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A scaling analysis of a variety of nonlinear equations for surface growth is presented. It predicts the
existence of universal scaling functions and amplitude ratios for the surface width w (L,?) on length scale
L at time ¢ and for the height-difference correlation function G (x,¢). This analysis is applied to the
Kardar-Parisi-Zhang (KPZ) equation for driven interface growth in d =2, in order to derive explicit
scaling forms for the amplitudes associated with the scaling of the surface width, correlation function,
and saturation velocity as a function of the hydrodynamical parameters in the KPZ equation. A mode-
coupling calculation that estimates the values of the various universal amplitude ratios, as well as the as-
sociated universal scaling functions is also presented. Our predictions are confirmed by simulations of
three different surface-growth models in d =2 from which the amplitude ratios as well as the universal
scaling function for the surface width w(L,¢) (for the case of periodic boundary conditions) are numeri-
cally determined. These results are also supported by numerical integration of the KPZ equation in
d =2. The universality of the height-fluctuation distribution function is also discussed. Our scaling
analysis is expected to be useful in the analysis of experiments and in the study of a variety of models of
surface growth as well as in establishing a more detailed connection between continuum surface-growth
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equations and microscopic models.

PACS number(s): 05.40.+}, 64.60.Ht, 68.55.—a, 68.10.Jy

I. INTRODUCTION

Rough surfaces and interfaces are found in a wide
variety of natural and industrial processes. Recently,
there has been considerable effort in understanding the
dynamics of growing surfaces [1]. Much of this interest
and activity is based on the recognition that surface fluc-
tuations exhibit scaling behavior in both time and space.
In particular, assuming an initially flat interface, the scal-
ing of the interface width is expected to be of the form

(2],
w(L,0)=L°f(t/L?), (0

where w (L, t) is the interface width on length scale L at
time ¢, z =a/f is the dynamic exponent, and the scaling
function f (x)~x? for x <<1 and f (x)—>const for x >>1.
A phenomenological equation that applies to a large class
of surface-growth models in the hydrodynamic (long-
wavelength) limit has been proposed (3] by Kardar, Par-
isi, and Zhang (KPZ). It is a nonlinear equation for the
time dependence of the interface height A (x,?) in a d-
dimensional system, above a (d — 1)-dimensional plane,

%}ti=vV2h +(A/2)(Vh P +7(x,1) @)

where the noise 7(x,t) satisfies
(n(x,t)n(x’,t"))=2D8% Y x—x")8(t —1') .

In d =2 the scaling exponents for the KPZ equation
(A+0) have been found from a renormalization-group
analysis [3,4] to be a=1, B=1, z=3. For A=0 one has
Edwards-Wilkinson [5] behavior for which a=1, B=1,

z=2ind =2.

The study of a variety of microscopic models [2,6-9]
agrees with the renormalization-group predictions for the
exponents in d =2. However, there has been no rigorous
demonstration of the relation between the KPZ equation
and these discrete models [10,11]. In addition, most of
the attention has centered on the asymptotic exponents,
while less attention has been given to the connection be-
tween models of surface growth and the corresponding
continuum equations. Thus, a more detailed study of the
scaling behavior of the KPZ equation would be helpful in
establishing a connection between the discrete models
and the continuum description.

In this paper we derive expressions for the scaling
behavior of the  asymptotic coefficients C,
[C,=w(w,t)/t'?] and C, [C,=w(L,»)/L'?] as a
function of the hydrodynamic parameters A, D, and v
from the scaling properties of the KPZ equation in d =2.
From these expressions the ratio D /v (up to a universal
constant u; ) as well as the coefficient A may be obtained
directly. Our scaling analysis also predicts the existence
of a universal scaling function as well as universal ampli-
tude ratios for the KPZ equation in d =2. A similar scal-
ing analysis is also used to predict universal amplitude ra-
tios (and scaling functions) for several other surface-
growth equations. In addition, we present the details of a
mode-coupling-approximation calculation, based on the
renormalization-group equations for the KPZ equation in
d =2, which further supports our scaling arguments.
From this analysis, approximate values of the amplitude
ratios and scaling function are predicted. Simulations of
discrete models as well as the results of direct numerical
integration of the KPZ equation are also presented in or-
der to test our scaling and mode-coupling predictions. A
shorter discussion of these results was previously given in
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Ref. [12]. Below is a more detailed outline of the paper.

