodicity
are easily found by a numerical one-dimensional search.
These orbits require at least one impulse to take the tra-
jectory from a point in phase space with momentum +p
to a point with —p at some given z. This allows a rela-
tion between p and A through the kicking part Ii of the
map. In this case a more general approach based on the
symmetry properties of M can be used to locate a large
class of periodic orbits known as symmetry periodic or-
bits [36). Such an approach was applied to a bound case
in Ref. [9] and we generalize it here to unbound case. The
approach hinges on the invariance of the Hamiltonian un-
der p ~ —p. Because of this symmetry the identity can
be written as

The symmetry line r~ takes on two components, depend-
ing on whether the free evolution F takes place in the
bounded or unbounded region. For bounded motion [9]
the analytical description of Fq has two branches in (E, 8)
representation, depending on the relation of the angle 0
to the principal branch of cos . They are given by

r, o =
I (E,o) ~ = ~(E) 2) ' (29)

I'g
g

—
~
(E, O) 0 = z + ~(E)—

~

.
T! 2) (30)

These branches join smoothly at the origin in (z, p) rep-
resentation. For unbounded motion we must use the free
evolution F for E & Q.5, which requires the scattering
solution Eqs. (14) and (15). This gives

( TlI'", =
i (E, rl) g = ~(E) (31)

where the superscript u denotes unbound. r& has only
one branch since the variable g is not subject to the
mod2vr condition (—oo ( g ( oo). The maximal in-
variant set of I~ is given by the union of the bound and
unbound components r~ ——ry p U ry y U r", .

Note that the intersection of rq with I'p must be a
period-1 orbit since M = IyIp. Higher-order symmetry
lines can be defined to provide the locations of longer pe-
riodic orbits. These higher-order symmetry lines can be
obtained through iterations of the fundamental symme-
try lines I'p and r~ according to

r,„=M"r„
r2„+g ——M"rg

(32)
(33)

(cf. [9, 36]). Care must be taken in constructing 1"2„+q
since r~ contains two branches in the bounded region. In
general the intersection of any two symmetry lines yields
a periodic orbit according to

r;nr, cp, , (34)

[36], where 'P;
z denotes the set of periodic orbits whose

periods divide ~i
—j~. This relation provides an easy way

to locate periodic orbits. Figure 2 shows the symmetry
lines I'p through I'2 for parameters A = 2e and T =
5.271 719. Note especially the intersection of r~ with I'p
as well as intersections of higher-order symmetry lines
with I'p, the intersection is a period-1 orbit. This period-
1 orbit plays a major role in the scattering process, as
discussed below.

Two structures influence strongly the scattering be-
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havior, as we will demonstrate below: first the stable
period-1 orbit with an energy greater than the dissoci-
ation energy (0.5) of the Morse potential and the sec-
ond unstable period-1 orbit in the bound energy region.
In the stroboscopic representation, in which the coordi-
nates (z,p) are recorded right before each kick, the lo-
cation of the period-1 stable orbit is exactly at (2, 1),
with E=0.873823 for a kicking amplitude A=2e2 [which
follows from p' —p = —2 = Ap'(z = 2)] and period
T=5.271 719, respectively. The unstable period-1 orbit
is found at (z,p) = (—0.189 233, —0.282735); this orbit is
surrounded by a stable period-2 orbit and results from a
period-doubling bifurcation which took place at a smaller
value of A. The stable period-1 fixed point orbit is sur-
rounded by KAM curves as shown in Fig. 2(b). The
shapes of these KAM curves are influenced by a period-
3 saddle whose manifolds delineate a stable resonance
island of triangular shape [37]. Figure 2(c) shows the lo-

cation of the period-1 and -3 orbits coinciding with the
intersections of symmetry lines.

The organization of the phase space of the Morse con-
tinuum changes drastically as the parameters of the field
are changed. In particular, the resonance island can
change shape and size and even bifurcate with chang-
ing field parameters, A or T. Figure 3 shows the change
in shape and size along with the period-doubling bifurca-
tion of the island as A changes. Figure 4 shows the first
and second bifurcations of the island as T changes. We
have superposed the symmetry lines onto the latter figure
to show more vividly the organization of these structures.

