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Space-dependent friction in the theory of activated rate processes
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The Carmeli-Nitzan approach to the theory of activated rate processes is generalized to allow for
different frictions in the well and barrier regions. Many previous results are recovered as special cases
and some new results are obtained and discussed.
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I. INTRODUCTION II. MODEL AND SOLUTION

The problem of thermally activated barrier crossing is
important in many areas of physics and chemistry [1]. A
customary approach to this problem, pioneered by Kra-
mers [2], starts with a Langevin equation where the
effects of the bath are introduced by including a damping
friction force and a random force. Kramers's theory has
been generalized in many directions. For example, the
assumption of Markovian friction used by Kramers was
relaxed by Grote and Hynes [3], both in the low- and the
high-damping regimes. In the low-damping regime, the
generalization to a frequency-dependent friction was also
achieved independently by Carmeli and Nitzan [4]. In
addition to this, various approximate equations have been
proposed to provide a unified expression for the escape
rate for all dampings [5,6]. More recently, Pollak, Gra-
bert, and Hanggi [7] used the Hamiltonian approach [8]
to solve the problem for the whole range of damping
without the use of ad hoc adjustments.

In the meantime, from various studies [9—11], it has
been realized that the friction kernel must be a function
of the spatial coordinate also. In particular, friction ker-
nels near the well and the barrier can be quite different
from each other. Even though the escape problem with a
general space-dependent friction cannot be solved, many
attempts have been made to solve the problem for low
and high damping separately [12].

Recently, using both the Langevin equation and the
Hamiltonian approach, we have found analytical solu-
tions to the barrier-crossing problem where the well and
the barrier regimes have different space-independent fric-
tions. Preliminary results from the first approach have
already been published [13]. In the present paper, we
provide more details about this calculation, which is
based on the Carmeli-Nitzan method. The results for the
approach based on the Hamiltonian will be published
elsewhere [14].

In Sec. II we introduce our model and derive an ex-
pression for the rate. In Sec. III we deal with the
energy-dependent diffusion coefficient which is needed for
the evaluation of the escape rate. In Sec. IV we present
and discuss our results for the escape rate in different
cases. We offer our concluding remarks in Sec. V.

We start with a particle of mass M moving in a one-
dimensional piecewise harmonic potential V(x) (see Fig.
1) given by

2Mcopx, x (xp2 2

V(x)= '

Eb ,'Mcob(x———xb), x &xo,

where @=cob/coo. In the well region, the motion of the
particle is assumed to be governed by the generalized
Langevin equation,

dU

dt
1 dV(x) &. . . 1—f dt'g (t t')v(t')+ R (—t),

M dx p M

(3)

where v is the velocity of the particle, g (t) is the
memory friction kernel (MFK) in the well region, and
R (t) is the usual random force satisfying the conditions

(R (t))=0, (R (t)R (0))=MksT( (t) . (4)

Here k~ is the Boltzmann constant and T is the tempera-
ture of the heat bath. Similar equations are assumed to
apply in the barrier region with the subscript w replaced
by b. Assuming that only one relaxation time is impor-
tant in each region, we can see from dimensional argu-
ments that the MFK's must have the form

g;(t)=(y, /r, )g, (t/r, ), . i =w, b,
where the y s are the damping rates, the ~, 's are the re-
laxation times, and the g,-'s are dimensionless functions of
their dimensionless arguments.

Now we solve the Langevin equations in the two re-
gions separately and join the solutions by a procedure

where cop is the well frequency, E& is the barrier height,
~& is the frequency parameter determining the barrier
shape, and xb gives the location of the barrier top. The
conditions of the continuity of the potential and force at
the seam xp give

xb =xo(1+@ ), Eb= ,'Mcooxo(—1+@ ),
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[a&ks T(E& E—
&
)]'

exp[ a—,(E~ E—
~ )/ks T]=

s (J))tu(J])(ay+ I) 7r

(14)

where ab is given by

ab Ao/(COb Ao) (15)

FIG. 1. A schematic picture of the piecewise parabolic po-
tential given by Eq. (1).