In Sec. II we discuss the application of scaling argu-
ments to derive universal scaling relations for the surface
width w(L,t) and the correlation function G(x,t) in
terms of the equation parameters for general surface-
growth equations. We then apply these arguments to the
KPZ equation in d#3 as well as make specific predic-
tions in d =2. The special case of d =3 is discussed sepa-
rately and compared with the work by Tang, Natter-
mann, and Forrest [13]. As an illustration, we also apply
general scaling arguments to predict universal scaling re-
lations for two other nonlinear growth models, the con-
served surface-growth model of Sun, Guo, and Grant
[14], and the nonlinear molecular-beam-epitaxy (MBE)
model of Lai and Das Sarma [15]. The rest of the paper
is devoted to the special case of the KPZ equation in
d=2. In Sec. III we present the details of a mode-
coupling-approximation calculation, which supports our
scaling analysis for this case. Using the first-order renor-
malization equations and a mode-coupling approxima-
tion, the amplitude ratio R and the universal scaling
function F(x) for the KPZ equation in d =2 are estimat-
ed. Similar results for the correlation function G (x,t) are
also derived. In Sec. IV we present the results of simula-
tions of three different surface-growth models in the KPZ
universality class which we used to test our predictions.
Good agreement with the scaling predictions as well as
the mode-coupling-approximation predictions for the
universal amplitude ratio R and universal scaling func-
tion is obtained. A comparison of our mode-coupling
predictions for the asymptotic behavior of the correlation
function G (x,t) with simulations of the single-step model
is also presented. In addition, results from numerical in-
tegration of the KPZ equation in d =2 are presented and
compared with our scaling predictions. Finally, in Sec.
V, we give a summary and discussion of our results. The
Appendix presents the derivation of the appropriate
growth formulas for the surface width w(L,¢) and corre-
lation function G(x,t) in the linear (A=0) case, which
are used as a starting point for Sec. III.

II. SCALING ANALYSIS OF SURFACE-GROWTH
EQUATIONS

The scaling analysis of a nonlinear continuum equation
for surface growth may be performed as follows. We
consider a scale transformation from the original vari-
ables x, h,t to new variables x',h’,t’ of the form

h=ah', (3a)
x=bx', (3b)
t=ct', (3c)

where a, b, and ¢ are chosen so that the parameters in the
transformed equation for 4’ are now constants typically
equal to 1. Consequently, the new variables will in gen-
eral be dimensionless. (For example, in the case of the
KPZ equation, we will use the transformation, v—v'=1,
2D —-2D'=1, A/2—A'/2=1.) We note that such a
transformation may not always be possible.

If we now assume that the transformed equation has
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the solution w'(L’,t')=g(L’,t'), we may transform back
to obtain the generalized solution for w(L,?),

w(L,t)=ag(L/b,t/c) . 4)

Similarly, if we assume that the scaled equation satisfies
the scaling relation w'(L’,¢t')=L *f(¢'/L *?), then trans-
forming back, we obtain the asymptotic scaling form

w(L,t)=(a/b*)Lf((b*/c)t /L*?) , (5)

where f(x) is a universal scaling function for each
growth model.

Similar expressions may be written for the correlation
function G(x,1)=([A(x'+x,t'+t)—h(x',t')]*), where
h(x,t)=h(x,t)—{h(x,t)),. Assuming that G(x,t) (at
saturation or ¢'>>L7?) satisfies the scaling form
G (x,t)~x2f;(t/x?), we may write

G (x,t)=(a%/b»®)xf;((b*/c)t /x?) , (6)

where f;(0)=1 and f;(u)=g,u® for u>>1. We now
discuss the application of this type of scaling analysis to
several different growth models.