IV. LOCAL APPROXIMATION BY HENON MAP

It is natural to ask to what extent the stable period-1
orbit and associated resonance island within the contin-
uum depend on the choice of dipole function and poten-

1.20

1, 10:—
d

—2
—2

1,00:—

0.95:—

0.90:—

0.85:—

0.80
1.2

I I

'1.4- 1.6 1.8 2.0 2.2 2.~
X:

1. 'I 0
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0.95
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FIG. 2. (a) Symmetry lines I a to I'2 in phase space. Each intersection of two symmetry lines I, and F~ indicates a periodic
orbit. The amplitude and period of the fields are, respectively, A=2e and T=5.271719. (b) Stroboscopic map (in which x and

p are recorded prior to each impulse) showing the KAM curves forming a resonance island in the vicinity of the period-1 orbit
located at, (x,p)=(2, 1) . The energy is 0.873 823 and the field parameters are A=2e and T=5 271 719. The per.iod-3 saddle
borders the boundaries of the triangular stable resonance region. The dots are computed by multiple iterations of the map
for an ensemble of initial conditions near the period-1 orbit. The triangles are points in a stroboscopic map of a particular
scattering trajectory shown in Fig. 9(a). (c) Superposition of the symmetry lines onto the resonance island shown in (b).
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tial; i.e., do they survive under small change of either?
Here we address this question by noting that the stable
period- 1 orbit is located near the minimum of the dipole
coupling force p'(z). For a different choice of dipole func-
tion we expect this also to be the case. From (4) we have

I( )
z —(x.+a)/a
a

which has a minimum at z=a. In the vicinity of the min-

imum we can expand p'(z) through second-order terms
to obtain

in close resemblance to the original map M, as shown in

Fig. 5(a) [compare to Fig. 2(b)]. Note that the unstable
period-3 saddle surrounding the period-1 island is also
present in F o K. In addition, we have also observed
the I:3 resonant bifurcation in F o Jc that occurs in the
original scattering Morse map [cf. Fig. 3(a)].

We now consider the effect of changing the potential.
This change reflects itself in the free propagation step F.
In general F induces an energy- dependent phase change

Ag. Here we approximate this change by a rigid rotation
of the phase-space coordinates (z'„,p'„) through an angle

p (z) =p (a)+2p (a)(z ) (36)

where p'(a) = —e 2 and p"'(a) = (ae) 2. The impulsive
step Ii can therefore be approximated by K, defined by

cos g sin Q

q
—sin g cos Q)

This yields the approximate map R o K given by

/ z„+i ~l ( cos @ sin @ 'll

g p„+i ) (—sing cos 1/ )

(38)

(p„+Ap' (a) + —p'" (a) (z„—a)') (37)

The combined approximate map FoK produces results

(p„+Ap'(a) + —p"'(a) (z„—a)')
(39)
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FIG. 3 Composite figure showing the changes that occur to the resonance island surrounding the period- 1 rb t as A

chaiiged while keepiiig T fixed (T=5.271719). (a) A=13.2. (b) A=15.6. (c) A=16.2. (d) A=17.
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The rigid rotation approximation (38) places all of the
nonlinearity within the kicking step K. In order for (39)
to possess a period-1 orbit with z ) 0 the rotation angle

g must be greater than a; it is sufficient to consider ro-
tation angles x & g & 2n. . If the angle is taken to be T
itself, the rigid rotation Z. is equivalent to approximating
the Morse potential with a harmonic oscillator.

We note the similarity of the map (39) to the area-
preserving quadratic map introduced by Henon [38].
It can be shown that (39) can be reduced to a one-
parameter quadratic map under a linear transformation
of coordinates, and is therefore equivalent to the area-
preserving Henon map (cf., Ref. [39] for a related study).

The map (39) has a stable period-1 orbit (with z&0)
provided the quantity

A „, . (2(cosg —1) l p'
p = ——p'" sin —2 —a

4 q +pill sin g ) pill

(40)

satisfies 0 & p & 1 (p is the residue of the orbit [40]).
Since A & 0 and sin @ & 0 we see that a necessary condi-
tion for a stable period-1 orbit is p'" ) 0. This is consis-
tent with our earlier expectation of a stable period-1 orbit
near the minimum of p'(z). The condition p'"(a) & 0 is
expected to be satisfied for realistic dipole functions; for
the dipole function (4) this arises from the exponential
falloff of p(z) for large z. Figure 5(b) shows several orbits
of the map (39) with g = T = 3.8, A = 2e2, a = 2, and
derivatives p' and p'" computed from the dipole function
(4). The approximate map displays the same qualitative
features as seen in the exact map M, notably the ex-
istence of the stable period 1 surrounded by a period-3
saddle (the location of the stable island is not accurately
rendered due to the energy-independent rigid rotation
approximation of F). These results give us reason to be-
lieve that our choices of dipole function and potential are
not restrictive, and that other choices should also yield
stable period-1 orbits in the continuum for a range of
parameters A and T.
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FIG. 4. Composite figure showing the first and second
period doubling of the resonance island as T is changed while

keeping A fixed (A=2e ). (a) Period-2 orbit resulting from

the period doubling of the period 1; T=6 07 (b) Bifurcation. .
of period-2 orbit resulting in a period-4 orbit; T=6.6.

