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Observation of a strange nonchaotic attractor in a multistable potential
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Attractors which are not chaotic but nevertheless display "strange" geometric properties have been
the subject of a number of studies since they were studied in certain quasiperiodically forced maps, by
Grebogi et al. [Physica 13D, 26 (1984)]. The attractors, as defined by these authors, are nonchaotic, since

they are characterized by Lyapunov exponents which are smaller than zero; but are, however, strange
since they display geometric properties unlike either limit cycles or quasiperiodic attractors. The attrac-
tors are produced by dissipative, nonlinear systems which are driven by two periodic external forces
whose frequencies are incommensurate. Strange nonchaotic attractors have been observed in numerical

experiments with a variety of bistable and monostable nonlinear oscillators as well as in one ingenious

experiment, designed by Ditto et al. [Phys. Rev. Lett. 65, 533 (1990)],using a forced, free standing beam
whose mechanical properties could be externally controlled by magnetic flelds. We study here a non-

linear oscillator with a multistable potential both numerically and with an analog simulator. The dy-

namics mimics that of the internal magnetic flux through an underdamped, multistable, superconducting
quantum interference device which is quasiperiodically forced. We report measurements and numerical

computations of the power spectra, invariant density, and Poincare sections. Precision numerical corn-

putations were used to study the Lyapunov exponents and to observe the destruction of a chaotic attrac-
tor and its replacement by a strange nonchaotic one.

PACS number(s): 05.45.+b, 74.40.+k

I. INTRODUCTION

Recently there has been much interest in the properties
of quasiperiodically driven nonlinear oscillators of vari-
ous types. In addition to the more well known dynamical
behaviors which result in two-frequency quasiperiodic,
three-frequency quasiperiodic, and chaotic attractors,
such oscillators have been shown to exhibit a new type of
dynamical behavior leading to what are termed strange,
nonchaotic attractors (SNCA's). This behavior was
demonstrated analytically and shown to be structurally
stable [1], and subsequently verified in numerical itera-
tions of maps, representing dissipative nonlinear systems
with periodic or bistable potentials, driven by two period-
ic forces with incommensurate frequencies, that is, quasi-
periodic forcing [1—6]. Moreover, a SNCA has been ob-
served also in the map representation of an infinitely
damped system [2,3] which shows no chaos or three-
frequency quasiperiodicity. Though some early doubts
existed [2], the SNCA's observed in these systems were
later shown to exist on a subset of parameter space of
measure greater than zero [2—5]. Since the SNCA's were
numerically demonstrated in the resistively shunted
Josephson model [2—4] and in an oscillator with the stan-
dard quartic potential (Duffing oscillator), which serves
as a generic representation of a variety of realizable bist-
able nonlinear systems, and since they exist on a
positive-measure subset of parameter space, it seemed
reasonable that they could be discovered in an actual ex-
periment. Indeed, the experimental demonstration of the

existence of a SNCA in a quasiperiodically forced, free-
standing beam of magnetic material whose mechanical
properties can be externally controlled has been recently
accomplished [7,8]. In addition, extensive numerical
studies on a model of the magnetic beam apparatus based
on the parametrically driven Duffing oscillator have been
carried out [8].

The emphasis of much of the numerical work has been
on the development of criteria by which SNCA's could
unambiguously be characterized and on studies of the
route to chaos in two-frequency quasiperiodically forced
systems. SNCA's show a largest Lyapunov exponent
which is nonpositive, hence the term nonchaotic. Beyond
that, the two most useful characterizations which have
emerged are based on the power spectrum and on the in-
formation dimension D, extracted from a Poincare sec-
tion. The Poincare section itself also displays differences
from those of chaotic, quasiperiodic, or periodic attrac-
tors: in theory, its structure is everywhere single valued
but everywhere discontinuous, hence the term strange. In
a typical system, for example, the quasiperiodically
driven pendulum, the two Lyapunov exponents (of the re-
duced map, created by sampling the two variables in

phase with one of the driving functions) are found to be
zero and smaller than zero, respectively [4]. Following
the Kaplan-Yorke conjucture [9], the information dimen-