A. KPZ equation in d dimensions
In the case of the KPZ equation [Eq. (2)] we would like
to transform to new variables x’,4’,¢’ so that
S =V |V e 1) ™
where
(E(x),1)E(x5,15)) =8 "D(x]—x5)8(¢] — 1)

so that v—v'=1, A/2—A'/2=1, and 2D —-2D’'=1.
Performing the transformation, we obtain the following
three conditions on a, b, and c:

vi=1=wvc/b?, (8a)
A'/2=1=M)ac /2b?, (8b)
2D'=1=2Dc /a*bh%"!. (8c)

Solving, we obtain

a=2v/A, (9a)
b =(V3/}»2D)1/(3_d) , (9b)
C=(V(3+d)/}\,4D2)1/(3_d) . (9¢)

In d =3, the transformation blows up, so clearly (9) is
only valid for d%3. Assuming this scaling analysis con-
tinues to be applicable in d > 3, we may substitute (9) into
(5), using the scaling relation [7,16] z=2—a, to obtain
the asymptotic scaling form

w(L,t)=(|r|2atd—3pa ylatd=3)1/G3-d)] a
X fU(|A[2aDe/yiatd=)1/G=dy /p2)  (10)

where f is a universal scaling function characteristic of
the KPZ equation, which satisfies f(u)=u,u” for u <<1
and f(o )=u;. Defining C;, =w(L, )/L% (10) may be
rewritten as
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w(L,t)=C, L*F(|A|C t/L?) , (1n

where F(x)=(1/u;)f(x/u;). From the definition of
F(x), F(o)=1, and F(u)=u,/u£Hl for u <<1, so that
Eq. (11) implies, using the relation B=a/z,

w(oo,t)=(u, /uf™) CETAIPtP=C 1P . (12)
This implies the existence of a universal amplitude ratio,
R =C,/(|AMBCEYY=u, /uft!, (13)

where C,=w( ,t)/t? and C,=w(L/x)/L"
Similarly, using (6) we can also write for the correla-
tion function,

G(x,t)=( ‘}\’!2a+d—3Da/V3a+d—3)2/(3~d)x2a
XfG((1AIZaDa/v3a+dv3)1/(37d)t/x2) , (14)

where f; is a universal function satisfying f;(0)=g, and
folu)=g,u® for u >>1. Here x corresponds to a partic-
ular direction along the (d —1)-dimensional substrate.
Taking A4,=G(x,0)/x** and defining Fg(u)=(1/
g, )f(u /g, ), this may be rewritten in the form

G(x,0)= A, x ¥ Fg(|A[V/ A t/x7) , (15)

where Fg(0)=1 and Fg(u)=(g,/g# " u? for u>>1.
Equation (15) implies G (0,1)=(g,/g2f*1) 481172128,
yielding an additional universal amplitude ratio,

Re=A,/(|M*# 4Bt )y=g, /g2t (16)

where 4,=G (0,1)/t* and 4, =G (x,0)/x?*

We note that for d >3 there exists a transition
[3,16,17] from strong-coupling exponents to weak-
coupling exponents (flat phase) as a function of the non-
linear coupling parameter. In that case there could exist
a dependence on a cutoff length in addition to the macro-
scopic parameters A, D, and v, so that even in the
strong-coupling regime, the above scaling analysis may
not hold. However, for completeness we have presented
our scaling analysis in general dimensions. In what fol-
lows, we focus on d =2 and d =3 where this problem
does not occur.

B. KPZ equation ind =2

In two dimensions, Egs. (9a)-(9c) become

a=2v/\, (17a)
b=+v/AD , (17b)
c=v/\A'D? . (17¢)

The generalized scaling relation Eq. (4) becomes (absorb-
ing extra factors of 2 into the definition of the scaling
function g)

w(L,t)=(v/|A|)g(A2DL /v3,A*D?t /v°) . (18)

We note that (18) allows us to predict scaling behavior
outside the asymptotic region for the KPZ equation in
d =2. In particular Eq. (18) predicts that the time ¢, and
length L. for crossover from Edwards-Wilkinson behav-
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ior to KPZ behavior should scale as
L.,=(v*/A®D)Ly; t,=(v’/A*D?)7,, (19)

where L, and 7, are the corresponding quantities in the
rescaled Eq. (2). Consideration of this equation may ex-
plain why some microscopic models cross over to KPZ
behavior relatively quickly while others do not. From
direct numerical simulations of the KPZ equation in
d =2 we have quantitatively verified this dependence (see
Sec. III). Of course, in any discrete model one expects
that there will be additional irrelevant terms which may
render this early-time behavior difficult to observe.