FIG. 5. (a) Period-3 saddle surrounding the period-1 orbit
calculated with the approxima. te map F o JC of Eq. (37) for

the same parameters as in Fig. 2(b). (b) Same as in (a), but
calculated using the map R o K of Eq. (38), for the same A

and for T=3.8.
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V. CHAOTIC SCATTERING

The model we treat in this paper has one degree of
freedom; therefore the atomic scattering process that it
describes depends only on the energy (or momentum)
of the incoming atoms in the asymptotic region and on
the phase of the electromagnetic field with respect to the
phase of the Morse oscillator. The latter is not easily ob-
servable in real experimental situations and therefore will

be kept fixed (at zero) or averaged over in what follows.
An observable that is a characteristic measure of the scat-
tering process in a one-degree-of-freedom space is the col-
lision time; the time for a round-trip from the asymptotic
region to the collision region and back to the asymp-
totic region. Figure 6 shows the collision times associated
with 2000 trajectories originating from @=20,where both
the Morse potential and dipole function approach their
asymptotic values. The initial conditions are equally dis-
tributed in momenta in the interval —2.5 & p & —0.01
and with the phase set to 0. An expansion of scale in
this figure reveals finer structures (multiple peaks sepa-
rated by smooth regions) over many orders of magnitude.
These collision times show the characteristic discontinu-
ity over a fractal set of initial conditions. This is the
hallmark of chaotic scattering.

The singularity of the scattering functions (cross sec-
tion, collision time, etc.) are usually caused by the stable
manifolds reaching out into the asymptotic region. The
two atoms can stick together for an infinitely long time if
the scatt;ered particle moves in along a stable manifold.
Chaotic scattering requires that the set of singularities be
fractal. To illustrate this point we plot in Fig. 7 the back-
ward iterations of an ensemble of trajectories originating
near the period-3 stable manifolds. The intersection of
these trajectories with the line of initial conditions, @=20,
gives exactly the locations in momenta where the colli-
sion time becomes singular. A continuous enlargement
of Fig. 6 or 7 over initial conditions reveals a self-similar
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structure characteristic of Cantor sets. If we come in on
the stable manifold of the period-3 saddle esacfly the
is infinite. Of course, r, in numerical simulation never

actually goes to infinity, but it can be made arbitrarily
long. Note that his set is not hyperbolic because there are
still unbroken KAM curves. The measure of the fractal
set appears to be zero (i.e., the gaps have full measure).

Figure 8(a) shows the stroboscopic section of the same
trajectories that made up Fig. 6. Figure 8(b) shows the
unstable manifolds of the period-3 saddle surrounding
the stable island associated with the period-1 orbit; these
unstable manifolds organize the scattering pattern.

There are two mechanisms that underlie the longer col-
lision times seen in Fig. 6. The first one occurs when
a trajectory approaches the period-3 saddles (surround-
ing the period-1 island) near the stable manifold of the
saddle; this is exemplified in Fig. 9(a). Another possi-
bility results from a trajectory that gets kicked near the
free-field separatrix, E = 0.5, as the trajectory leaves
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FIG. 6. Collision times of scattering trajectories originat-
ing from x=20, with momenta equally distributed in the range
p = (2.5, —0.01) and with zero phase for field parameters
A=2e and T=5.271 719.
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FIG. 7. (a) Backward iterations of an ensemble of trajec-
tories originating near the period-3 stable manifolds. (b) The
intersections of the trajectories in (a) with the line x=20 give
exactly the locations in momenta where the collision times
become large.



5520 LU, VALLIERES, YUAN, AND HEAGY 45

the scattering region. Since the kicks get smaller as z
increases the orbit can reenter the potential and remain
near the separatrix for several iterations of the map. This
mechanism is shown in Fig. 9(b). Each case constitutes
a pseudotrapping mechanism capable of producing arbi-
trarily long collision times .

Figure 2(b) shows the stroboscopic surface of section
of the trajectory which generates a long collision time
using the mechanism exemplified in Fig. 9(a). Scattering
points never penetrate the stable island which now forms
a repelter. This is complementary to the dissociation pro-
cess whereby a molecule cannot dissociate through closed
KAM curves [9].