sion of such an attractor should therefore be unity [6].
The one experiment which has been accomplished [7]
measured a somewhat larger value D, =—1.3. The numer-

ical experiments of Ding, Grebogi, and Ott [6] yielded

45 5394 1992 The American Physical Society



45 OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR IN. . . 5395

values of D, -=1.2 for the reduced map of the pendulum
and D& -——0.9 for a quasiperiodically forced circle map.
We show here in Sec. III that careful measurements
(=-100000 points in the Poincare section) on an analog
simulator result in a value in quite good agreement with
these, D&—-—1.2, which can be compared to our value of
D& =—1.6 in a very close region of parameter space which
is chaotic. The following additional characterization has
been developed. From the power spectrum, the number
of peaks N(o ) exceeding a threshold amplitude cr obeys a
simple power-law scaling unlike those for two-frequency
quasiperiodicity or for chaos [2,3]. Specifically,

- 40-

N(o ) ~ cr with 1 (a (2
for the SNCA,

(la)
FIG. 1. A plot of Eq. (4) with P=2, which was the potential

used in this work.

N(cr) ~in 1
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for two-frequency quasiperiodicity, and

N(cr) ~ ln
1 (lc)

for three-frequency quasiperiodicity. A11 of these charac-
terizations have now been investigated numerica11y in the
actual experiment and in the analog simulation described
here. Some of them have been used in numerical studies
on SNCA's in the Van der Pol and other oscillators
[10—13]. Studies of the quasiperiodically forced Duffing
oscillator were accomplished by Wiggins [14] and, in an
interesting experiment with a mechanical oscillator
which can be represented by the generic Duffing system
[14],by Moon and Holmes [15]. In neither Ref. [14] nor
Ref. [15], however, was strange nonchaotic dynamics re-
ported.

In this paper, we investigate the existence of SNCA's
and the transition to chaos both by digital numerical
simulation and by measurements made on an analog
simulator of a version of the pendulum equation which
has been used to represent the radio-frequency-driven su-

p erconducting quantum interference device (SQUID)
with inertia and finite damping:

dU(x)x+ki =— +q
&
since&t+ qzsincu2t,

dx
(2)

where the ratio of the two frequencies is the golden mean

1+&5
C02 2

The potential used in this work was

(3)

XU(x)=
2

cos2&x
277

(4)

and for all the results reported here we took P=2, which
results in the tristable potential shown in Fig. 1. This
contrasts with the single previous experiments [7,&]

which used a more or less symmetric bistable potential,
and a11 of the previous numerical work which used either
periodic or bistable potentials. Our motivation for this

work was to demonstrate the existence of SNCA's in this
particular potential by experimental measurements on a
real physical system, the analog simulator, and thereby to
demonstrate the practicality of an experiment on a sys-
tem with a similar potential, perhaps a r.f SQUID. Our
results further illustrate the robust properties of this dy-
namics and the ease with which it can be observed in real
physical systems.

In Sec. II, we describe the simulator together with as-
sociated apparatus and the method of obtaining experi-
menta1 data from it. The results from the analog simula-
tor are backed up by numerical experiments, the methods
for which are also described in this section. In Sec. III,
we display characteristic results, in particular those for
the information dimension, Lyapunov exponent, and in-

variant density for both chaotic and strange nonchaotic
attractors. Measurements of representative power spec-
tra are displayed and analyzed according to Eqs. (1).
Moreover, we demonstrate that a SNCA can destroy and
replace a chaotic attractor under the action of a single
control parameter. We display this result in the style of a
phase transition, using the Lyapunov exponent as the or-
der parameter. In Sec. IV, we summarize our results and
suggest future experiments.

