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Singular behavior at avoided crossings in an iterative perturbation
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The topological space of a bound conservative quantum system is studied in reference to the corre-

sponding integrable one with the concept of parallel transport. A scheme of iterative perturbation is

proposed. The destruction of invariant subspaces due to the singular behavior at avoided crossings is

carefully investigated. It is shown that before the first avoided crossing the invariant subspaces are

merely distorted, and after the first avoided crossing the invariant subspaces begin to be destroyed.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

Quantum chaos is currently one of the most intriguing
problems in physics [1—4], but unfortunately even the
concept of quantum chaos has not yet been precisely
defined. In view of the quantum-classical correspon-
dence, it is natural to seek first a theorem for quantum
systems parallel to the Kolmogorov-Arnold-Moser
(KAM) theorem for classical systems [5]. This is not an
easy task due to the uncertainty principle of quantum
systems. Zhang et al. [6] have recently presented the
definition of the quantum phase space, but only the algo-
rithm for seeking the manifestation of quantum chaos via
the classical analogy is provided. However, as for classi-
cal systems a sufficiently complex topological structure of
the configuration manifold of a natural system is an ob-
struction to its complete integrability [5]; we can alterna-
tively study the property of the topological spaces of
quantum systems. Inspired by the works on Berry's
phase [7], we have studied the problem of quantum in-

tegrability and nonintegrability with the help of the con-
cept of parallel transport [8]. It has been pointed out that
there exist singularities in the parameter space. In the
presence of the singularity, we can no longer connect the
eigenstates of the studied system with those of the inte-
grable reference system by a continuous unitary transfor-
mation. An additional permutation should be supple-
mented to the continuous unitary transformation. Thus
the derivatives of eigenfunctions and eigenenergies are
discontinuous at the resulting avoided crossing. %'e have
pointed out that the invariant subspaces begin to be des-
troyed at the first avoided crossing, and furthermore glo-
bal destruction may result through successive overlapped
avoided crossings. The conclusion reached for quantum
systems is parallel to that of the KAM theorem for classi-

cal systems. However, the way to obtain the conclusion
is quite different. Therefore in this article we try to use
alternatively the iterative perturbation for obtaining the
same conclusion. Special attention is paid to singular be-
havior at avoided crossings in iterative perturbation.

II. TOPOLOGICAL STUDY WITH THE METHOD
OF ITERATIVE PERTURBATION

For brevity, the quantum system H studied here is as-
sumed to be a bound conservative one. Any state of the
system evolves in the Hilbert space determined by the dy-
namic group 6 of the system. This space can be de-
scribed with all possible eigenstates of a complete set of
commuting observables I' ' (a=1,2, . . . , n) correspond-
ing to a certain subgroup chain of the dynamic group,

[I' ', I& ']=0, a,P=1,2, . . . , n,
I' ~m)e™=J (m)~m)e™, a=1,2, . . . , n, (2)

where the arbitrary phase 5 is explicitly given. This
space corresponds to the classical phase space and is the
basis for the kinematic description of quantum states. A
state of the system at any instant can be expressed as a

i5
varying superposition of the states

~
m )e

The Hamiltonian H(0) of an integrable system with
the same dynamic group commutes with all the commut-
ing observables I' ' (a = 1,2, . . . , n ) and has simultane-
ous eigenstates with them

[H(0),I' ']=0, a=1,2, . . . , n,
H(0)~m&e -=Z"'~m)e™.

i5
All states constructed from basic vectors

~
m )e with

eigenenergies E' ' lying inside an interval
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Eo —
—,'hE &E' ' &Eo+—,'AE constitute an energy shell.

The energy shell can be further subdivided according to
the remaining (n —1) commuting observables into invari-
ant subspaces. Then, a wave packet with energy spread
hE initially determined by the remaining (n —1) com-
muting observables will evolve all the time in the corre-
sponding invariant subspace.

