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The one-dimensional single-species diffusion-limited-coagulation process with irreversible random

particle input (A ~A + A reversibly and B~ A irreversibly), under the influence of external fluctuations

in the system parameters, is formulated in terms of a closed and linear partial-differential equation. Our

theoretical treatment includes both internal fluctuations and external noise simultaneously and without

approximation, allowing investigation of the interplay of their effects on the macroscopic behavior of
this diffusion-reaction system. For the reversible model with the rate of the A ~A+ A reaction fluc-

tuating between two values as a Markov stochastic process, we solve the system exactly. We observe

that spatially homogeneous macroscopic fluctuations in the system parameters can induce microscopic
spatial correlations in the nonequilibrium steady state. Direct Monte Carlo simulations of the micro-

scopic dynamics are presented, confirming the theoretical analysis and directly illustrating the external-

noise-induced spatial correlations.

PACS number(s): 05.40.+j, 82.20.Mj, 02.50.+s, 05.70.Ln

I. INTRODUCTION

Fluctuations in macroscopic many-body systems arise
from two sources. The discrete nature of the elementary
constituents produces the so-called internal fluctuations,
while random variations in the environment introduce
external noise into the system. Theoretical treatment of
reaction-diffusion systems often disregards both kinds of
fluctuations. Internal fluctuations are neglected because
they occur on microscopic length and time scales and are
thus deemed unimportant for macroscopic phenomena
(except for phase-transition phenomena), while external
noise is usually excluded because its amplitude can be
controlled in laboratory systems —it is usually considered
more of a nuisance than an essential factor in the dynam-
ics of the system. Results obtained during the last decade
have demonstrated that internal fluctuations and external
noise can each be a crucial factor in the qualitative mac-
roscopic behavior of nonlinear interacting particle sys-
tems. External noise can postpone or advance instabili-
ties, and may even give rise to transitions to states that
cannot occur if the surroundings are free from random
fluctuations [1,2]. Internal fluctuations can give rise to
strong particle-particle correlations in transport-limited
diffusion-reaction systems dominating the macroscopic
dynamics [3—5].

Most theoretical studies that include effects of fluctua-
tions consider either only internal fluctuations or only
external noise, although a few authors have attempted to
develop a unified description of both sources of stochastic
behavior [6]. External noise is usually treated on a mac-

roscopic level of description where mean-field rate equa-
tions are converted into stochastic differential equations
by including random terms. For diffusion-reaction sys-

tems, inclusion of internal fluctuations requires a mesos-
copic or microscopic description in terms of a random
process for the particle numbers of the chemical species.
These different levels of description lead to conceptual
difficulties for a unified treatment of internal and external
fluctuations, and so far no wholly satisfactory one exists.

In this paper we show that for a specific model system,
namely the reversible coagulation-growth process
( A + A ~A ) with irreversible input (B~ A ) in one spa-
tial dimension, the above-mentioned difficulties can be
overcome, and a unified description of internal fluctua-
tions and external noise can be naturally formulated in
terms of a quantity satisfying a closed kinetic equation
without any approximation. We consider the coagulation
reaction A + A ~ A in the diffusion controlled lim-it

where the particles coalesce immediately upon contact.
These new results are generalizations of methods previ-

ously introduced for this diffusion-limited-reaction pro-
cess [7,8], and we are able to obtain some exact results.
Direct Monte Carlo simulation of the interacting particle
system with externally imposed noise, also reported here,
confirms our analysis quantitatively. We observe
external-noise-induced spatial correlations in the steady-
state microscopic particle positions, even in the case of
spatially homogeneous external noise with no intrinsic

spatial length scale: Environmental fluctuations can in-

troduce new microscopic length scales into the system.
This model provides an example of far-from-equilibrium
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constraints resulting in (partial) self-organization of a
nonequilibrium steady state.

The opposite limit of the reversible process A + A ~A,
the reaction-controlled limit, has been well studied in the
past. The system can be satisfactorily described by a
mean-field equation for the time-dependent concentration
c(t) if interparticle correlations remain small. If the
macroscopic concentration is constant throughout space,
then the kinetics is described in mean-field theory by the
Verhulst equation [9]

dc 2

dt
=r c r c

where r, and r2 are, respectively, the rate coefficients of
the A~A+A and the A+A~A reactions. If the
concentration also varies in space, then the mean-field dy-
namics is described by the Fisher reaction-diffusion equa-
tion [10]

I.(D—, u, R)E(x,t),
with boundary conditions

(2.1)

this hierarchy is sufficient to fully characterize the system
because of the usual closure problem: The temporal evo-
lution of the one-particle density, or concentration, de-
pends on the two-particle density, which in turn depends
on higher particle densities. However, the closure prob-
lem can be circumvented for the model developed here.
The key to an exact, closed, microscopic description is to
abandon the particle densities and adopt an alternate
quantity to characterize the system, namely the probabili-
ty that a randomly chosen interval of length x is empty at
time t, E(x, t) Fo. r a fixed diffusion coefficient, birth rate,
and input rate, the empty-interval probability obeys a
linear partial-differential equation:

a,E(x, t ) =2Da„„E(x,t )+ua„E(x, t ) ZxE—(x, t )

Bc
Bt

=DU c+r c —r c (1.2) E(0,t)=1 and E(ao, t)=0 . (2.2)

with macroscopic diffusion coefficient D. The effect of ei-
ther internal fluctuations or external noise on A + A~A
in the reaction-controlled limit have been studied in Refs.
[1]and [11].