We now consider the asymptotic scaling relations in
d =2. Inserting the known values for the exponents in
d =2 (a=1, B=1, and z =3) into the asymptotic scaling
form Eq. (10) we obtain

w(L,t)=VD/vL'2f(IAMV'D /vt/L3"?), (20)

where f(x) is a universal scaling function characteristic
of the KPZ equation in d =2 satisfying f (x)=u,x /3 for
x <<1 and f(o )=u;. Equation (20) implies, in the lim-
its L — o0 and t — oo, the relations

w (oo, t)=u,[|A(D/v)*]'3=C,t?, (21a)

w(L,0)=u;VD/vL'?=C, L'*, (21b)

where u; and u, are universal (model-independent) con-
stants characteristic of the KPZ equation fixed point in
d=2, and C,=u;V'D/v, while C,=u,[|Al(D/v)*]'"°.
Similarly, the modified scaling form Eq. (11) becomes

w(L,t)=C, LY?F(|A|C t/L??),

(22a)
where F(x)=(1/u; )f(x /u; ). Equation (22a) implies
w(oo,0)=(u, /uf>)IA|C})V 31 P=Ct/? (22b)

so that we also obtain the universal amplitude ratio R in
d=2,

R=C,/(IACHV3=u,/u}”? . 23)

Similarly, Eq. (15) for the correlation function G (x,t)
at saturation becomes in d =2,

G(x,t)= A x Fg(|AV 4,1 /x37?), (24)

where F;(0)=1 and Fg(u)=(g,/g:">)u?"? for u>>1.
Analogous to Eq. (21), one may write for the correlation
function amplitudes,

A,=G0,1)/t* =g [IA[(D v} 7,
A, =G(x,0)/x =g, D /v,

(25a)
(25b)

which implies the universal correlation function ampli-
tude ratio,

Re=A, /(M A} =g, /83" . (26)

We note that the appearance of the parameter A and
the ratio D /v in Egs. (20)—(26) is appropriate, since from
the renormalization-group equations in d =2 [3,4] one
expects that the coarse-grained effective values of D and v
should scale with coarse-graining length as,
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D 4(bL)=b""?D (L) and v (bL)=b""?v (L), while the
parameter A and the ratio D /v remain invariant [18,19].
In addition, an analysis of the crossover exponent from
A=0 to finite A from the renormalization-group equa-
tions leads to results for the dependence on A that are
consistent with Egs. (20)-(26).

It is interesting to note that Egs. (21b) and (25b) for the
steady-state amplitudes C; and A, in d =2 are indepen-
dent of A and in fact have the same form as the corre-
sponding equations for the linear (A=0) case. This is not
surprising, since the exponent a=1 is the same for both
cases. This suggests that the steady-state amplitudes are
the same as for the linear case, and the universal
coefficients u; and g, may be determined from the linear
equation. This will be confirmed by our mode-coupling
analysis. We note that a similar result has previously
been obtained for the case of Burgers’ equation in d =2
by Huse, Henley, and Fisher [20]. Thus, the interesting
universal quantities are the early-time coefficients u, and
g, and the amplitude ratios R and R;. In addition, we
point out that the universal quantities #; and g, may de-
pend on boundary conditions, since the solution of the
rescaled equation obviously depends on boundary condi-
tions. The universal growth coefficients u, and g, should
not depend on boundary conditions, however, since they
are taken in the limit ¢ /L *—0.