Instead of the Schrodinger equation, we can take the
Neumann equation

H(0)= g lm)&mlHlm)&ml, (12)

V= y lm&&mlHln)&nl
mWn

(13)

and represent the integrable Hamiltonian and perturbing
term, respectively. No part of Vis commutable with I' '.
As H(A, ) varies continuously with A, from H(0) to H, we
can have eigenenergies of H(A, )

i fi =Hp —pH
Bp
at

together with the condition

p'=p (6)

H(~)ly, (X) & =E,(X)ly, (~) & (14)

& tP, (A)lg,, (A+e, ) ) =1+0(e') (15)

also varying continuously with A, if there is no singular
point in the interval. At the same time, we fix the phase
relationship of the eigenstates lg, (A, ) ) with the condition

as the dynamic equation of the state. Though the Wigner
transform of the density matrix

p (8,m; t ) = g & m —x/2lplm+x/2) e'*'e (7)

dp(8, I;t )

t}t

dH 8
88 BI

r}H 8
~ p(8, I;t )

is not positive definite, its average value p (8,m;t ) over a
certain region conforming to the uncertainty principle is
positive definite and can be approximately regarded as a
regular function continuously varying with e, m in the
classical limit in the case of regular motion. Moreover,
the Neumann equation and the condition (6) become
[9,10]

I q, (x) ) = U(x, o)
I q, (0) ) . (16)

However, the unitary transformations in general can be
classified into the following two categories: (i) proper un-

itary transformation [denoted as R (A, , O) afterwards], i.e.,
continuous unitary transformation without discrete per-
mutation,

for parallel transport. In such a way, the one-to-one
correspondence between the eigenstates in energy shells
of H and H(0) has been precisely established.

The one-to-one correspondent states lg, (A, )) and

lg, (0)) can always be connected by a unitary transfor-
mation,

and
lim R(A, , O) =1;
A. ~O

(17)

p(8, I; t )p(8, I; t ) =P(8, I; t ) (9)

p(8, I;t ) =5(8—8(t) }5(I—I(t )}, (10)

and correspondingly the Liouville equation (8) reduces to
the Hamilton equations of motion for 8(t) and I(t).
Therefore a wave packet of energy spread hE moving in
a definite invariant subspace of the energy shell corre-
sponds to a phase point moving in a definite invariant
torus of the energy surface. Based on the quantum-
classical analogy, the existence of invariant subspaces in
an energy shell is taken as the characteristic topological
property of an integrable quantum system.

In order to ascertain whether a quantum system H
with the same dynamic group G as H(0) has the above
topological property, we must first establish the one-to-
one correspondence between eigenstates of H and H(0).
It is assumed that the eigenenergies E' ' are nondegen-
erate or can be made nondegenerate with infinitesimally
small perturbing terms. An auxiliary Hamiltonian of the
following form is introduced:

H(A, ) =H(0)+ A, V,
in which H(0) and V are chosen as the diagonal and off-

diagonal parts of the Hamiltonian matrix in the l m ) rep-
resentation,

in the classical limit. The condition (9) can only be
satisfied by the special 5 function

(ii) improper unitary transformation [denoted still as
U(A, , O) afterwards], there exist discrete permutations in
addition to the continuous unitary transformation,

lim U(A, , O)%1 .
A, ~O

With the proper unitary transformation R (A, , O),

lp, (x) & =R(x,o) lg, (0) ) (19)

the energy shells of H and H(0) are in homeomorphism
[11]. Moreover, we have

I (A, )lg, (A, )&=2, lg, (A, )),
where

I (A, )=R(A,, O)I 'R (A, ,o)

(20)

(21)

are renorrnalized conserved quantities. As I (A, ) consti-
tutes a complete set of commutable quantities, H(A, ) must
be a function of I (A, ). The states lg, (A, )) are still
characterized by the same set of quantum numbers and
subdivided into invariant subspaces in the same way as

l1tj, (0) ). These invariant subspaces are merely distorted.
The energy shells of H have the same topological struc-
ture as those of H(0).

It is radically different in the case of improper unitary
transformations. The energy shells of H and H(0) are
not in homeomorphisrn. The above discussion can no
longer be valid.
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The topological study is therefore concentrated to the
point whether or not lg, (A, ) & can be connected to
lg, (0) & by a proper unitary transformation. This prob-
lem can be most directly studied with the method of
iterative perturbation.