II. SIMULATION TECHNIQUES

Analog simulators for various applications have been
described before [15] in both antique [16] and modern
[17] versions. Our simulator of the dynamics of Eqs. (2)
and (4) is shown in Fig. 2. It operates over a dynamic
range of +10 V with a resolution (nearly an order of mag-
nitude above the inherent circuit noise) of —= 10 mV. The
voltages x(t) and x(t) were digitized in pairs at 12-bit
resolution by a Data Translation Model DT2828 analog-
to-digital converter (ADC), which had a throughput of
130 kHz, and input to a Model AT personal computer
(PC-AT). The PC was then used to compute and suitably
average the power spectrum of x (t) or the Poincare map
of x and x. For the Poincare map, the ADC was trig-
gered by a pulse from the higher-frequency one of two
Comstron frequency synthesizers. The power spectra
were obtained from free-running time series, i.e., time
series which were obtained without the trigger pulse from
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FIG. 2. Schematic diagram of the analog simulator. The cir-

cles marked ( X ) are analog devices AD534 voltage-multiplier
chips; the sine chip is an AD639; the integrators are operational
amplifiers with feedback capacitors; and summation is accom-
plished by an operational amplifier with multiple input resistors.
The approximately irrational forcing is accomplished with two
Comstron frequency synthesizers operated at f ~

=3.5810 kHz
and fr=2.2131 kHz which have a resolution of 0.1 Hz and a
short-term stability of a few parts in 10 . The time constant of
the integrators was 10 s. The voltages x(t) and x(t) were
sampled and digitized in pairs upon arrival of a transistor-
transistor-logic trigger pulse from the higher-frequency syn-
thesizer.

ed in a bandwidth of 20 kHz, but the largest frequency in
our data never exceeded 5 kHz. In order to take advan-
tage of the "small-signal" linearity of our operational
amplifiers, the simulator was operated over an output
range of + 2 V instead of the maximum usable range of +
10 V. In effeet, the dynamics sampled frequently only the
two potential wells at =—+ 0.9 V, as shown in Fig. 1, and
only much less frequently visited the higher-order local
minima. A Poincare map of 10000 pairs of points could
be obtained in a few seconds. Speed is one advantage of
analog simulation.

The digital simulations were accomplished using stan-
dard techniques. Specifically, the method used to calcu-
late the Lyapunov spectrum is that due to Shimada and
Nagashima and Benettin et at. [18]. The actual comput-
er code used was that due to Wolf er al. [19] with some
modifications. The Lyapunov exponent was computed
from trajectories and averaged until convergence to less
than 10 was achieved. For the qz=0. 38 (chaotic) at-
tractor 3731 trajectories were required for convergence,
while the q2 =0.88 (strange nonchaotic) attractor re-
quired 7000. The information dimension was obtained
from the complete three-dimensional phase space using
typically 30000 trajectories. These numerical determina-
tions of Dz were in good agreement with those obtained
from the two-dimensional Poincare sections in the analog
simulations with D~"—1=DI".

0.8

the synthesizer.
It is important that the simulator be driven by signal

generators of higher resolution and better frequency sta-
bility than is normally obtainable from ordinary equip-
ment. Frequency synthesizers are therefore necessary in
order that relative frequency drift not wash out the spe-
cial dynamical effects being sought. Even so, the ratio of
the synthesized frequencies could only approximate the
number shown in Eq. (3) to the fourth decimal place. As
shown below, by the agreement of our measurements
with digital numerical simulations, this precision was evi-
dently sufhcient. The simulator was operated with a
voltage-scale factor of unity, which meant that voltage
measurements taken from it were numerically equivalent
to digital solutions of Eq. (2). The simulator does, how-
ever, scale time by a factor equal to the integrator time
constant ~, , so that for the digital simulations, the fre-
quencies must be interpreted as dimensionless quantities
co'=co~,-. Since the integrator time constant was always
10 s, the dimensionless frequencies for use in the digital
simulations of Eq. (2) were co& 2

=2.2500 and
1.3905+0.0001, respectively. It is also to be noted that
the stability of a few parts in 10 is much greater than the
fourth-decimal-place precision achieved.