Besides the amplitude ratios R and R, other universal
ratios may also exist for the KPZ equation in d =2. For
example, Krug and Meakin [21] have shown that the
finite-size corrections to the saturation velocity have the
form V(L)=V(x)+Cy(A)/L in d =2. Using the scale
transformation (17), we obtain Cy(A)=uy,(AD /v), where
uy is another universal constant and we have obtained
the dependence of C}, on D and v as well as on A. This
implies the existence of a universal amplitude ratio
Ry,=Cy/[MC.)*]1=uy/u}. For the single-step model
with random-site updating, it is known [21-24] that
Cy=—1L, A=-—1, and C, =1/V'12, which implies that
Ry=6.0 and u),=4. In Sec. IV we present the results of
simulations of three different surface-growth models in
d =2, which were conducted in order to test Egs.
(20)-(26) as well as to determine the universal amplitude
ratios R, R, and Ry as well as the universal scaling
function F(x).

C. KPZ equationind =3

In d =d_ =3, the transformation (9) diverges, and so a
linear transformation that scales away all three parame-
ters cannot be performed. Instead, we consider a trans-
formation of the form

v—v'=1=vc/b?, (27a)
A/2—>A'/2=€e=)ac /2b? (27b)
2D —2D'=1=2Dc /a?bh? , (27¢)

where the parameter e=A2D /v is dimensionless in
d =3. This is similar to the transformation we used in a
previous numerical study of the KPZ equation in d =3
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[25]. Solving for a and b we find
a=V2D/v, b=V , (28)

where the only condition on ¢ is that it have the dimen-
sion of time so that x’,4’,t’ are dimensionless. Substitut-
ing (23) into the generalized scaling relation (4), we obtain
the generalized scaling form,

w(L,0)=V'D /v f L /V've,t/c), (29)

where the scaling function f now depends on the parame-
ter €. The e dependence of f is an indication that a linear
scale transformation (which would lead to a power-law
dependence of € in the scaling function) cannot be used to
remove the parameter dependence in d =3. Setting ¢
equal to one time unit, Eq. (29) may be rewritten,

w(L,)=VD/vfL/Vv,t). (30)

Equation (30) may be compared with the crossover scal-
ing form proposed on the basis of renormalization-group
analysis by Tang, Nattermann, and Forrest [13]. In the
limit L — o, they obtained

wz(oo,t)=% —2— [G(Ext'2/e*/) +In(8m/€)] . (31)

As in Eq. (30), we note the presence of a factor of D /v.
We also note that the time is not simply rescaled by a
power of €, but rather there is an exponential depen-
dence. This is due to the fact that the nonlinear term (A)
is marginal (to first order) [3,13] at the critical dimension
d=3.

D. Nonlinear molecular-beam-epitaxy (MBE) model

We now discuss the application of similar scaling ideas
to the recently proposed nonlinear MBE model of Lai
and Das Sarma [15]. For this model, the continuum in-
terface equation is

oh

E=_V1v4h +MVA|VR[})+q (32)

with
(n(x},t] )n(x'z,t'z))=2D,8‘d_”(x’l—x'2)5(t'1 —t5).

The scaling exponents are known to be a=(5—d)/3,
B=(5—d)/(7+d), z=(7+d)/3 for d <d,=5. Apply-
ing the scaling transformation Eq. (3), but requiring
vi—v =1, A—A1=1,2D, —2D} =1, we obtain

a=v/A (33a)
b=(v}/203D)/5~ (33b)
c=(]T4/160DHV 59 (33¢)

which is valid for d <5. Substituting into the general
scaling form (5) we obtain the scaling form,

w(L,t)z(Dl/k1)1/3L(5—d)/3f(k%/3D}/Bt/L(7+d)/3) (34)

with f(w)=u; and f(u)=u,t® 97+ for 4 <<1.
This may be rewritten in the form
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w(L,t):CLL(57d)/3F()L1CLt/L(7+d)/3) , (35)

where C,=u,;(D,;/A)"? and F(x)=1/u; f(x/u;).
Equation (35) implies the existence of a universal ampli-
tude ratio R'=C, /(C}*A}~ )V 7* 9 for this model where
C,=u, (D} /A8~ N7+ Ag before, similar expressions
may be written for the asymptotic correlation function
G (x,t). It is interesting to note that the parameter v, al-
though crucial for the observed scaling behavior, does
not enter into the asymptotic scaling equations (34) and
(35).