In this article, a scheme of iterative perturbation is for-
mulated so as to push the solution as forward as possible.
Provided we make no condition on the normalization of
the eigenstate lf, (A. )&, we may always split it into two
parts

lp, (&) &
= ll(, (0) &+

l f(A, ) &, (22)

where the change due to the perturbation is orthogonal
to the unperturbed state

l P, (0) &, i.e.,

(q, (0)lf(A, ) & =0 .

Introducing the projection operators

P=ly, (0)&&y,(0)l Q=l P

and applying Q to Eq. (14), we readily obtain

[E,(A) —H(0)]If(A) & =QA vip, (x) & .

(23)

(24)

(25)

Substituting the formal solution of (25) into (22), we ob-
tain

(26)

E, (A, ) =E + ( y, (0) l(~ v) I y, (~) & (2g)

as in the Brillouin-Wigner perturbation expansion [12].
Equation (14) can be written explicitly as

ly, (&)&= ly„(0)& + y x, (~)ll(, (0)& .
j(Ak)

Then we have correspondingly

(22')

i = 1, . . . , k —1,k + 1, . . . , n, (26'}

Eq. (26) is an inhomogeneous integral equation for which
the iteration method is particularly suitable. Therefore
we solve the problem with iteration by taking E(A, ) as a
function of lg, (A, ) &,

(g, (&) lH(&) lg, (&) &

& y, (&)ll(, (&) &

instead of

pologically, we take the initial point as

[lg (&)&];„;„,=lg (o)& (29)

or

[xj(A)];„;„„=0,j=l, . . . , k —l, k+1, . . . , n . (29')

The functional iteration is very involved. However, we
know in general that the iteration can only succeed for
cases in which the obtained le|, (A, ) & still retains the main
feature of lg, (0) &. This is possible only for small i(,. As
the interaction between every two neighboring states re-
sults in a repulsive effect when A. increases, the interac-
tion of a certain kth state with all states above (or below)
may make the eigenenergy of this state closer to that of
the (k —1)th [or (k+1)th] state. This effect results in a
rather small denominator Ei, (A, )

—Ei, ,(0) [or
Ei, +i(0)—Ei, (A, )] and considerably strong mixing with
the neighboring (k —1}th [or (k+1)th] state. When A,

increases further to a critical value A, &, the mixing be-
comes so strong that i/i, (A, }& ceases to keep the main
feature of i/i, (0) &, and the iterative perturbation begins
to fail for this state. Thus A, , is the first singular point in
the A, space. Therefore we have the following con-
clusions.

(i) In case all the states g, (A, ) & can be obtained from

lg, (0) & with iterative perturbation, lP, (i(, ) & and lg, (0) &

can be connected with a proper unitary transformation
R(i(,,0). Then the system has renormalized conserved
quantities I (A, ) corresponding to I' ', and R(A, , O) is the
corresponding renormalization transformation. States
l g, (A, ) & can be characterized by the same set of quantum
numbers and subdivided in the same way into invariant
subspaces as for lg, (0) &. These invariant subspaces are
merely distorted. The system has the same topological
structure as before and is said to be completely inte-
grable.

(ii) In case the iterative perturbation begins to fail at
two neighboring states, not all the states lf, (A, ) & can be
connected to lg, (0) & with a proper unitary transforma-
tion. [It is impossible that the iterative perturbation be-
gins to fail for one state alone. If (n —1) states have been
obtained by iteration, the last one is already determined
due to completeness and orthogonality conditions. ] The
invariant subspaces involving those states begin to be des-
troyed.

The problem can also be viewed from the opposite
direction by taking Eqs. (26), (27), and (29) as a mapping
R(A, , O) for obtaining lP, (A. )& from lg, (0)&. From (25)
we have

Q[E, (A, ) —H(0) —
A, v]lg, (A, ) &

=Q [E,(A, ) —H(A ) ] l f, (A ) & =0 (30)

and from (27) we have

The result of iteration depends strongly on the initial
point taken. In order to study the eigenstates

l 1(ti, (iL, ) & to-

(g, (A, )l(P+Q)[E,(z) —H(A, }]ly,(A) &

=
(fatti, (A, }lP[E,(A, ) —H(x)]ly, (z) & =o .

