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Diffusion on the chaotic web of a Hamiltonian oscillator with incommensurate forcing
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We show, with precision numerical experiments, that far enough from the origin, the phase space of a

Hamiltonian oscillator, kicked at a frequency that is incommensurate with its natural frequency, is

featureless at some level of precision; that is, the periodicities that lead to island chains in resonantly

forced oscillators are strongly suppressed. Therefore this system is suitable for the study of high-

dimensional analogies of chaos, such as Fokker-Planck dynamics and Einstein diffusion. We determine

the diffusion constants and the probability densities numerically and compare them to previous theoreti-

cal predictions. We observe a crossover behavior of the diffusion constant between regions of weak and

strong forcing.

PACS number(s): 05.45.+b 05.20.—y

I. INTRODUCTION

The kicked Hamiltonian oscillator has long been stud-
ied as a nonrelativistic model of the motion of a charged
particle in a magnetic field interacting with a transverse
electromagnetic wave packet [1,2]. A widely used ap-
proximate equation of motion, valid when the interaction
time of the wave packets is small compared to the natural
period, or 6/v «2tr/co, is

u„+,=(u„+Ksinv„)cosa+v„sina,

v„+&=—(u„+Ksinv„)sina+v„cosa
(2)

obtained by use of the dimensionless variables u =kx /ct)p

and v = —kx; where a=2mcoo/co and K =2'(e/
m)Eok (1/cocoo) is the strength of the nonlinearity.
Zaslavsky and his co-workers have extensively studied
the structure of the phase space of this map for resonant
kicking frequencies, that is, for co/coo an integer [1—3] as
well as other Hamiltonian systems [4] and a higher-
dimensional generalization [5]. They found a phase space
composed of a tiling of islands which result from orders
of the periodicities separated by a chaotic web of infinite
extent. Thus two general types of motion are possible:
trapped motion, which can be periodic, quasiperiodic, or
chaotic, within the islands surrounded by undestroyed
Kolmogorov-Arnold-Moser (KAM) surfaces; or un-

x+coox= Ev sin(kx) —g 5 t n-
n=p

I

where N/Np=q is the ratio of the rate at which the oscil-
lator is kicked to the natural frequency. The phase space
of this equation can be conveniently studied with the map
representation

bounded, diffusivelike motion on the web.
Studies on diffusion in Hamiltonian systems are not

new, dating back to Chirikov, who studied diffusion on
the web of the standard map [6]. However, it is not clear
that a satisfactory diffusion theory exists, and interest
continues [7—9]. Recently, for example, Lichtenberg and
Wood [8] have constructed an approximate theory of
diffusion on the web of the map (2) for the resonant case
(specifically for q =4) valid in the small-K region, which

they then tested numerically. The starting point for this
theory is the observation that the area preserving map (2)

asymptotically fills the entire phase space. An important
parameter is the ratio of the area in the space of the con-
nected, chaotic web to that filled by the islands. For reso-
nant forcing, and for K &&1, this ratio is also small com-
pared to unity. The diffusive motion, consequently, takes
place only along thin connected filaments. These are the
remains of destroyed separatrices which lie between the
(considerably larger) islands of periodic and quasiperiodic
orbits. An example is shown in Fig. 1(a).

In this paper, we examine diffusion on the web of the
map (2) in an extreme where the islands shrink to virtual-

ly zero measure leaving the web to occupy nearly the en-

tire phase space. This is accomplished by incommensu-

rately forcing of the oscillator with respect to its natural
frequency. Under these conditions, and, as we show
below, far enough from the origin, the angular measure
of the map is uniform (to within some accuracy), while

the radial measure mimics a time-evolving diffusive pro-
cess. These observations are, of course, not new. Our in-

terest is, however, to make precision determinations of
the diffusion constants D, and the time-evolving probabil-
ity densities, by carrying out an order of magnitude more
iterations of the map at double precision than have previ-
ously, to the authors' knowledge, been reported. More-
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over, we have observed the crossover between small-K
and large-K diffusive behavior.