E. Conserved-noise growth model

Finally, we consider the conserved-noise growth model
of Sun, Guo, and Grant [14]. The equation of evolution
for this model is the same as Eq. (32), but with conserved
noise of the form

(n(xi,tn(xyt5)) =—2D, V389 V(x| —x})8(¢] —1t5) .

(36)

For this model, the scaling exponents are known to be
a=(3—d)/3, B=3—d)/(9+d), z=(9+d)/3 for
d <d.=3. Above d.=3, the nonlinearity becomes ir-
relevant (z =4) and the exponents are the same as for the
linear A; =0 version of the equation. From the same scal-
ing analysis as above, we obtain a=2v,/A,
b=2vi/AD )39 and ¢=b*/v,, which in d=2
gives a =2v,/A,, b=2vi/A3D,, and c=16v]!/A%D3.
For d =2 this implies,

w(L,t):(Dl/)\.l)l/SL1/3f(}\,%/3D{/3I/L 11/3) (37)
or
w(L,t)=C,L'3F(A,C t/L"3), (38)

where C;, =f (0 )(D,;/A;)/?. In addition, we obtain the
universal amplitude ratio R'=C, /(C}F?A)""ind =2.

III. MODE-COUPLING APPROXIMATION

As already noted, the scaling approach we have dis-
cussed so far is expected to be valid for d =d_ for each
model. However, scaling arguments do not allow us to
determine the scaling function or the values of the
universal amplitude ratios. As a result, we now discuss
the application of the mode-coupling approximation to
the KPZ equation in d =2. We shall demonstrate that
the mode-coupling approach not only reproduces the
scaling forms already obtained, but also allows us to cal-
culate the universal coefficient #, and the amplitude ratio
R as well as the scaling function F(u). Similar results are
also obtained for the correlation function G (x, ).

The idea behind the mode-coupling approximation
[26,27] is to assume that the nonlinear (A70) KPZ equa-
tion (2) may be approximately solved by replacing the
linear (A=0) solution, which involves the coefficients D
and v, with k-dependent coefficients D (k) and v(k),
which are renormalized due to the nonlinearity. A simi-
lar approach has been used in a discussion of crossover
behavior in the KPZ equation in d =3 by Tang, Natter-
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mann, and Forrest [13]. Starting from a flat surface at
t =0, the solution of the linear (A=0) version of Eq. (2)
may be written (see Appendix A) as

w( L= 1 1D

el e ~(1—e " dk (39)

For a system of finite-size L with a lower-length cutoff a,
this may be rewritten as

1 a 1 D
2 b

’t = — —_—
w(L,t) fL 3

T
where A; ~1/L and A, ~1/a refer to upper and lower

(1—e 2, Ngk | (40)

cutoffs, respectively. In the limit ¢, L— o, and
t/L*—0, Eq. (40) implies
2 __2D p
w(eo,t)=——t (41)
V2

which is independent of the cutoffs. From numerical in-
tegration of the KPZ equation with A=0 for several
values of D and v, we have obtained very good agreement
with Eq. (41).

For a discrete model of size L with periodic boundary
conditions, Eq. (40) for the linear case should properly be
written in the discretized form [22,28]

2 L/2 1 D

2 —
w(L,t)=— — (11—
Lm=1kr7;| V( ¢

*2vk3't

), (42a)

where k,, =2mm /L. In the limit ¢ — c, this becomes,
for large L,

wiL,0)=-2"1

12y (42b)

which implies «; =V'1/12. From numerical integration
of the Edwards-Wilkinson equation with periodic bound-
ary conditions for a range of values of D and v (see Sec.
IV), we have obtained good agreement with Eq. (42b).