(31)
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Combining these equations we have

[z, (x)—H(x) ] I 1(,(x) &
=o . (14')

Iltj, (A. ) & obtained from such mapping are just eigenstates
of H(A, ) satisfying the condition (15), provided the map-
ping is well defined. The topological structure of H(0)
remains unchanged; on the other hand, if the mapping is
not well defined, the topological structure of H(0) is no
longer preserved.

The iterative perturbation represents precisely the
homeomorphic mapping in topological studies of quan-
tum systems. It is somewhat different from the conven-
tional mapping [13] in which the form of mapping is not
derived from the definite physical problem, and the initial
point of iteration is not specified as required in topologi-
cal studies.

III. ILLUSTRATION WITH A THREE-LEVEL
LIPKIN MODEL

We consider the following three-level Lipkin model
[14] as an illustration. Suppose there are three single par-
ticle levels with the same parity and spin, their degenera-
cies are 0=2j+1. The model Hamiltonian is composed
of the collective operators,

(iii) When A, increases to a value beyond 0.223, the re-
sults for the ninth and tenth states after thousands itera-
tions show no definite sign of convergence.

The overlaps & I)'jlk"'(A, ) I
glk"+ "(A, ) & at different stages r of

iteration are shown in Fig. 1 for two values of I,. The
overlap approaches the value unity in case the iterative
perturbation converges. But if the iterative perturbation
fails, the overlap remains to be approximately one-half
after thousands of iterations, while

I
f'k"'(A, ) & changes

violently at different stages of iteration.
The topological properties of the system H(A, ) are not

influenced by any proper unitary transformation. This
very important property enables one to study the topo-
logical structure with the transformed Hamiltonian ma-
trix H(k), J in which the infiuence on the ninth and tenth
states from the others has been explicitly expressed in the
transformed 2X2 submatrix and no more coupling be-
tween the two states and others needs to be considered.
At the same time, the initial point of iteration is
transformed to x =0 (j=l, . . . , k —l, k+1, . . . , n).
The problem of convergence of iteration for these two
states can then be shown clearly.

:k=11

K; = g a; a, , i,j =0, 1,2 .
a=1

(32) :k=10 '

Both the total number of the particles g, K;, and the de-

generacy 0 are assumed to be equal to 4,

1K11+~2K22 +2(K20K20+K02K02)

Kl(K10K10+K01K01 ) +Pl(K21K20+K02K12 )

+V2(K12K 10+Kol K21»
1

&0.5
E'2 = 1.6 K I

=0.43

2=071, P& 0 73 82=0683 .

(33)
20

(a)

80

The first line represents the integrable H(0), while the
next two lines represent the perturbing term V. Only the
off-diagonal matrix elements of H(A, )=H(0)+A, V are A,

dependent. As H(A, ) is invariant to time reversal, we
consider in the following the orthogonal transformation
instead of the general unitary one.

(i) When A, is small, the iterative perturbation for all
the states converges quickly. Correspondingly,

:k=11
4 4~L~~4~~4~4~ 4~4~4~4~LLL L~~L~k~ k~4~4~k~LLL k

.k=10~L~~L~~L~4~ 4~4~4~k~~g~~L~k 4L~k Aa 4~L
4a

& 1(,,(0) I y, „(x)&
=

& q, ,(0) IR (A, O)
I 1(,„(0)& (34)

is the matrix representation of the renormalization trans-
formation. The states II)'j, (A. ) & can be characterized by
the same quantum numbers as for

I P, (0) &.

(ii) When A. increases, the iteration for the ninth and
tenth states converges slower than the others.

When A, increases to the value A, =0.223 —e, the itera-
tion for states other than the ninth and tenth ones con-
verges. But the results for the ninth and tenth states after
thousands of iterations shows only a sign of approaching
the final result.