There is no a priori reason to suppose that the dynam-
ics generated by any such map as (2) should be describ-
able by infinite-dimensional tools such as the Fokker-
Planck or diffusion equations, though the proposition has
long fascinated dynamicists [10—15]. Continuing interest
also stems from the fact that Hamiltonian systems such
as (2) represent the classical limiting behavior of model
quantum chaotic systems, where the "break time" marks
a transition from quantum dynamical localization to clas-
sical diffusion [16—18]. The reason most often advanced
for the high-dimensional behavior of classical Hamiltoni-
an systems is the stochastic nature of scattering at the hy-
perbolic points which lie between the islands [19,20].
Presumably, numerical experiments on systems which
have high densities of such points should then favor the
observation of "statistical" or "thermodynamic" behav-
ior. We show, with experiments based on SX10 map
iterations, that ideal diffusion is not more closely approxi-
mated with large numbers of iterations, even with incom-
mensurate forcing which itself introduces disorder.

Our results can be summarized as follows: (1) we find

that a set of initial points written to random locations

within a thin annulus, and from which all periodic and
quasiperiodic points were eliminated, diffuse radially out-
ward while maintaining an approximately uniform angu-
lar measure so long as the annular region lies outside a
certain small region surrounding the origin; (2) the pro-
cess approximately follows Einstein's diffusion law [21]
( r ) ~ t, where r is the distance from the origin, with the
approximation becoming better for larger values of K; (3)
the time-evolving measure in the radial coordinate can be
described by a two-dimensional (cylindrical) diffusion
equation; and finally, (4) the approximate diffusion law, D
versus K, obtained by Lichtenberg and Wood is preserved
in the limit of small E, while the Chirikov diffusion law

applies in the region of large K with the crossover at
E=—1.

This short paper is organized as follows. In Sec. II we
discuss our numerical routines, present the results, and
compare them to the two theories. In Sec. III we present
a simple calculation of the diffusion constant, valid for
strong perturbation strength. In Sec. IV we summarize
our results and comment on the accuracy of the present
theories.

II. RESULTS

V

The numerical calculations were done on an Apollo
DN10000 with two processors in 64-bit precision. A
phase space portrait of the map (2) for resonant forcing
with ro/coo=4 is shown in Fig. 1(a). The highly struc-
tured nature of the phase space, partitioned into island
resonances bounded by a chaotic lattice of infinite extent
(the web) is indicated by iterating individual trajectories
originating on a grid of initial points. Lichtenberg and
Wood [8] have studied diffusion for the resonant case on
this web. By contrast, approximate incommensurate
forcing was introduced by setting co/coo equal to the gold-
en mean:

co &5—1

cop 2
(3)

In s
%$4

(b)
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FIG. 1. (a) The web for resonant forcing, m/coo=4, with
K =0.6 as in the diffusion studies of Ref. [8]. The horizontal
and vertical scales are +10. (b) The web for irrational forcing,
cu/coo equal to the computed golden mean with E =0.6. The
scales are +150.

which computes as a rational because of the finite
machine precision. A phase portrait, generated for all
the same conditions (except for the scale of view) as used
for the resonant case, is shown in Fig. 1(b). We note that,
except near the origin, the structure has largely disap-
peared, being replaced by a more-or-less amorphous ap-
pearance which suggests random behavior. In fact, can-
tori, or island chains which are roughly circular in shape
and centered on the origin, do remain, but as we move
further from the origin they sink from view, falling below
the level of the machine precision. Far enough from the
origin, they are impossible to locate, and are therefore
disregarded. The structure near the origin and the can-
tori are probably artifacts of the finite machine precision,
in which case they represent high-order resonances due
to the rationality of the computed value of the number
(3).

Some of the nearer island chains have been located by
computing the maximum Lyapunov exponent k of a se-
quence of orbits originating on initial points on the u

axis. The maximum exponents were obtained by stan-
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dard techniques [22,23] and averaged over typically
10000—100000 iterations per orbit, depending on the
strength of the forcing, E, until convergence to about 1

part in 10 was achieved. Figure 2(a) shows A, computed
for irrational forcing and I( =0.6 for each of 5000 initial
points spaced at intervals b, u =0.1 on [0,500]. The oc-
currences A, =O locate island chains which intersect the u

axis and happen to fall on one of the initial points. The
chains, while more numerous near the origin, persist at
large distances from the origin. In contrast, Fig. 2(b)
shows the same experiment carried out for the same con-
ditions except for larger E. While the island chains are
again more numerous near the origin, they become much
less numerous beyond u = 100 and are undetectable
beyond u =208 up to a maximum distance of u =8000.
The experiments we report here were carried out in the
region beyond u =—200, where the diffusion process is not
detectably influenced by the (hidden) island chains.