To implement the mode-coupling approximation we
now substitute the length-scale-dependent parameters
D (k) and v(k) obtained from the renormalization-group
flow equations into the appropriate linear equation [ei-
ther Eq. (40) or Eq. (42a) depending on the boundary con-
ditions] above. To first order the renormalization-group
equations for the KPZ equation, after rescaling by a fac-
tor b=e' and integrating over short-wavelength fluctua-
tions, are in d dimensions [3,4]

dv Kdg(3——d)

av _ |, e 77 43
dl z 2d—1) v, (43a)
dD K,g

a2 _ |- —2a+—2= 43b
T z—d+1—-2a 2 D, (43b)
dA

== = — 4
dl (a+z—2)A, (43c)

where K; '=29"27¢"1D/21((d —1)/2) and the dimen-
sionless coupling parameter g =(a/7)* “A’D /v’. In
d =2 these equations become

dv _

T — (v, (44a)

—1 2
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dD . K
4l — -1+ D, 44b
dl 2 4 (44b)
%=(a+z—m, (44c)
where a=1 and z=2. We note that in d =2, D and v

satisfy the same scaling form so that the ratio D (b)/v(b)
is independent of length scale. Also, A is independent of
b due to the well-known scaling relation a+z =2 (which
follows as a result of Galilean invariance of the KPZ
equation) [7,18].

Equation (44) with a+z =2 implies that the dimen-
sionless coupling parameter g =(a/m)A’D /v® satisfies
the flow equation,

%=g —K,g2/2+0(g?), (45)

which has two fixed points, a trivial fixed point at g =0
and a strong-coupling (finite A) fixed point at
=2/K,=2m. Integrating we obtain
8zb

g(b)= , 46)
1+(gz/g* )b —1)

where gg=g(1) is the bare value of the dimensionless
coupling constant. Substituting Eq. (46) for g(b) into
(44a) and (44b) and integrating we obtain

vib)=vp[(1—ap)+agb]'/?, (47a)
D (b)=Dg[(1—ap)+azb]'/?, (47b)
where
A*D
a B
=K,gp/2=—
285 21?2 V3B

As already mentioned, D (b) and v(b) scale the same way
so that the ratio D (b)/v(b)=Dy /vy is independent of
the rescaling factor b.

In order to implement the mode-coupling approxima-
tion for A70 for periodic boundary conditions we now
replace D and v in the Edwards-Wilkinson solution Eq.
(42a) with D (k) and v(k) using Eq. (47), with b~k !
Because of the uncertainty in the correct scaling factor
between b and 1/k, we do not expect our mode-coupling
results to be exact. However, we expect the mode-
coupling approximation to give the correct scaling form
as well as a reasonable estimate of the universal ampli-
tude ratios. In addition, as suggested earlier by our scal-
ing results, our mode-coupling calculation confirms that
the universal steady-state coefficients are the same for the
nonlinear case as for the linear case. We expect this last
result to be exact, since it depends only on the fact that
D (k) and v(k) scale the same way, a result expected to
hold to all orders of perturbation theory [3,4]. In what
follows below, we take b =S, /ka, where S, is an un-
known scaling factor of O (1) between b and 1/k. Typi-
cally, we will take S, =1 at the end of our calculations,
however in order to show the dependence of our final re-
sults on this factor, we will keep the factor S, in our ex-
pressions.
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Substituting D (k) and v(k) from Eq. ) (taking
b =S, /ka), Eq. (42a) then becomes (settmgaequal to1)

) 2D L2 ~[A4+B%/k, %21
wAL,t)= —-(1—e ., (48)
Lv m=1 k’%l
where 4 =(2vp)*(1—ay) and

B=2VB(aBSc) l)\-|‘/D—/V ’

12— V28,
o
and we have removed the bare subscript since (D /v) is
independent of the rescaling factor b. In the long-time
limit, the exponential goes to zero, and we recover the
linear result w?(L, 0 )=(D /12v)L, with u; =1/V12.