X~L EA L k L X L ~L 4 4X k~4 ~X~k ~L~1 r.4

0
0 20 40 60

(a)

80

FIG. 1. Variation of CII"'=&/'„"'(k)IP'„"+"lA)) with A, for
k = 8,9, 10, 11 when (a) A, =0. 18, (b) A, =0.30.
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With that transformation, the states Ig, (0}&
s = 1, . . . , 8, 11, . . . , 15) are required to be directly

transformed to I g, (A, ) & (s = 1, . . . , 8, 11, . . . , 15) without
any rotation in the two-dimensional subspace comple-
mentary to the subspace spanned by I 1(t, ( k ) &

s = 1, . . . , 8, 11, . . . , 15}. This is just an element of
SO(15)/SO(2) and can be uniquely determined with the
states If, (A, }& (s=1, . . . , 8, 11, . . . , 15) already obtained
from iteration. Writing the matrix elements explicitly,

I

we have

&,(&), , = &1(,(0)I1(,(&)&, s = 1, . . . , 8, 11, . . . , 15,
(35)

&,(~}J, =&1(',(0)ly', (~) &, t=9, 10,
where Ig', (A, ) & (t =9, 10) are normalized orthogonal
states obtained directly from Ip, (0)& (t=9, 10) and can
be determined as follows:

1/9(~}&+ Ik)o(~}& I4(~}&
—Ik)0(~}&

2[1+& (9(&)Ig&Q(&) & ] 2[1 & (9(A )Ig/0(A ) & ]

Ig, ( )&+lg„( )&

2[1+&(9(A,)I(&0(A, ) &]' 2[1—&(9(A)I(io(k) &]'

(1— g' Il(, (X)&&1(,(z)I)I1(,(0)&

& 1(,(0)I1(;(&)& & 1(;(&)Iq,(0) &

' '"
t(49, 10)

The transformed Hamiltonian matrix now becomes

H(A, ),"= [R, (A, )tH(A, )R, (A, )];J

H(A, ), )

(36a)

(36b)

H(A, )22 0

0

H(A }99 H(A )9 ~0

H(A }9 ~0 H(A )~o ~0

H(A )~g &5

(37)

such that H(A. )„=E,(A, ) (s =1, . . . , 8, 11, . . . , 15) as
shown in Fig. 2 and H(A, )99 and H(A, ),o,o become A,

dependent and intersect at A, =A, , =0.223 as shown in the
inset of Fig. 2.

Owing to the particular form of H(A, ), the further
iterative perturbation can in fact be performed in the

two-dimensional subspace by taking the diagonal part as

H k
H(0) and off-diagonal part as V. As H(A, ) d99 an

( ),0,0 intersect at A, &, the results of iterative perturba-
tion on the two sides of the singular point k, become

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ 0 ~

~ ~
~ ~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ 0 ~ ~ ~

~ ~ i ~ I ~ 0 ~ ~

ipse sassy

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

1-:s ... , , . i. .- ~ ~ - ~ . - ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.2 0.25

O

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

~ ~ ~ 4.8

4.75

4.7

~aiba

10

10

~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ 4.65

0.2 0.4 0.6

FIG. 2. Variation of eigenenergies E(A, ) (dotted line) and
transformed diagonal matrix elements H(A, )99 and H(A, )&0 &0 (see
inset) with A,.

FIG. 3. Iterative perturbation for the ninth and tenth states
in the neighborhood of the first singular point A, =i, l =0.223 for
(a) without any permutation, (b) after a permutation.
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discontinuous as shown in Fig. 3(a). Only if a permuta-
tion is performed to make H(k)99(H(A, )&o,o beyond the
singular point A, &, the results of iterative perturbation can
then conform to condition (15) and appear as an avoided
crossing as shown in Fig. 3(b). This explains why A, , is
the singular point and the iterative perturbation fails at
that point. Therefore we have up to this first singular

I

point,

R (ki —e, O) =Ri(A, ,
—e', 0)R, (A, ,

—e,O),

R, (A, ,
—e, O) =R, (A. ,

—e, O)R/(A. ,
—e, O)