The outline of the rest of this paper is as follows. In
Sec. II we formulate the kinetic equation that provides a
unified description of external noise and internal fluctua-
tions for the one-dimensional coagulation process. We
specialize to dichotomous (two-level) external noise in the
birth rate for the reversible process in Sec. III, and derive
a general result for the concentration in the stationary
state. Section IV is devoted to the simplifying case that
the birth rate fluctuates between zero and a positive
value, and we determine the stationary state analytically,
showing that external noise drives the system out of equi-
librium. We also present the results of Monte Carlo
simulations in this section to confirm and explicitly illus-
trate the phenomenon of external-noise-induced spatial
correlations in this system. In Sec. V we study the system
in the Poisson-white-noise limit, and Sec. VI contains a
brief summary of the results, some observations, and a
discussion of open problems.

II. MICROSCOPIC FORMULATION
WITH EXTERNAL NOISE

We study a spatially one-dimensional system of
diffusing particles that undergo the reversible
coagulation-growth process 2A ~A, and we consider the
coagulation step in the diffusion-controlled limit, where
the transport of particles constitutes the rate-limiting
step. Furthermore, there may be an irreversible random
input of particles, denoted schematically B~ A. Both of
these processes are taken to be statistically spatially
homogeneous in the system. This implies in particular
that the diffusion coefficient D, the birth rate v, and the
rate of particle input R are uniform in space.

The usual approach to interacting particle systems in
statistical physics is to describe the system with a set of
joint probability-density functions. No finite subset of

The probability that a small interval of length dx is occu-
pied is equal to 1 E(dx,—t ), and hence the concentration,
or density, of particles is defined by

dE(x, t)pt= (2.3)

For a complete derivation from the microscopic
definition of the processes, see Refs. [7] or [8]. We re-
mark that this closed formulation is only valid for the
diffusion-limited-coagulation process in one spatial di-
mension. We do not presently know how to apply this
approach to obtain a closed formulation in higher dimen-
sions or a closed formulation away from the diffusion-
controlled limit.

Note that the concentration p(t) is an ensemble aver-
age. It does not itself fluctuate, but it fully takes into ac-
count all the microscopic fluctuations in the system and
any correlations that may develop. (We are considering
an infinite system and have taken the thermodynamic
limit. ) Correlations can be characterized by the two-
particle-correlation function, or alternatively by the in-
terparticle distribution function (IPDF), p(x, t), the prob-
ability density for finding the nearest particle a distance x
from a given particle. The IPDF can be derived from the
central quantity of our approach, i.e., the empty-interval
probability E(x, t):

(2.4)

All internal fluctuations are fully accounted for in the
closed, exact microscopic kinetic Eq. (2.1). External
noise can affect the system through random variations in
the diffusion coefficient D, the birth rate v, or the input
rate R. Typically the mechanisms of external noise are
different for the various parameters, and it is therefore
reasonable to assume that they are independent stochas-
tic processes. We denote the external-noise processes by
D„v„and R, . Call the probability densities of these sto-
chastic processes pu (D, t ), p, ( u, t ), and pz (R, t ) [if the
fiuctuations take on only discrete values, then pu(t),
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and

a,p,
——W„p, , (2.6)

a,p, =W,p, , (2.7)

p, (t), and pR(t) are probability vectors] and write their
kinetic equations as:

ap =ap (2.5)

where 8'z, W„and Wz are the evolution operators of
the stochastic processes. An exact, closed, microscopic
description of the reaction-diffusion system that takes
into account its internal fluctuations as well as the exter-
nal noise introduced by the surroundings can be formu-
lated in terms of a natural extension of the central quanti-
ty of our approach, namely the joint probability
E(x,D, v, R, t ), defined by

E(x,D, u, R, t )dD du dR =prob[interval of length x is empty at time t

and D, E(D,D+dD), and v, E(u, v+dv), and R, E(R,R+dR)] . (2.&)

This joint probability obeys the kinetic equation

d, E(x,D, u, R, t)=[L(D,u, R)+W +W,

+ Wz]E(x, u, R, t), (2.9)

for statistically independent external fluctuations in the
diffusion coefficient, the birth rate, and the rate of parti-
cle input. The boundary conditions are

and

E(O,D, v, R, t ) =p~(D, t )p, (v, t )pz (R, t ) (2.10)

E( oo, D, u, R, t )=0 . (2.11)

The boundary conditions in the variables D, v, and R are
specified once the stochastic processes D„v„and R, are
explicitly defined.