The steady-state accuracy of the analog simulator was
estimated to be approximately leuc, and was determined
by the precision of the resistors used. The accuracy of
the AD534L chip is 0.25%%uo. The time scaling accuracy of
=—5% was determined by the precision of the feedback
capacitors in the integrators. Our simulator was operat-

—0.8—

0.8
(b)

0
I

—0.8—

FIG. 3. A SNCA for k=P=2 and q, =2.768, which are
henceforth identified as the "fixed conditions" and with control
parameter q2=0.88, from the dynamics of Eqs. (2)—(4). (a)
Measured on the analog simulator with 10000 points displayed,
and (b) obtained by digital simulation for the same conditions
with 30000 points displayed. The Lyapunov exponent, obtained
as described in the text, was A, = —0. 150 for this attractor.
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A typical Poincare map of a SNCA for this system is
shown in Fig. 3. The attractor measured with the analog
simulator is shown in Fig. 3(a) and can be compared to
one obtained for the same conditions by digital simula-
tion shown in Fig. 3(b). The attractors are quite similar,
though the digital simulation has fewer points, and the
fine scale of the analog attractor is somewhat obscured by
noise. Nevertheless, the agreement is quite convincing.
Below, we discuss these and additional data in more de-
tail.

III. RESULTS

—110

10 3

I (ii

0 10 I

0 1 2 3 4
Freq. (kHz)

Figure 3 shows a SNCA measured for q2=0.88 and
other conditions fixed as indicated in the figure caption.
Throughout, we regard qz as a control parameter. We
show, in Fig. 4, a chaotic attractor, again obtained from
analog (a) and digital (b) simulations. This attractor was
obtained for q2 =0.38, and the digitally obtained
Lyapunov exponent was A. =0.156. At this point, the
only criterion which we have used for identifying the at-
tractor type, apart from the obvious difference in appear-
ance (with the attractor in Fig. 3 appearing more like the
description [1,3] "everywhere discontinuous but single
valued" ) is the sign of the Lyapunov exponent. We shall
now apply the other criteria outlined in Sec. I.

Two power spectra, measured on the analog simulator
for the fixed conditions, are shown in Fig. 5(a) with
q2=0.88 and Fig. 6(a) with q2=0.38, that is, for condi-
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FIG. 5. (a) A power spectrum obtained from the analog
simulator for the fixed conditions and q& =0.88 (SNCA), and (b)
the threshold dependence of the number of peaks N(u) with

amplitudes greater than the threshold cr.
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FIG. 4. A chaotic attractor for the fixed conditions with

q2 =0.38. (a) Measured on the analog simulator (10 points),
and (b) by digital simulation (3 X 10 points) from which
A, =0.156 was obtained.

FIG. 6. (a) A power spectrum obtained by analog simulation
for the fixed conditions and q2=0.38 (chaotic), and (b) the
threshold dependence of the number of peaks.
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tions identical to those of the attractors shown in Figs. 3
and 4. The most striking difference is that the multitude
of peaks evident in Fig. 5(a) are broadened in Fig. 6(a)
with only a few dominant ones remaining. The latter
clearly results from a chaotic system, while the former
might well be supposed to result from a very complex
quasiperiodic attractor. We have attempted to apply the
criterion given by Eqs. (1) to these two power spectra,
that is, we have counted the nutnber of peaks X(o. ) with
amplitudes greater than a threshold 0.. The results, plot-
ted on a log-log scale, are shown below their respective
power spectra in Figs. 5(b) and 6(b). While it is not quite
possible to match the results shown in Fig. 5(b) to a pure
power law as indicated by Eq. 1(a), that seems closer to
an appropriate description than that of the results shown
in Fig. 6(b). It is possible that the washing out of the very
fine structure by the inherent noise in the analog system
and/or the smearing of some of the finer peaks in the fre-
quency spectra by phase noise in the synthesizers may
have obscured the power-law dependence of X(o ) on o. .

We now turn our attention to the information dimen-
sion, defined in the usual way [6,20]:

I(e)
Dr =»m

e 0 log, o( 1 /e)

I

tD

I—

0——4

—3 —2 —1
log (1/e)

I I I

—3 —2 —1

log (1/e)

X

0

where e is the box size in phase space and I(e) is the in-

formation

N(, e)

I(e)= —g P;lnP, , (6)

with P; the frequency at which box i is visited by the dy-
namics. We have measured this dimension on data pro-
vided by the analog simulator from the reduced, two-
dimensional (Poincare) section. In Fig. '7(a) we have plot-
ted I(e) versus log, o(1/e) for the two attractors shown in