VI. CONTROLLING THE CHAOTIC
SCATTERING

We see in Sec. IV that a resonance island appears in the
field-free continuum as a result of the external field. This
suggests that one can stabilize a pair of atoms by using

an external field to form a stable field-dressed molecule
with energy above the dissociation limit by bringing the
system within these stable islands. Since the scatter-
ing trajectories cannot penetrate the stability island from
outside, a simple scattering process as described in the
preceding section is not sufficient to produce such field-
dressed molecules. We can overcome this difficulty by
switching on or off the exiernal field during collisions;
for instance, an experimentalist could use a pulsed laser
field or simply allow the atomic beams to pass through
a region permeated by a confined laser beam. We con-
sider a sudden switching-on of the external field in the
atomic collision region. The phase between the external
field and the Morse oscillator can not be fixed experimen-
tally; we simulate the effect of this extra parameter by
using different initial z values in a small interval in the
asymptotic region corresponding to a [—ir, 7r] interval in
phase centered on a nominal z value having zero phase
at the center of the stable island. Figure 10 shows the
collision times for trajectories initiated at these z val-
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FIG. 8. (a) Stroboscopic map of the scattering trajecto-
ries tha. t contribute to collision times in Fig. 6. (b) Unstable
manifolds of the period-3 saddle.
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FIG. 9. (a) Particular trapped trajectory influenced by the
period-1 stable orbit which causes the peak at p= —1.323702
in Fig. 6. (b) Particular collision trajectory which reaches an

energy E 0.5 at large distances which can cause a very long
collision time. This orbit causes the peak at p= —1.213 750
in Fig. 6.
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FIG. 10. Collision times of a set of trajectories originat-

ing asymptotically with p;„= —0.864665, and x in a small

interval centered on x=20.389025 so as to produce a range in

phase of [—z', +n'] with phase zero centered on the fixed point
corresponding to the period-1 orbit. The field parameters are
A=2e and T=5.271 719.
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FIG. 11. Intersection of the symmetry lines I'0 and I'&

giving the location of period-1 fixed point for parameters a=2
and 6=1.5, field parameters A=12.0, and T=5.27.

ues. We find that about 6% of the initial conditions are
captured within the resonance island. We conclude that
stable field-dressed motecutes can be formed inthe field,

free continuum of the Morse potential by this process.
The formation of a bound state of the molecule in the

Morse continuum is a nontrivial result. It suggests the
possibility of forming a field-dressed molecule. It is an-
ticipated that the field-dressed molecule could have en-
hanced reactivity as compared to the normal molecule
because of its extra energy content.

The mechanism for the formation of a field-dressed
molecule t, hat we propose requires the existence of a
stable island in the field free continuum. As we have
seen the stable island is a prerequisite to chaotic scatter-
ing. Therefore we propose to control chaotic scattering
by guiding the system toward the stable islands. Ott,
Grebogi, and Yorke [5] have proposed recently a con-
trol mechanism for chaotic systems in which the previous
knowledge of the dependence of the local manifolds of a
saddle point on a system parameter is used to continu-
ously adjust the system toward the stable manifold. The
control mechanism proposed here for chaotic scattering
is quite different.

Controlling chemical reactions by using a laser field of
arbitrary amplitude, frequency, and pulse shape is an ac-
tively pursued area of research [8]. In particular, it would

be very interesting if one could enhance the molecular
association rate by employing an external field. In this
case, one would like to form real molecules, i.e., molecules
in the bound region of the Morse potential after the ex-
ternal field is switched off. This process would require
the trapping of scattering trajectories with energy less
than the dissociation threshold. A superposition of the
dissociation energy separatrix (E=0.5) onto Fig. 9 does
show that a significant fraction of the trajectories have
excursions in the bound energy region. This suggests

that a switching-off of the laser field would leave many
trajectories in a bound molecular state.