XR, '(A, ,
—e, O),

and

(38)

(39)

R('(A. ,
—e, O) =

cos E
4

+sin ——e
4

(40)

+ sin ——e)
4

cos E
4

lim ~l(, (A, , +e)) = lim ~g, (A, ,
—e)) .

e~O e~p
(41)

Then we have

is a +m /4 rotation localized in the two-dimensional sub-

space relating to the ninth and tenth states.
The iterative perturbation after the first singular point

X, can be performed as before up to the second singular
point A, z by taking ~g, (A, , +e, )) as initial points, where

If, (A, , +e, )) is obtained from ~l(, (A, ,
—e, )) with the con-

dition (15) for parallel transport,

U(A2 E2, 0)= lim [R)(A~—e2, A)+e, )
el ~P

XR, (kz —ez, X, +e, ) ]

X [Ri(A, ,
—e„O)R,(A, ,

—e„O)], (42)

where [R&(X2 e2, A, , +—e, )R, (A2 —ez, A, , +e, )] in the

Ig, (A&+e&)) representation is similar in form to
R&(A, ,

—e„O)R,(k, —e„O) in the Il(, (0)) representation.
Here U(A, 2

—ez, O) is a piecewise-continuous orthogonal
transformation.

If there exist r successive singular points in the interval
X=0 to 1, we have in general

U(1,0)= lim R(1,A, „+e„)[R&(A,„—e„,A,„,+e„,)
e, 62~0

XR, (A,„e„,A,„,+e„—, )] "[Rt(A2 —e~, A, , +e, )R, (A —
2 e A2, , e+, )]

X [R((A.(
—e),0)R, (A, )

—e'), 0) ] .

U(1,0) can be written in an abbreviated form as

U(1,0)=R(l, k„)[R((A,„,A, , ) R(A,„,A,„,)]" [R((A~, A, , )R, (A2, A, , )][R((A,„O)R,(A, „O)]

(43)

(43')

with the limiting process understood.
The above discussion on the singular behavior at

avoided crossings in iterative perturbation can be gen-
eralized to N-dimensional cases and can be utilized as the
key point in discussing the partial integrability or nonin-
tegrability of quantum systems. Detailed discussions are
planned to be published in separate papers [8].

IV. SUMMARY

In this article, the integrability or the loss of integrabil-
ity of quantum systems is studied from a topological ap-

I

proach as follows.
(1) Any state of the quantum system H evolves in the

Hilbert space determined by the dynamic group 6 of the
system.

(2) Eigenstates of the quantum system H with eigenen-
ergies lying within an interval Ep —

2
hE & E, & Ep+ 25E

are used as basic vectors of an energy shell. A collection
of these energy shells constitutes the Hilbert space. They
form a topological space.

(3) If the one-to-one correspondent eigenstates of H
and H(0), established with the help of parallel transport,
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can be obtained with the method of iterative perturba-
tion, the topological spaces of H and H(0) are in
homeomorphism.

(4) As the topological property of an integrable system,
that the energy shell can be further subdivided into in-
variant subspaces is invariant to homeomorphic map-
ping. The quantum system H is integrable provided its
topological space is in homeomorphism with that of the
integrable system H(0).

(5) On the other hand, if the iterative perturbation for
the auxiliary Hamiltonian H(A, ) (A, =O to 1) first fails at a
certain singular point k& due to strong mixing of two
neighboring states, the invariant subspaces of the energy
shell involving these two states begin to be destroyed.

(6) After the first singular point A, , the iterative pertur-
bation can be performed as before by taking ~f, (A, , +e) ),
a parallel transport of ~1b, (A, t e)), as —the initial point.
Such a piecewise-continuous orthogonal transformation

results in an avoided crossing of the energy levels.
(7) The following conclusion is then reached. Before

the first avoided crossing, the invariant subspaces of ener-

gy shells of H(A. ) are merely distorted, and after the first
avoided crossing, the invariant subspaces of the energy
shell involving the avoided crossing begin to be des-
troyed. This conclusion is the key point in discussing the
partial integrability or nonintegrability of quantum sys-
tems.
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