Figs. 3 and 4. Over the range in e above a lower limit set
by the inherent noise, we find a good linear behavior of
I(e) on log, o(1/e) as shown by the straight lines, the
slopes of which give Dr. We find that Dr—-—1.19 for the
attractor of Fig. 3 to be contrasted with Dr =—1.58 for the
attractor of Fig. 4. The former result is in good agree-
ment with both the predictions and the numerical results
of Ding, Grebogi, and Ott [6] for a SNCA. Since the
measurement of dimension on real physical systems,
which are always to some degree contaminated by noise,
is often open to criticism, we have tested our algorithm
on measured sets of data of various sizes for the SNCA of
Fig. 3. These results are shown in Fig. 7(b), where it is
evident that data sets varying in size from 10 to 10
points yield substantially the same fitted slope if rounding
at the high and low ends of the logio(1/e) scale is neglect-
ed. At the high end there is more rounding for the small-
er data sets, as expected.

We consider now the destruction of the chaotic attrac-
tor which existed at q2=0.38 and its replacement by a
SNCA at a critical value q2„;,———0.612. These results
were obtained by digital simulation, and the only cri-
terion used to determine the type of dynamics was the
Lyapunov exponent. By measuring k for each attractor
obtained from stepping qz between the two limits given

FIG. 7. The information vs the logarithm of the reciprocal
box size obtained from analog measurements: (a) The crosses
are for q2=0.88 (SNCA) and the asterisks are for q&=0.38
(chaotic). The straight lines have slopes DI=—1.19 (+) and
D&-=1.58(+). The size of the data sets was 10' points. (b) A
test of the dependence of D, on the data-set size from analog
measurements: (0) 10, (X) 2X10, (+) 4X10, and () 10'
points, respectively. The logarithms are base 10.

above, we determined the value of q2„;,at which A, passed
through zero. Treating ~A,

~
as an order parameter, we

then made the plot shown in Fig. 8. Least-squares fits to
obtain the straight lines shown indicate that the results

~ I I ~ ~ s I ~

—6 —5.5
I a I a

—4.5
~ ~ ~ I s

ln q —q
FIG. 8. The Lyapunov exponent as an order parameter in the

destruction of chaos by a SNCA. The results for the chaotic at-

tractor are shown by the dash-dotted line, and for the SNCA by

the solid line. The straight lines are least-squares fits to the data

and have slopes 0.613 and 0.463 for the chaotic and nonchaotic

attractors, respectively.
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200-

X

measured the two-dimensional densities P(x,x) using the
analog simulator, with the results shown in Fig. 9(a) for
the chaotic attractor and 9(b) for the SNCA. We note
that P(x,x) is much more sharply defined for the SNCA
than for the chaotic attractor. This is indicated by the
amplitudes of the peaks, both densities having been ob-
tained from the same number of digitized points (10 ).
The chaotic attractor displays a considerably smaller am-
plitude and shows less fine detail as expected from a
higher-dimensional object. It may be possible to develop
an additional criterion based on the differences in these
densities.

600

N 300—

X

FIG. 9. The invariant densities for the attractors shown in
Figs. 3 and 4, measured on the analog simulator using data sets
of 10' points each: (a) for the chaotic attractor with the fixed
conditions and q, =0.38, and (b) for the SNCA with fixed condi-
tions and q~=0.88. The velocity x is plotted on the isometric
axis vs the coordinate x on the horizontal axis.

behave according to a power law,

(7)

IV. SUMMARY AND CONCLUDING REMARKS

We have demonstrated, with measurements on an ana-

log simulator —a real physical system —for a particular
multistable potential not previously studied, that the dy-
namics [I—6] observed in bistable magnetic beam experi-
ments [7,8] is robust to the small inherent noise encoun-
tered in experimental systems, exists over a region of pa-
rameter space of nonzero measure, and is easily observ-
able using criteria based on the Lyapunov exponent, in-
formation dimension, and characteristics of the power
spectra. Moreover, we have shown that a SNCA can des-
troy and replace a chaotic attractor. We have displayed
this phenomenon as a classical phase transition using the
Lyapunov exponent as an order parameter, whereupon
we obtained substantially different power-law exponents
for the SNCA compared to the chaotic attractor. Final-
ly, we suggest that our simulations can be viewed as a
prelude to further experimentation on SNCA's with irra-
tionally forced r.f SQUID's, whose potential, with regard
to the magnetic flux internal to the SQUID loop, is simi-
lar to the one used here.