The (unconditional) empty-interval probability E(x, t)
is the marginal probability, given by

E(x, t)= f dD f dv f dR E(x,D, u, R, t) . (2.12)

(If the external-noise processes are discrete, the integra-
tion is replaced by a sum. ) The ensemble-averaged con-
centration and IPDF's are recovered from the marginal
empty-interval probability as in Eqs. (2.3) and (2.4).

We also have access to, for example, the conditional
concentration of particles p(t~D, v, R), given that the
fluctuating parameters take on some specified values:

III. DICHOTOMOUS EXTERNAL NOISE

P
dt P+ P —a P+ (3.1)

where P =prob( u, = v ) and P+ =prob( v, =v+ ). The
stationary probability for the dichotomous noise is given
by

(3.2)

with y =a+13. We illustrate the process in Fig. 1.
From now on we will assume that the external noise is

a stationary random process. Its mean value is

au +Pv+
(v, = —=u,r

and its correlation function is

(3.3}

For the sake of concreteness we will restrict our atten-
tion to the case that the birth rate fluctuates like a dicho-
tomous Markov process, also known as a random tele-
graph signal. A dichotomous noise takes on only two
values, v, 6 I u, u+ J, and is Markovian if the probability
of a jurnp from one state to the other state is independent
of the time already spent in the state. This implies that
the lifetime of each state is exponentially distributed. Let
a and p be the jump frequencies. The kinetic equation
then reads

a (E,x,D, uRt)
E(O, D, u, R, t) Bx x=0

(2.13}

(v, v, ) —(u, )(v, )=, (v+ —v )'er'
so the correlation time of the dichotomous noise is

(3.4)

(3.&)

Similarly, the conditional IPDF at given parameter
values, p(x, t ~D, u, R ) is derived from

p(t ~D, u, R )p(x, t ~D, v, R )= 1

E(O, D, v, R, t )

d E(x,D, v, R, t)
Bx

E (x, t)
E+(x,t)

L —P E (x, t)

L+ —a E+(x, t)

(3.6)

The kinetic equation for the reaction-diffusion system
subject to dichotomous noise in the birth rate, Eq. (2.9),
takes the form
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The kinetic equations become (dropping the primes),

B,E =B„„E + v B„E R—xE P—E +aE+

and

(3.9)

v,
B,E =B„„E +u B„E Rx—E +PE aE— . (3.10)

The boundary conditions for Eqs. (3.9) and (3.10) are

and

E (O, t)=P, = , E—(~,t)=0a
y

(3.11}

E+ (0, t ) =P, + =—,E+ ( ao, t ) =0 .
r

(3.12)

Note that in dimensionless variables the ensemble-
averaged concentration is

FIG. 1. I11ustration of the dichotomous Markov process U, .
The process hops down from the upper level v+ to the lower
level v at rate a, and it hops np at rate P.

p'(t') = 2D 2Dt'
2

and is computed (again, dropping the primes)

(3.13a)

where

I. =2Da„„+v a —Rx . (3.7)

as
p(t) =-

Bx «=p
(3.13b)

We may write these equations in dimensionless form by
introducing rescaled space and time variables:

where the unconditional empty-interval probability
E(x, t) is given by

E(x,t)=E (x, t)+E+(x, t) . (3.14)

2D ' 2D

v+, 4D2
v+ =, R'= R,

V3

p'= p, a'= a .2D , 2D
2 ' 2

(3.8)

We may further reduce the system of two coupled
equations, Eqs. (3.9}and (3.10},to one evolution equation

by eliminating E+. Rewriting Eq. (3.9) as

aE =B,E B„„E u—B„E +—RxE +PE, (3.15)

and injecting this expression into Eq. (3.10), we obtain

B„E +y B,E —2B„„,E —(v + u )B„,E +2Rx B,E

B„„„,E —(v+—+v )B„„„E +(y —u+u )B„„E +(Pu++av )B„E

+R[2xB„„E +[2+(v++u )x]B„E +[v~ Rx yx]E— j .—(3.16)

Recall that the mean value of the birth rate is 1/2

&v, &=u=
av +pv+

v =1—w
CK

(3.18)

which equals one with the scaling in Eq. (3.8). The vari-
ance is given by

' 1/2
CX

V = 1+W+ p
(3.19)

Defining rt=Ply and p= 1 2rtltlrt(1 —rl), we—obtain

w'=—
& v,'& —v'=, (u+ —u )',

y' (3.17) v+ + v =2+pw,

v+ v =1+pw —w

(3.20)

(3.21)
so we can express the two values v and v+ in terms of
a, P, and w: The equivalent form for Eq. (3.16) is then
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d„E +yd, E —2B„,E —(2+pw )B,E +2Rx d, E

d—„„E —(2+pw)B„E +(y —1 —pw+w )0 E +yd E

+R [2xd„„E +[2+(2+pw)x]B E +[1++g ' —lw Rx——yx]E (3.22)

We remark here that this linear partial-differential equa-
tion constitutes an exact formulation of the diffusion-
reaction process under the influence of dichotomous
Markov fluctuations in the birth rate. It is worth noting
the simplicity to which this ostensibly nonlinear, stochas-
tic, many-body problem has been reduced.