The factor S in Eq. (6} is what distinguishes the
Carmeli-Nitzan result from other simpler connection for-
mulas. This factor ensures that the number of particles is
conserved throughout and that the probability distribu-
tion is continuous at the matching point. This factor is
given by

0 Eb dES= f exp( E /k—~ T)
kg T 0 CO

that exactly parallels the one used by Carmeli and Nitzan
[5]. The result for the escape rate is

1+R
rt(Ei E)+rt—(E E, )—

r =(t +S/roH) (6) (16)

where ri(E) =0 for E (0, rt(E) = 1 for E )0, and

R =erf{[(a&+1)(E& E, )/k&—T]'~ ],
where roH is the Grote-Hynes [3] rate,

(17)A&0

roH = exp( Es /ks —T),
277@

(7)
with erf(x }being the standard error function.

Now, let us discuss the rate expression (6) in some spe-
cial limits. First of all, if g (t)=gb(t), we get the
Carmeli-Nitzan result, as expected. Next, if we assume
that y ~(x), implying instantaneous equilibrium in the
well region, we obtain t ~0, S~1, so that r~r&H.
This is also expected because the Grote-Hynes result
specifically assumes equilibrium in the well. If, further,
we assume that the barrier friction is static, i.e.,
g&(t)=2yt, 5(t), we get the Kramers intermediate- to
high-friction result, as expected. On the other hand, if
we assume yb~o with y —+~, we get the transition-
state theory (TST) result. This implies that TST assumes
equilibrium in the well and no recrossing at the barrier.
It is clear that if friction is space independent, as is the
case with usual treatments, one could not satisfy the two
postulates (y~ ~ and y —+0) simultaneously. However,
there would be no mathematical contradiction if the well
and the barrier regions can have different frictions, as is
the case in this paper.

with A,o being the largest (real and positive) root of the
equation

tomb, +—Kgb(A)=0, , ,

with

g, (A, }=f dt exp( tk)g, (t) . — (9)

The other quantities in Eq. (6}are as follows. The quanti-
ty t is the mean first passage time to reach the matching
energy E

&
and is given by

(10)

Here e~(J) is given by [3,4]

e (J)=
2 f dt g (t)(v(0)v(t)),

N III. ENERGY-DIFFUSION CONSTANT

t = f exp(E/ksT) f dJ'exp( E'/k&T) . —1 J~ dJ J
kttT o e J 0

where (u(0)v(t)) is the velocity-velocity autocorrelation
function of the system with no friction, co is the angular
frequency of the motion, and J is the action,

J= fdx u(x),M
277

(12)

where the integral is taken over a full period of motion.
It should be noted that e (J) is related to the energy-
diffusion constant by the relation

In this section, we calculate e (J). This quantity,
which is directly related to the energy-diffusion constant,
is given by Eq. (11). The inner integral (u(0)u(t)) in
that equation depends on the shape of the potential; and
the outer one on the form of the friction. This relation
can be transformed further by introducing the Fourier
components of the velocity,

v (t)= g C„exp(intut},

D(E)=ksTe (J) .

The matching energy E, satisfies the equation

(13)
(19}

27} /COC„= dt u(t}exp( intot} . —
2' 0
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We then obtain

(20)

My ~ CI
e'"(J)=

co „= (1+n cow )
(26}

with

P(t)= I

dt's

(t)cos(ncot) . (21)

Written in this form, the dependence of E (J) on the po-
tential and on the MFK is seen to be separated even fur-
ther.

To proceed, we need to choose a specific form for
g (t). Two have been used. The first one is the usual ex-
ponential MFK,

U(t)= 2E
SinCOpt, (27)

where the C„'s in Eqs. (24) and (26) are given by Eq. (19).
The next step is to calculate these C„*s which depend

on the friction-free motion of the particle in the given po-
tential. The available range of energies between 0 nd Eb
divides naturally into two sections at x =xp and
E =Ep =Egg I( 1+@ ). For E & Eo, we have a simple
harmonic oscillator with frequency cop. We start the par-
ticle at the turning point x, = (2E—/Mcoo)' with U =0
and get

1/2

P"(t)= exp( —ItII~ ) . (22)

LR 2g(t)= [sin(t/~ )+sin(100t/r„)] . (23)

The second is a variant of Lee-Robinson (LR) friction
form [15], which has proven to be very useful in fitting
both experimental and molecular dynamics simulation
data [16—18]:

v(t)=.
cob (xb —x z )sinh cob —t—( ( 7T

CO

(28)

for all t. For E )Ep we again start the particle from x,
at t =0, let it reach the seam x =xp at t =t* and the oth-
er turning point xz=xb —[2(Eb E)IM—coi, ]' at
t =m. /co. The velocity is given by

r —coax, sin(coot), 0 t t"