with a -=0.463 for the SNCA and a —=0.613 for the chaot-
ic attractor. We note also the much greater variability of
A, for the SNCA, an effect, noted in Ref. [7], which possi-
bly contributes to the difficulty encountered in attempts
to measure it experimentally from Poincare sections.

Finally, we present also without analysis another mea-
sure, the invariant density, which shows differences be-
tween the two attractors shown in Figs. 3 and 4. We

ACKNOWLEDGMENTS

We are grateful to Edward Ott and Mingzhou Ding
who originally encouraged us to search for SNCA's with
an analog simulation. Thanks are due also to William
Ditto for many stimulating discussions. This work was
supported by the Office of Naval Research Grant Nos.
N00014-90-J-1327 and N00014-90-AF-001.

[1]C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica
13D, 261 (1984).

[2] A. Bondeson, E. Ott, and T. Antonsen, Phys. Rev. Lett.
55, 2103 (1985).

[3] F. Romeiras, A. Bondeson, E. Ott, T. Antonsen, and C.
Grebogi, Physica 26D, 277 (1987).

[4] F. Romeiras and E. Ott, Phys. Rev. A 35, 4404 (1987).
[5] M. Ding, C. Grebogi, and E. Ott, Phys. Rev. A 39, 2593

(1989).
[6] M. Ding, C. Grebogi, and E. Ott, Phys. Lett. A 137, 167

(1989).
[7] W. Ditto, M. Spano, H. Savage, S. Rauseo, J. Heagy, and

E. Ott, Phys. Rev. Lett. 65, 533 (1990).
[8] J. Heagy and W. Ditto, J. Nonlin. Sci. 1, 423 (1991).

[9] J. Kaplan and J. A. Yorke, Functional Differential Equa
tions and the Approximation of Fixed Points (Springer-

Verlag, Berlin, 1978), p. 288.
[10]T. Kapitaniak, E. Ponce, and J. Wojewoda, J. Phys. A 23,

L383 (1990).
[11]T. Kapitaniak and J. Wojewoda, J. Sound Vib. 13$, 162

(1990).
[12]T. Kapitaniak and M. S. El Naschie, Phys. Lett. A 154,

249 (1991).
[13]S. Wiggins, Phys. Lett. A 124, 138 (1987).
[14]F. C. Moon and W. T. Holmes, Phys. Lett. 111A, 157

(1985).
[15]P. V. E. McClintock and F. Moss, in Noise in Nonlinear

Dynamical Systems, edited by F. Moss and P. V. E.



TING ZHOU, FRANK MOSS, AND ADI BULSARA 45

McClintock (Cambridge University Press, Cambridge,
1989), Vol. 3, p. 243.

[16] Computing Before Computers, edited by W. Aspray (Iowa
State University Press, Ames, 1990)~

[17]J. Smythe, F. Moss, and P. V. E. McClintock, Phys. Rev.
Lett. 51, 1062 (1983); L. Gammaitoni, F. Marchesoni, E.
Menichella-Saetta, and S. Santucci, ibid. 62, 349 (1989);T.
Zhou and F. Moss, Phys. Rev. A 41, 4255 (1990).

[18]I. Shimada and T. Nagashima, Prog. Theor. Phys. 61,
1605 (1979); G. Benettin, L. Galgani, A. Giorgilli, and J.
Streleyn, C. R. Acad. Sci. Paris 286, A-431 (1978).

[19]A. Wolf, J. Swift, H. L. Swinney, and J. A. Vastano, Physi-
ca D j.6, 285 (1985).

[20] See, for example, T. S. Parker and L. O. Chua, Practical
Numerical Algorithms for Chaotic Systems (Springer-
Verlag, Berlin, 1989), Chap. 7.