Now we focus on the steady state of the system (8, =0)
and consider only the reversible model 23~A (i.e.,
R =0). The stationary form of Eq. (3.16) without particle
input reads

B„„„„E——(v +v )B„„E +(y —u u )B„„E

+(Pv++av )B„E =0 . (3.23)

With the usual ansatz for linear differential equations
with constant coefticients

E (x) ~e (3.24)

we obtain the characteristic polynomial for k,

—k +(u++u )k +(y —v+v )k —(Pv++au )k=0.
(3.25)

Adding Eqs. (3.9) and (3.10), and noting that

E = (aE——Q)
1

(3.28)

and

E+ = (PE+—Q),1

y
(3.29)

we obtain the evolution equation for the total empty-
interval probability:

a,E=a,.E+a,E+ (u, ——u )a.Q
—RxE .

1

'V
(3.30)

—RxQ —yQ . (3.31)

(Note that the coefficient of the B„Q term is not equal to
(v, ).) Let us again focus on the reversible case, R =0.
From Eq. (3.30) we obtain

Multiplying Eq. (3.9) by —p and adding it to Eq. (3.10)
multiplied by e, we find

a, Q=a„,Q+ (u, u)a„E—+ '(Pu +a—., )a, Qr

Only positive roots or roots with a positive real part are
acceptable in light of the boundary condition as x ~ ~ in
Eq. (3.11). The sign structure of Eq. (3.26) is of the form
+, —,+, +, so the number of sign changes is always
equal to two and Descartes's rule implies that there are
either two or zero real positive roots. Although general
cubic equations can be solved exactly, the complicated
explicit form of the roots is not very enlightening for this
example, and we therefore specialize to a simplifying case
in the next section.

We end this section with the proof of a (somewhat
surprising) general result for this model: External dicho-
tomous Markov fluctuations of the birth rate in the rever-
sible model do not affect the stationary average value of
the concentration, provided that both the jump frequen-
cies are nonvanishing and the variance is finite. To show
this we begin with an alternative formulation of the ki-
netic equations in terms of the total empty-interval prob-
ability E=E+ +E and the difference quantity

Q =aE+ —PE (3.27)

In addition to the k =0 eigenvalue corresponding to an
empty system, the eigenvalues are the roots of the cubic
polynomial

k —(v++u )k —(y —u+v )k+(Pv++av )=0

(3.26)

B„Q= (B,E d„,E d„E—) . —
U+ U

(3.32)

d„E+ydE —2B,E —(v +v )B„E
= —a...„E—(u, +. )a,„E

+(y —v+u )B„E+(Pv++av )B„E,
(3.33)

which coincides, as expected, exactly in structure with
Eq. (3.16) for R =0.

The main interest in using this formulation in terms of
E and Q lies in the following observation. Focusing again
on the stationary case, we obtain

B„Q=
V+ V

(
—d E—d„E )

( d„E d, E) . — — (3.34)

This equation is easily integrated yielding

Q(x)=C — [E'(x)+E(x)] .
V'a

(3.35)

Differentiating Eq. (3.31), with R =0, with respect to x
and using Eq. (3.32) to eliminate B„Q, we obtain a closed
equation for E:
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Q(0) =aE (0)—PE (0)=a——P—=()a
y y

Therefore we obtain, from Eq. (3.35), that

(3.36)

The boundary conditions in Eqs. (3.11) and (3.12) imply
that

The scaling in Eq. (3.9) has the consequence that the
dimensionless birth rate always has mean value one,
( u, ) = v = 1. With v =0, this implies that

(4.1)

[B„E{x)~„0+E(0)].&aP
w

(3.37)

Using the boundary condition for the empty-interval
probability in Eq. (2.2) and the expression in Eq. (3.13)
for the concentration, we rewrite Eq. (3.37) in the form

and

a~u =+
y

1/2
a

Equation (3.26) for the eigenvalues then reduces to

(4.2)

C= (
—p, +1) .

w
(3.38)

(4.3)

(Here p, is the dimensionless stationary concentration. )

The boundary conditions in Eqs. (3.12) and (3.13) imply
also that

which we write as

%(k) —=k —+k —yk = —y . (4.4)

Q( ~ ) =aE+ ( oo ) PE ( ~—) =0 . (3.39) De6ning H =q ', we have

Furthermore, E(oo)=0 and r}„E~O as x~oo. Hence
we conclude that

O=Q( oo)=C .