We have positioned a set of initial points written to
random locations on a thin (b,r =1) annulus of radius
r =100 centered on the origin, where r and t9 are the po-

(a)

FIG. 3. Iterations on the [u, v] plane of the set of 1000 initial

points written to random locations on a thin annulus centered
on the origin with a radius of r = 100. The horizontal scales are
+1500. (a) After 10 iterations, and (b) after 10 iterations of
each point. K =1.0.
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lar coordinates, r = u + v and 8= tan '( v /u ). For ex-

periments with E ~1.4, the annulus contained a set of
8000 points, but for K) 1.4 we only used 1000 points.
The Lyapunov program was used to locate and eliminate
all chance periodic and quasiperiodic points from the sets
(which were replenished until they contained either 8000
or 1000 initial points on the web). Because the scale of
the diffusion experiments described below was typically
extended to r =—8000, therefore, when summed over L9, the
density of the initial sets, located at r =100, could be
considered effectively a 5 function at the origin. Figure 3
shows the set of 1000 initial points on a horizontal scale
of r = 1500; (a) after 10 iterations, and (b) after 10 itera-
tions, respectively. These results show two features: (1)
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FIG. 2. (a) The Lyapunov exponents of the irrationally
forced map from 5000 equally spaced initial points along the u

axis for K =0.6. The zeros indicate the presence of periodic or
quasiperiodic orbits which intersect the u axis and also happen
to fall on one of the initial points. (b) The same plot except for
K =1.0. Note that the periodic orbits lying further from the
origin are suppressed.

C)
0

FIG. 4. The probability density of the angle 0, in radians,
summed over all r for 8000 random initial points on the an-

nulus, each point iterated 10 times. The density shows approx-
imately equal probability on [0,2']. K =1.0
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BP(r, 9) D~P ~( g)
n

(5)

haviors. Chirikov has obtained the D ~K law as a
rigorous result in the limit of large K for the standard
map. Lichtenberg and Wood [8] find D ~ K in the limit
of small K is predicted by their approximate diffusion
theory applied to the (thin) web of the resonantly forced
map (2). The present results are thus consistent with the
two theories and, moreover, show the details of the cross-
over behavior.

We turn now to the radial probability distributions
P(r) summed over all 8. These distributions are nonsta-
tionary since diffusion is radially outward from the vicini-
ty of the origin. Figure 8 shows our results, for the set of
8000 initial points, for three values of n ranging to
n =10 . Note that on this scale, where r,„=2000,the
initial points at r =100 would appear as a 5-like feature
close to the origin. These results can be explained by a
simple diffusion law

T 7P(r) = exp
2Dn 4Dn

I ~ I I
I

~ ~ I ~ I I ~ ~ I ~ ~ ~ ~

(a)

CL

0

where we have eliminated 6I based on the observation that
P(8)—=const. This function is shown by the solid lines in

Fig. 8, where we have used the values of D previously
determined from fits to Eq. (4) of the data shown in Fig.
5. Since there are no adjustable constants, the goodness

which has the (normalized) solution, assuming the initial
state to be a 5 function at the origin, and for
lim, „P=0, D I & & s I
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FIG. 7. The diffusion constant vs the forcing strength. (a)
The crossover from D ~ K' (Lichtenberg and Wood behavior) to
D ~ K (Chirikov behavior) is shown. The solid lines indicate
the slopes. (b) The theory of Lichtenberg and Wood (solid line)
compared to the data in the small-K region plotted on a linear
scale. Note that reasonably good agreement is obtained well

into the crossover region.