From (22) and (23), we can calculate g" (t) by using (21)
and doing simple integrals. For the Lee-Robinson fric-
tion,

Here the time t * is given by

sin(coot" )=(1 Ez/E)'i—, cos(coot' )= (Eo/E)—'i

(29)

with the following values for f„:

(24) From these expressions for the velocity, we can then cal-
culate J(E) using (12) and C„using (19). For E & Eo,

J(E)=EIcoo,

COG

E
2M

1/2 (30)

1-,', InI = 1

CO'T~

where 5; . is the Kronecker delta. For E )Ep,

f„= 1 100
CO'T CO%

100

(25)
J(E)= sin(coot ' )cos(coot ' )

7TCOp

(Eb E)—
+ (sinh8 cosh8 —8),

7TCOb

(31)
7T19=CO
——t
CO

For the exponential friction, we obtain and

l COCOpX i

277

sin(coot *—n cot *
)

COp n CO

sin(coot +n cot )

COp+ n CO

l COCOb (x„—x~ }
neo cos(n cot )sinh8+ cob sin(n cot * )cosh8

CO + n CO

(32)
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Now we can substitute these C„'s into (24) and (26) to

and the resu
get E (J). If E &Eo, only the terms n =+1 'bn = contribute,
an e resu ting expressions are simple. F E E,or & 0, one

as to evaluate the whole sum. F th LRor e friction, the
sum involved is finite, since f =0 for suffi

'

see qs. 25)], sowecancalculateit termbyterm. I h
case of the exe exponential friction, the sum can be found
analyticall . They. e calculation is straightforward but
lengthy and is outlined in the Append' I b hix. n ot cases,
or e purpose of calculation of our final rate

sions we ev
na rate expres-

puter.
a uate the analytical expressio'ons on a com-

S
g$Oi-
Ul
(U

5
U
yOl

C)4

808888
o

IV. CALCULATIONS AND DISCUSSION

We choose the potential such that @=2,Eb/k~T=b ~ = 10.
No other parameters for the potential are needed. We
choose different ratios of ~, =y / t i—yb y, typically from 0.01o, and values of Np7 and eo~b from 1 to 100. We

10
—4 4

determine the rate on a logarithm' 1 f
to 10.

i micscae oryb/co from
The procedure used is as follow F

m

given /coys coo, we first solve the Grote-Hynes t' (8)
ows. or a

ynes equation
for Ao and then solve Eq. (14) for the matching energy

(24)—(26 foi'
t in are evaluated. Wherever needed e (J) f

) or the appropriate friction was used. The rate
could then be calculated using Eq. (6). The reduced rate,
i.e., t e actual rate normalized b the TST
e against yb /coo for the different cases.

and
Since the results for the LRLR case have been presented

suits
an discussed earlier [13] here w 'll fwe wi ocus on the re-
su s from the exponential case. Also
limit is the sa

so, since the static

discuss it here.
i is e same for both friction functions 'lls, we wi not

i ere. The reader is referred to Fi . 2 of R f
[13]for this limit.

ig. o e .

In Fi . 2'g. of the current paper, we var A, =y /yb in
the exponential friction case with co v = = . Th
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FIG. 3. Same as Fig. 2 but for A, =1 co ~ =10
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tively.
, an riang es, respec-
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results of this variation clearly show that th h' ha e ig erthe

ue of A, , the nearer the rate is to the Grote-H
ver e u range of friction. For very high A., the

Grote-Hynes result is valid everywhere exce t f
tremely low or

excep or ex-

y& or y . This is because the region in the
vicinity of the well is no loonger in equilibrium as required

y the Grote-Hynes rate expression (7). Therefore one al-

the co

ways sees for sufficiently large A, a 'ddle a mi e region along
e yb coo axis where TST is valid. On the oth h

for ver low
n eot er and,

y ow '., the well region remains out of e '1'
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ou o equi i rium

moderate y& because y is too small. In this
e ivi ing ine between thecase TST is never valid. The d' 'd' 1'

two behaviors is when A, is of order unity.

Again the high-yb region is unaffected. In the low-yb re-
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cause that causes the well friction to decrease. Of course 7
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the limiting rate is provided by the static limit ~ =0. To
increase the rate further in this region one would have to
increase k.