We deduce that

(3.40)

p, =1 (3.41)

as long as &aP/wAO. In dimensioned variables this is

(v)Ps=
2D

(3.42)

Away from the limiting (somewhat "degenerate") cases
where a=O, P=O, or w=oo, the stationary density
equals the equilibrium value for a system with the same
average birth rate. While external dichotomous noise in
the birth rate does not thus modify the average steady-
state density, it does affect the functional form of the sta-
tionary empty-interval probability E(x) and hence the
stationary interparticle distribution function p(x). That
is, the slope of the empty-interval probability at x =0 is
independent of the noise characteristics, but the behavior
of E(x) for xAO depends on the noise amplitude and
jump frequencies: The eigenvalues k [the roots of the cu-
bic polynomial in Eq. (3.26)] vary with the values of the
noise parameters. Since the IPDF is proportional to the
second derivative of E(x), it too will deviate from its
equilibrium form in the presence of fluctuations in the
birth rate. As mentioned earlier, the general solution of
the cubic equation for the k's is not very revealing, so we
consider a special case in the next section.

e(k) =k' Hk—' y—k = ——y . (4.5)

Because 4'(0) = —y, the cubic function 4 has a
minimum for positive values of k and 4';„&0. In the
Appendix we show that '0;„~—yH, implying that for
all values of the noise parameters the characteristic poly-
nomial in Eq. (4.3), or in Eq. (4.5), has two positive roots.
(Recall that H=r) '=y/P& 1, so yH & —y—. The bor-
derline case y=P is unphysical because then the mean
life-time of the state v+ is infinite. )

Let k, and k2 denote the two positive roots of Eq.
(4.3). The steady-state expression for E is given by

—klx —k~xE (x)=C,e ' +C2e (4.6)

From Eq. (3.16) we obtain the corresponding expression
for E+,

aE+ = d„„E +PE— (4.7)

or

aE+(x)=C, (P—kf)e ' +C2(P—k2)e ' . (4.8)

E+(0)=P,+ =—

The constants C, and C2 are determined by the boundary
conditions at x =0 in Eqs. (3.12) and (3.13):

E (0)=P, a
y

and

IV. COAGULATION %'ITH RANDOMLY
VANISHING BIRTHRATE

The birth rate v must be a non-negative quantity,
which implies that v 0. In this section we consider
the extreme but simplifying case that the birth rate fluc-
tuates between zero v =0) and a positive value (u+ &0).
The birth process is then switching on and off randomly
in time.

From Eqs. (4.6) and (4.8) we obtain

C1+C2 =—a

and

C, (P—k, )+C~(P—k~)=

which are equivalent to

(4.9)

(4.10)
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C1+C2
=-(X (4.11)

10'

and

1k +{2k' =0 (4.12}
100

The solution of Eqs. (4.11}and (4.12) is

C1

C2 y k2 k2

The stationary empty-interval probability,

(4.13)

10 '

E(x)=— [k2(y —k, )e
y k —k

—k, (y —k2)e ' ], (4.14)
102

0

and the stationary IPDF,

1 8 E(x)p(x)=-
p Bx

2 2
1 1 2 2

— )x 2
—k2x

z 2 [(y —ki)e ' —(y —k2)e ' ],
(4.15)

—k, (y —k2)e ' ], (4.16)

and using Eq. (4.3) we can confirm explicitly that, indeed,
E'(0)= —1.

These results provide a specific realization of our re-
marks at the end of Sec. III: Although the stationary
density is independent of the noise in the birth rate
[p= —E'(0)=1],E(x) and p(x) deviate from their equi-
librium forms [12] (also see Ref. [4]) for fixed birth rate:

are both sums of two monotone decaying exponentials.
The first derivative of the empty-interval probability is

aE(x} 1
—ktk2

[k ( k )
y

FIG. 2. Interparticle distribution functions for the noisy sys-
tem (continuous curve) and an equilibrium system with the same
concentration (dashed). The noise parameters are, in dimen-
sionless units, y = 10 and P= 1.

nonequilibrium steady state. The nonequilibrium p(x) is
larger than p' ""(x) for small x and large x, indicating
that we would expect to see relatively more of those
smaller and larger gaps between adjacent particles, as
compared to a completely uncorrelated distribution of
particles.