VII. THE DIPOLE FUNCTION

We have chosen the dipole function to be

~(~) = (~+a)e '+'" (41)

with a and b arbitrary range and width parameters. This
functional form leads to a good approximation for the
dipole functions of many observed molecules [32]. So far
we have chosen a = b = 2 (dimensionless units) in our
discussion. This leads to a particular situation where the
origin (z, p) = (0, 0) is a fixed point of the map. Relaxing
this condition can lead to bifurcations and subsequent
disappearance of fixed points. If anything, it could be
said that, contrarily, the situation in which a g b is sim-

pler since fewer features exist in the unbounded phase
space. In particular, as the parameter b decreases from
2, the fixed point originally at the origin collides with
the lower energy fixed point in an inverse saddle node
(tangent) bifurcation, the two fixed points disappearing
beyond the bifurcation. Figure ll depicts the symmetry
lines beyond this bifurcation (b=1.5). Note the absence
of more than one intersection between the two symmetry
lines. A similar bifurcation occurs as b increases. In this
case the fixed point originally at the origin collides with
the high energy period-1 orbit, also in an inverse saddle
node bifurcation. The first of these bifurcations does not
lead to qualitatively different scattering behavior since
the scattering is most strongly influenced by the period-
3 saddle surrounding the high-energy period 1; this is il-

lustrated in Fig. 12. The second bifurcation does change
the nature of the scattering since the high-energy period-
1 orbit (thus the period-3 saddle) is gone. In this case the
scattering is controlled most strongly by the stable and
unstable manifolds of the low-energy period-1 flip saddle.
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chaotic scattering to be one or two orders of magnitude
less than that required to observe multiphoton dissoci-
ation of diatomic molecules (about 1 TW/cm ). This
results from the fact that the former process only re-
quires the outer KAM curves to break up, while, on the
other hand, the multiphoton dissociation will not com-
mence until the low-energy KAM curves surrounding the
potential well have also broken up. It is therefore appeal-
ing to think about experiments to show this effect.

The threshold field st, rength needed to control the scat-
tering via stable features in the continuum must be such
as to produce stable features in the continuum. This
indeed requires a field of very high intensity. The field
strength required is given by

+ADA

qefr

FIG. 12. Poincare map of the scattering trajectories using
the more general dipole function used in Fig. 11.

The local expansion that leads to the quadratic map
approximation of the Morse map remains valid in this
case. The only difference with Sec. IV above is that the
expansion must be carried out at the new minimum, z =
26 —a, rather than at z = a. This yields different values
for the derivatives of the dipole function at the expansion
point, namely, p' = —e 2 and p"' = (be) 2. Therefore
our comments concerning the Henon map connection and
the robustness of the period-1 orbit still apply here.

VIII. DISCUSSIONS AND CONCLUSIONS

We have studied in this paper atomic scattering un-
der t,he influence of an electromagnetic field with par-
ticular emphasis on the physical aspects of field-dressed
molecule formation and the connection to chaotic scatter-
ing [41, 42]. Our model exhibits chaotic scattering. We
have observed the existence of structures in the field-free
continuum of the Morse potential induced by the elec-
tromagnetic field. We have also shown the connection of
the current model map to the Henon map and illustrated
how the period-1 and period-3 orbits that strongly in-
fluence the scattering behavior can be directly explained
by this quadratic map approximation. We then showed
how experiments could be conceived to form field-dressed
molecules or to enhance the formation of stable molecules
by simply switching on or off the field during the collision
process. These methodologies constitute control mecha-
nisms for the chaotic scattering.

The possibility to realize experimentally the ideas pro-
posed in this paper depends on t,he field strength re-
quired. One of the limitations is that the field intensity
should not be so high that other processes such as ioniza-
tion become important. The two aspects of the collisional
process treated in this paper, namely chaotic scattering
and control, require very different laser intensities. First,
we expect the threshold field intensity needed to observe

where q,g is the effective charge, taken as the electronic
charge. Assuming a dissociation constant of 1 eV and a
range parameter of 1 bohr radius, we calculate that for
the parameters used above, one would require roughly
1000 TW/cm~. These parameters were somewhat arbi-
trarily chosen and have not been optimized to reduce the
field intensity; nevertheless these field strengths might be
difficult to realize experimentally. Our hope is that our
model illustrates a controlling mechanism which may be
useful in some other physical processes and could fur-
ther stimulate more thoughts on the control problem for
microscopic systems.

The model we have used in this paper is simple and
allows us much analytical understanding of the atomic
scattering problem. In the next paper of this series of
two we will use a continuously driven system and illus-
trate that many of the physical pictures found here carry
t, hrough to that case.

In principle, stimulated stability of molecules should
manifest itself in a quantum-mechanical approach if the
size of resonance islands above the field-free separatrix
is greater than h (for the Morse potential h is related
to the inverse of the number of bound states). The res-
onance island which surrounds the stable period-1 or-
bit in Fig. 2(b) has an area 1.5h for a system with
24 bound states, appropriate for hydrogen fluoride; in
principle this island can therefore support a quantum
state. We are currently extending our previous quantum-
rnechanical treatment of photodissociation [43] to the
scattering problem.
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