In Fig. 4, we vary ~b. Here, the low-yb results are not
affected because the well dynamics are not changed. The
high-yb rates approach the appropriate Grote-Hynes re-
sult for each ~b. The low-~b results are closest to the
Kramers result, as expected. The high-~b results have a
region where TST is applicable. The width of this region
increases for increasing ~b since this decreases the fric-
tion in the barrier region.
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APPENDIX

In this Appendix, we give details of the calculation of
s'"(J). First of all, we rewrite Eq. (26) as

V. CONCLUDING REMARKS (A 1)

In conclusion, we have plotted and discussed in a
variety of cases the escape rate for a particle from a well
where there is space-dependent non-Markovian exponen-
tial friction. We have used the Langevin equation ap-
proach augmented by the Carmeli-Nitzan scheme for ob-
taining a unified rate expression. We have done the cal-
culations for two forms of dynamic friction: the ex-
ponential and the Lee-Robinson form. The latter is
equivalent to a Gaussian friction in its short-time behav-
ior. The results from the LR friction were reported ear-
lier [13] and the results from the exponential friction are
discussed here. In comparing the two sets of results, we
find the following. In the high-friction regime, the two
sets of results are not much different. However, in the
low-friction regime the results are dramatically different.
In particular, compare Fig. 4 in Ref. [13] with Fig. 3
here. In the LR case, the rate depends on ~ very weakly
and in the exponential case it varies as ~ for yb &&cop.

In the low-friction case, the well dynamics plays a dom-
inant role and the rate is determined by t [see Eq. (6)],
which itself is determined by e (J), see Eq. (10). For the
LR case, we see from Eqs. (24) and (25) that the depen-
dence on v is not very strong: f„ranges between —,

' and

2. In the exponential case, however, the dependence of
(J) on r can be dramatic. For instance, on examining

Eq. (26), when the well dominates, co is very small and the
1 in the denominator can be neglected, giving rise to

(J) ~r . This then explains the differences between
the two friction cases. In this connection, it should be
noted that a similar explanation of the strong dependence
of the rate on the relaxation time for low damping was
given by Fonseca et al. [19] in terms of Grigolini s decou-
pling effect [20].

A recent approach by Pollak, Grabert, and Hanggi
(PGH) [7] based on the Hamiltonian model derives these
rate expressions in a theoretically more fundamental way.
This method represents a system particle in a heat bath,
not within the confines of a Langevin equation, but rather
as a collection of coupled oscillators. It would therefore
be most interesting to compare the results obtained in the
present paper with those from PGH theory. In fact, we
have recently generalized the PGH method to the case of
space-dependent friction. As would be expected, there
are strong qualitative similarities between the two sets of
results, as well as some clear differences. These results
will be reported elsewhere [14].

For E & Ep, in which case co=cop and the C„are given by
(30). Only the terms n =+1 contribute and we get

1 1

2 n2 2 2+n2 2
0 b

(A2)

with
' 1/2

Q)cop 2Ep
(A3)

2(E E0)—
(A4)

In obtaining these, we have used the requirement that ve-
locity is continuous at t, which, using Eqs. (28) and (29),
is equivalent to

sinh0=[(E E0)l(Et, E—)]'—
cosh8=[(Et, E0)l(Et, —E)—]'

(A5)

After substituting (A2) in (Al) and expanding, we see
that we have to evaluate nine types of infinite sums. The
numerator s in the general terms in these sums are
sin (ncot"), n cos (ncot*), 2n sin(ncot*)cos(ncot"), and
the denominators are

(
2 2 2)2(

—2+ 2 2) ( 2+ 2 2)2(
—2+ 2 2)

(co0—n co )(coq+n co )(w +n co ) .

The first step in doing sums like these is to reduce the
number of factors from three to two in the denominator.
This is accomplished by using identities such as

1 1 1

(a —x) (b+x) (a+b) (a —x)

1

(a x)(b +x)—(A6)

For E )E0, the C„are given by Eq. (32). Before
proceeding further we rewrite C„as

C„=i[C'"sin(ncot*)+nC' 'cos(ncot')]
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1

(a —x)(c+x)(b +x)
1 1

(c +a) (a x—)(b +x)
To evaluate the sum S, we start with the sum (1.445.6) on
page 40 of Ref. [21],

1

(c +x)(b +x)

cos( kx)

k=i k —a2 2

1 m. cos [a[(2m + 1)n —x] ]
2 a sin(am')

(A 10)
(A7}

This causes the denominators to be of the type
(cp n—cp ) (co +n co ) (cp n—cp )(r +n cp ) and

(cpl, +n cp )(r +n cp ). The second step is to discover
relationships within these sums. We note that the second
and the fourth types of denominators can be obtained
from the first and the third types, respectively, by chang-
ing coo to —cob. This leaves us with denominators of the
type (cop n—cp ) and (cop ncp )—(r +n co }only.