We have performed direct Monte Carlo simulations of
the reversible diffusion-limited-coagulation process with
the birth rate fluctuating as a dichotomous Markov pro-
cess between v =0 and v+ )0. The simulation algo-
rithm is the satne as that in Ref. [5], with the straightfor-
ward addition of the Auctuating birth rate. From a prac-
tical point of view the microscopic simulation of the sys-
tem with macroscopic noise required significantly more
computer time than, say, a simulation of the relaxation

10

Eequil(x )
—e

—x (4.17)

and

equi l( }
—x (4.18)

Note in particular that the external noise drives the
IPDF away from the simple exponential distribution, cor-
responding to a totally random Poisson distribution of
particles on the line, which maximizes the entropy. A
nonexponential IPDF indicates microscopic spatial
correlations in the particle positions, correlations which
are absent in the true equilibrium state. External noise
destroys the property of detailed balance and induces a
stationary nonequilibrium state in this diffusion-reaction
process.

In Fig. 2 we plot p(x) versus x for the case y = 10 and
P= 1 corresponding to a birth-rate process v, which, on
average, spends

~p
of the time at 10 times its average

value. The equilibrium IPDF is plotted for comparison.
The particle positions are strongly correlated in this

0
5 10

FIG. 3. Concentration vs time from a Monte Carlo simula-

tion. The dotted vertical lines indicate where the birth rate
switches between U =0 and U+ =10. The noise parameters
are, in dimensionless units, y = 10 and P= 1.
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from one equilibrium state to another. This is because we
consider external fluctuations on a macroscopic" time
scale that is not fast in comparison with the relevant mi-
croscopic relaxation times. The simulation must run long
enough on this macroscopic time scale for the external
noise process to reach its steady state, which may be
many microscopic relaxation times.

In Fig. 3 we plot the concentration versus time for the
reversible diffusion-limited-coagulation process simulated
on a spatial lattice of 10 sites. The vertical (dotted) lines
indicate the times where the birth rate hopped between
v+ and v =0. As expected, the time-dependent Quc-

tuating concentration follows the birth rate fluctuations.
The parameter values are the same as those used in Fig.
2. That is, in our dimensionless units v, jumps up from 0
to v+ =10 at rate 1, and down from v+ to 0 at rate 9.
The exponential relaxation rate of an equilibrium system
at the maximum birth rate ( v+ = 10) is 100 in these units,
so the noise may be considered relatively slow on this
scale. Although the average concentration of particles is
1 in our dimensionless units, in units of the inverse lattice
spacing the average concentration is 10 and the equi-
librium concentration at the maximum birth rate would
be 10 . Thus comparison with our spatially continuous
theory is appropriate. The Monte Carlo data for the
average IPDF is plotted as a histogram in Fig. 4, along
with the theoretical curve [13]. The agreement fully
confirms our analysis.

It is also interesting to ask if the spatial correlations in
the nonequilibrium steady state manifest themselves in a
way which is visually apparent, without recourse to any
statistical analysis (such as binning into probability distri-
butions). In order to investigate this question we have
looked at a number of "snapshots" of the particle
configurations during the simulation.

One such typical snapshot is presented in Fig. 5(a),
where the horizontal dimension is the spatial position and
a vertical line represents the presence of a particle. This
snapshot was taken while the birth process happened to

101

(a)

FIG. 5. Snapshots of the spatial distribution of particles. (a)
The nonequilibrium system subject to noise in the case that the
birth rate is in the off state. (b) A totally random distribution of
particles at the same concentration, as is realized in an equilibri-

um state. The particles are seen to be more evenly spaced in the
nonequilibrium state relative to the equilibrium state. The noise
parameters are, in dimensionless units, y = 10 and P= 1.

be turned off (v, =v =0), and there are 60 particles
shown, distributed according to the system's own self-
organization scheme. The spatial distribution in Fig. 5(a)
should be qualitatively compared to that in Fig. 5(b),
where we have distributed particles randomly on the
same length of line at the same concentration. The ran-
dom distribution is that which would be realized in an
equilibrium system at the same density. The snapshot
from the nonequilibrium steady state clearly shows a
more even spacing of particles than the equilibrium dis-
tribution.

This self-imposed isolation of the particles is reflected
in the IPDF conditioned on the event that v, =v, i.e.,
the conditional IPDF p (x). Recalling Eqs. (2.13) and
(2.14), and using Eqs. (4.6) and (4.13), we compute

p (x)= 1 BE (x)

Bx

10o-

p(x)
-k,

(e ' —e ').
2 1

(4.19)

10-1—

102
0

FIG. 4. Interparticle distribution function, theory (continu-
ous curve), and Monte Carlo data (histogram). The system pa-
rameters are, in dimensionless units, y = 10 and P= l.

We plot this IPDF, for the parameter values used in the
Monte Carlo simulation, along with that corresponding
to an equilibrium distribution of particles at the same
density in Fig. 6. The vanishing of the nonequilibriur6
IPDF as x —+0 is the hallmark of this statistical repul-
sion.