FIG. 8. Snapshot views of the evolution of the probability
density of r summed over all angles for the 8000 initial points
with K =1. The solid lines are Eq. (6) with D taken from the

slopes of the data shown in Fig. 6; (a) after —,
' X 10 iterations, (b)

after —', X10 iterations, and (c) after 1X10 iterations.
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of the fit demonstrates the self-consistency of this ap-
proach. Moreover, this is a demonstration that ergodici-
ty is a reasonably good approximation, since the second
moment of r calculated from Eq. (6) yields exactly Eq. (4).

III. DIFFUSION COEFFICIENT FOR LARGE K

In this section, we present a rough estimate of the radi-
al diffusion coefficient of the Zaslavsky map (2) for in-

r2 u2+U2

8„=arctan( v„/u„)
(7)

the map (2) reads

commensurate forcing. Introducing the polar coordi-
nates

r„+i
=r„+K sin (r„sin8„)+2Kr„cos8„sin(r„sin8„),

r„cosasin8„—[r„cos8„+Ksin(r„sin8„))sina

[r„+Ksin (r„sin8„)+2Kr„cos8„sin(r„sin8„)]'

In the limit K =0 (harmonic oscillator) the map (8) is re-
duced to

(13)

Pn+1= Pn

8 =t9 —a .n+1 n

(9)

which is solved by (4) with

D(K)= K
8n

(14)

This is the motion on a circle which is densely covered
for incommensurate forcing, a=2m(coo/co). From (9) we
observe that the radial angle coordinates are the action-
angle coordinates for the unperturbed system.

Considering an ensemble of trajectories, covering ini-
tially a circle of radius ro, the ensemble-averaged radial
map is obtained from (2) as

Comparison of (14) with our numerical results for D
shows quite good agreement as indicated in Table I,
where we label the predictions of (14) by D,„,i„„,. In fact,
the ratio D/D, „,i„„,-=1.17 over the whole range of D in-
vestigated, so that a reasonably good "working relation"
for D would be

(10)
D(K)=-1.17 K

8~
(15)

where the J„(x)denote ordinary Bessel functions. Nu-
merical evaluation of this equation results in diffusive be-
havior, that is, (r„)=4nD, where the diffusion coefficient
D turns out to be a quadratic function of E as shown, for
example, by the straight line of slope 2 in Fig. 7, or
D =cE . The constant c can be estimated as follows:
For large values of (r„)/l, we can substitute the asymp-
totic form of the Bessel functions, that is,

1/2

cos ( r ) +— Ia- .
n 4

which plots over the straight line of slope 2 in Fig. 7.

IV. SUMMARY

We have presented the results of numerical diffusion
experiments for the map often used by Zaslavsky, with
resonant forcing, when approximately quasiperiodically
driven. We have found, as have others previously using
resonant forcing, that the evolution in time of the radial
coordinate is approximately describable by a linear
diffusion law. A simple two-dimensional diffusion equa-

into (10). For l )—,'er„,the Bessel functions quickly de-
cay to zero (for constant r„)and those contributions can
be neglected. We then obtain D.

TABLE I. Comparison of numerical and analytical values for

(r„'+,) —= & r„')+K' —' cos' (r„)+— (12)

where e is the base of the natural logarithms. For a given
initial condition ( ro ), this map always approaches a
fixed point. This is a consequence of the use of the
asymptotic form of the Bessel functions, and can be cured
by averaging the argument of the cosine term which is
most sensitive to the initial conditions. This averaging
yields

0.1

0.5
1.0
2.0
3.0
4.0
5.0
7.0

10

0.0014
0.032
0.127
0.505
1.14
2.02
3.16
6.22

12.7

D analytic

0.001 08
0.027
0.108
0.532
0.973
1.73
2.70
5.29

10.8
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tion yields time-dependent radial probability densities in
approximate agreement with precision numerical experi-
ments. Moreover, we have found our results for weak
forcing to be in agreement with the di6'usion theory of
Lichtenberg and Wood, while for strong forcing they
agree with a result due to Chirikov for the circle map.
Moreover, we have provided an approximate calculation
of D for large E for the Zaslavsky map, so that now ana-
lytic formulas exist which can be applied over the whole
range of K for this map. We have observed that the accu-
racy of the small-E theory is good only for K ~ 1.6 while
the large-E predictions are accurate beyond the crossover
region up to the largest values of K ( =-100) tested here.
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