Now we turn our attention to the numerators. The
numerator 2n sin( n cot ' )cos( n cot" ) can be obtained by
differentiating the numerator sin (ncot') with respect to
t '. This leaves us with numerators of the type
sin ( n cot ' ) and n cos ( n cot" ). Both of these can be ob-
tained from a numerator of the type cos(2n cot'). To ob-
tain sin (n cot '), we use the fact that
sin (neat')= —,'[1—cos(2ncpt')] and the result with 1 in

the numerator may be obtained by taking the limit t *~0
in the result with cos(2ncpt') in the numerator. To ob-
tain a sum with a numerator n cos (ncpt" ), we use the
following two steps. First we differentiate the result for
cos(2n cot ') twice with respect to t ' to get the result for
n cos(2n cot ' ) and then we use the identity
cos (neet*)= —,'[1+cos(2ncpt')].

In the final analysis, we have to evaluate only the sums

which is valid if a is not an integer and for
2m m. (x ( (2m +2)m. . Our case corresponds to k =n,
x =2cot', a= cop/cp, which gives m =0 because
0(t*(m./co. Using the above information in (A10} and
differentiating both sides with respect to coo,

cos(2cppt 1Tcpp/cp)Si=
sin(m cop/cp )

~t + sin(2cppt 77cpp/cp)+
coco~~ sin(n. cop/cp)

cos(2cppt *
)+ (Al 1)

2cppcp sin (scop/cp)

The sum S2 can be performed by splitting it into two
sums with denominators coo —n co and ~ +n co by us-

ing the method of partial fractions. The first one can
then be obtained from (A10) and the second one can be
obtained either from (A10) by changing a to ia or by us-

ing the sum (1.445.2) from page 40 of Ref. [21]. In either
case, we get

cos( 2copt wcpp/cp )
S2=

cp( r 2+ cpp2) copsin(acoplcp )

cos(2ncpt')

NO
—n co

(A8)

cosh[(2t ' —m. /co)/r„]+
sinh(n. /r co)

(A12)

S2= cos(2n cot ' )

„(cop—n cp )(r„+n co )
(A9) Using all of the above tricks, the final result is that the

sum in (Al) is given by

[cop
' —sin(copt')cos(copt')]+ (sinh8cosh8 —8)+(C ) (2d3 +d, )S3(cop)(1) 2 —1 —1 2

—(C'") (2d3 ' —d~
' )S3( —co )+(C' ') (2d3 '+d

i
' )S4(c0 )

—(C' ') (2d3 ' —d2 ')S4( —co )

+C"'C' '(2d3 '+di ')Sq(cpp) —C"'C '(2d3 ' —dq ')Sq( crab) . — (A13)

(A 15)

n cos (ncot')
(a ncp )(r —+n cp )

2n sin(ncot*)cos(ncpt*)

(a —n cp }(r +n cp )

(A16)

(A17)

Here 8 is given by Eq. (31) and C'", C' ' by Eqs. (A3)
and (A4). The constants d &, d 2, and d 3 are defined by

di =7~ +cpp & d2 r~ cpb & d3 =cpp+cpb, (A 14)
and the sums S3, S4, and S5 by

sin (ncot*)
(a ncp )(r +n c—p )

These sums can be expressed in terms of S, and S2 as ex-
plained before.

We have tested our final result for E'"(J) in two limits.
First of all, in the static case r ~0, we should get [5]
e'„"(J)=y J/cp. In this case only the first two terms in
(A13) survive and we get the expected result. Secondly
when E~Ep, we should get Eq. (A2), irrespective of the
magnitude of ~ . In this case, the only simplification is
that C' ' goes to 0. After somewhat lengthy algebra, we
find that we indeed get (A2). As mentioned in Sec. III,
we evaluate the analytical expressions on a computer for
the purpose of calculating the final rate.
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