It is also worthwhile to compare the conditional IPDF
in Eq. (4.19) with the average one in Eq. (4.15) (plotted in
Figs. 2 and 4). On average, it is more likely to find parti-
cles close together in the nonequilibrium state, in con-
trast to conclusions drawn from the snapshot in Fig. 5.
This is because when the birth rate is turned on (which is
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100 10'

100

p+(x)

10-1

10'
0

I

0.5
I

1.5
102

0
I

0.5
I

1.5

FIG. 6. Conditional IPDF, given that the birth rate v, is in

the off state (continuous curve). The IPDF for a random distri-
bution of particles at the same density (dashed line) is shown for
comparison. The noisy-system parameters are, in dimensionless

units, y= 10 and P= I.

FIG. 8. Conditional IPDF, given that the birth rate U, is in

the on state (continuous curve). The IPDF for a random distri-
bution of particles at the same density (dashed line) is shown for
comparison. The noisy-system parameters are, in dimensionless

units, y = 10 and P= 1.

only one tenth of the time in this simulation), each of the
relatively well separated particles in Fig. 5(a) spawns its
own local "clump" of particles. The density of particles
within the clumps is then much higher than the "clump
density, " i.e., the density of the well separated individual
particles when the birth rate is zero. This effect is direct-
ly illustrated in the snapshot in Fig. 7(a), and in the con-
ditional IPDF when the birth process is on is plotted in

Fig. 8. The unconditional IPDF is just the appropriately
weighted average of the two conditional distributions.

(b)

FIG. 7. Snapshots of the spatial distribution of particles. (a)

The nonequilibrium system in the case that the birth rate is in

the on state. (b) A completely random distribution of the same

number of particles, as in an equilibrium state at the same densi-

ty. The particles are seen to be more clumped together in the
nonequilibrium system relative to the equilibrium distribution.
The noisy-system parameters are, in dimensionless units, y = 10
and P= l.

The clumping effect in the nonequilibrium system can
be quantified more precisely in the extreme case of very
short, but high-intensity bursts of the birth process. This
is the Poisson-white-noise limit of the stochastic process
v, and is developed in the next section.

V. THE POISSON-WHITE-NOISE LIMIT

In applications the typical time scale of the noise, e.g. ,
the correlation time, may be short compared to the in-

trinsic time scale of the system. Such situations are com-
monly modeled by white-noise processes where the limit
of vanishing correlation time is taken ~„,~0. In our
problem the familiar Gaussian white noise cannot be used
because it is unbounded from below, and the birth rate v

must remain non-negative. However, we may consider
the Poisson-white-noise limit of the dichotomous Markov
process [14]. In the limit

V+
v+ ~ oo, a~ oo, such that =0 =O(1), (5.1)

a
the dichotomous noise goes over into Poisson white noise
with exponentially distributed weights. In this 1imiting
situation the lower state v can be considered a baseline
value of the birth rate, which is randomly interrupted, at
frequency P, by bursts of high birth rate of value v+.
The lifetime of these bursts is exponentially distributed
with mean 0. '. The weight of a burst is defined as the
area of the pulse, which is exponentially distributed with
mean v+ /cz. Thus the Poisson-white-noise limit corre-
sponds to increasing the amplitude of the burst and de-

creasing its average lifetime, such that the mean weight
of the burst —or mean area of the pulse —remains con-
stant. Poisson white noise can be pictured as a random
sequence of 5 spikes superimposed on the baseline. These
spikes occur with frequency P and have an exponentially
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distributed weight of mean value 0.. Because
k, = P—(&1+4/P 1—) .

1
(5.15)

av +pv+1=v= av +pao a=—(v +po ),
y

and n/y~1 in the Poisson-white-noise limit, we find
that the lower bound for the Poisson-white-noise process
1S

—k2x
+PWN(X) (5.16)

Applying the Poisson-white-noise limit to Eqs. (4.14),
(4.15), and (4.16) we obtain (being careful to perform the
appropriate differentiations before taking the limit)

v =1—Po,
and we must impose

Po ~1

(5.2)

(5 3) and

d -k,2

+pwN(x} H(x ) —kate (5.17)

in order to ensure the non-negativity of v, .
As the Poisson-white-noise limit is approached we keep

only the dominant terms in the coeScients of the charac-
teristic polynomial in Eq. (3.26},which reduces to

k —a[ok +(1—o+Po }k—1]=0. (5.4)

k=a ~. (5.5)

Then

a 7c aoa 7c
— a(1 cr—+—Po )a le+a=0, (5.6)

To solve this cubic equation, we make the following scal-
ing ansatz:

-k2x
pPwN(x) k2[e + 5(x)] (5.18)

where H(0)=1 and H(x)=0 for xAO, and 5(x) is the
Dirac 5 function.

The interparticle distribution function shows that Pois-
son white noise in the birth rate leads to the clumping
phenomena illustrated and discussed in the previous sec-
tion. Because of the 5 function in ppwN the most prob-
able distance to a neighboring particle is, on average,
zero. The relatively long tail of ppwN compared to an
equilibrium system with the same concentration, signifies
that there are large empty intervals between the clumps.
Indeed, while the average distance between nearest neigh-
bors is

and the powers of a are 3m, 2m + 1, m + 1, and 1. There
are two and only two ways of balancing the powers of u: &x &

=f xppwN(x)dx =1 .
0

(5.19)

&3m 2m +1 (5.7)

or
&2m +1 m +1

%J ~ (5.8)

With m = 1 we obtain from Eq. (5.4), to dominant order,

v —Oz =0.3 2— (5.9}

Using m =0 we find, to dominant order,

crk +(1—o+Po )k —1=0 . (5.10)

k, =acr, (5.11)

1 1
k = —— ——1+Po'

27 3

' 2 1/2
1 4——1+Po +—
0 0

(5.12)

Clearly the roots k2 and k3 are of opposite sign. The to-
tal eigenvalue spectrum in the vicinity of the Poisson-
white-noise limit is given by —,0, +,~+ ao.

Let us again consider the extreme but simplifying case
that v =0. Then we find from Eq. (5.2) that

P= 1/o,
and the acceptable eigenvalues are

a
k =—

(5.13)

(5.14)

Therefore near the Poisson-white-noise limit the roots of
the characteristic equation are

The conditional average distance between neighbors given
that the gap is nonzero, which can be interpreted as the
average distance between clumps, is

f xPpwN(x)dx
(x x+0&=

+PpwN +
0

We conclude that (on average) there is a clump density k2
( (1), each with average concentration kz ' () 1) parti-
cles per clump.

Recall that the mean weight of the spikes in the Pois-
son noise is cr=1/P. The expression for ppwN in Eq.
(5.18) reveals that rare, but strong bursts of particle birth,
i.e., small p, lead to the strongest clumping tendency. As
the bursts become more frequent, but less strong, the sys-
tem becomes less self-ordered, and we recover the totally
random equilibrium state as phoo. In this limit the
external-noise time scales have all become faster than any
of the microscopic time scales, and the system simply
responds to the average state of the environment as if
there were no fluctuations.

VI. DISCUSSION

We have achieved a unified, closed description of inter-
nal fluctuations and external noise for an interesting mod-
el system, the reversible diffusion-limited-coagulation re-
action A + A+ A with irreversible input B~A in one
spatial dimension. We have derived explicit results for
the stationary state of the reversible process with external
dichotomous noise in the birth rate, and in particular we
have studied the limiting case that the birth rate fluctu-
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ates between zero and a fixed positive value. External
noise drives the system out of equilibrium to a stationary
nonequilibrium state, and the interparticle distribution
function is then no longer a simple exponential corre-
sponding to a totally random distribution of particles on
the line, the maximum-entropy state characteristic of
equilibria. We conclude that spatially homogeneous
noise induces spatial correlations in the system in the
form of clumping: The particles tend to bunch together
on average, leaving relatively large empty intervals in be-
tween. For the type of noise studied, this effect occurs
without a threshold, and the deviation from the equilibri-
um increases smoothly with the strength of the noise.

There remain several open problems. First, in the ab-
sence of external noise, the strictly reversible process
A + A+ A exhibits an interesting dynamic transition in
its relaxation kinetics when switching between equilibria
of different values of the system parameters (see both
Refs. [7] and [11]). The effect of external noise on the dy-
namics can be analyzed by a simple extension of the an-
satz in Eq. (3.24), namely that E(x, t ) ~ e 'e

Second, the effects of external spatial disorder, frozen in
time, can be investigated using our recent extension of
the formalism to spatially inhomogeneous situations, as
developed in Ref. [6].
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APPENDIX
We show that 4';„~—yH. The extrema of 4 are the

roots of

4'( k) =3k —2Hk —
y =0 . (Al)

As we discussed in Sec. III, the minimum occurs for posi-
tive values of k and is given by

' 1/2

k =—1+ 1+H 3r
3 H

(A2)

The local minimum of 4' is

%,„=%(k)

+( zH + zyH) 1+ 3
27 9 H

'
j. /2

(A3)

We need to show that 4';„~—yH, or equivalently that
' 1/2

,', H ,'y—H+—( ,'—,H + —,',—yH) 1+ &0 (A4)

We divide this expression by H, which is positive, and
rearrange the resulting expression,

' 3/2

9y H H 1+ V

H
(A5)

To show that this inequality holds, we consider two cases.
(i) If 9y H, then 9y H~O&H—(1+3y/H ) and
Eq. (A5) holds. (ii) If 9y ~H, then we take the square
on both sides of Eq. (A5) and after a few simple rear-
rangements obtain

0~ 27y(y H)—
which is obviously fulfilled, and implies that Eq. (A5)
holds. Thus we find that indeed for all values of the noise
parameters 4;„~—yH.
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