We now consider the asymptotic limit of Eq. (48) for
large L,¢ in order to obtain the mode-coupling prediction
for the universal scaling function. In the limit z — oo, Eq.
(48) may be rewritten,

2D L/2 1

w(L, t)——f‘ 2 k2

*Bk"'/zt

—(l—e ™) (49)

since for k,, ~1/L —O0, the second term in the brackets
(B?/k,,) in Eq. (48) will dominate over the A term, while
for k,, finite, the exponential factor goes to zero and is ir-
relevant. It is interesting to note that if gz =g* (e,
A =0) then Eq. (49) holds even for small ¢, so that the
asymptotic limit is reached immediately.
Substituting
k,=2mm /L
and
=128, /m)AlVD /v,

Eq. (49) may be rewritten in the scaling form (taking the
limit L — «),

2
Fru)=2"2 = (L,1)
D

v

— T 372
L=V 50
m

1 =]
2w 2,
L

where u =|A|V'D /vt /L3, f(u)=u,u'” for u <<1, and
flw)=u; =1/V'12. Thus, from the mode-coupling ap-
proximation we have derived the scaling form predicted
in Eq. (20) for the case of periodic boundary conditions.
The detailed evaluation of f () requires numerical sum-
mation of Eq. (50).

From Eq. (50), we may calculate the universal growth
coefficient u, by noting that in the limit ¥ —0, the only
nonzero contributions to the sum are for large m, so that
in this limit the summation may be converted to the in-
tegral,

4V 7S,u P [ L
317_2 0 y5/3

:r(%)(2S0)1/37—5/3u2/3 , (51)

where y =4v/ Fm /24, From this, we obtain the
universal growth coefficient u, =[I'($) W28, )3 373172,
Taking S, equal to 1, yields u,=0. 71 and the universal
amplitude ratio R =u, /uf/3~3.7.

In order to compare with simulations, we may also cal-
culate the scaling function in the form

fHu)— —e Y)dy
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F<x>=w<L,:)/cLL1/2=uif<x/uL>
L

where x =|A|Ct/L3/%. In this form Eq. (50) becomes

6 1 —81/37S.m3 %
Fix)=—; 2_ — 50— BV/3mSm ™y (52)

where F(x)=(u, /u4/3) 173 for x <<1, F(®)=1. In the
next section we will present the results of a numerical
evaluation of (52) as well as comparisons with simulations
of discrete models.

While convenient for computer simulations, periodic
boundary conditions are not particularly relevant for ex-
periments. More appropriate perhaps, are free boundary
conditions (for which the corresponding universal
coefficient may be denoted uf), in which the surface
width w,(L,t) is measured over a region L embedded in a
much larger system of size N. In particular, this type of
measurement has been used in the analysis of recent ex-
periments in d =2 on flow in porous media by Rubio
et al. [29] and Horvath et al. [30], as well as in simula-
tions by Martys, Cieplak, and Robbins [31]. From the
solution of the linear equation, we obtain for this case
(see the Appendix) u[—l/\/6 \/ZuL This result is
also in agreement with an analytic calculation (Appendix)
we have done for the single-step model as well as simula-
tion results we have obtained for the restricted solid-on-
solid (RSOS) model. For completeness, we now present
our results for the scaling function f(u) for this case. We
denote the corresponding universal amplitude ratio as
R/=C,/[IA(CH ) P=u, /(uf)**=R /2*">.

From Eq. (A7), we obtain for the linear equation with
free boundary conditions,

wf(L t)= —1+cos(kL)

7TvL2 f"zv k*

x<1—e—2vk2’>dk , (53)

where Ay~1/N and A, ~1/a. Substituting, D (k) and
v(k) in (53) as before, noting again that small £ dom-
inates the exponential in the asymptotic limit, and mak-
ing the substitution y =kL, we obtain

2

y?~1+cos(y)

2DL

2 —

3/2t/L3/2

X(1— )dy , (54)

where B is the same as before, and the limits on the in-
tegral have been taken in the limit N,L — o, L /N—0.
This implies the scaling form for the free boundary condi-
tion case,

2
“ (L,1)
Z(u)zL
D

v
Z%fow}};[ y2/2—1+cos(y)]
— 3/2
X(1—e VB Wm0 (55)
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where u =|AVD/vt/L*?, Ffu)=u,u'”?® for u<<1
(with u, the same as for the case of periodic boundary
conditions), and f(w)=uf=1/V'6. Since R/=R /22/3,
we obtain R/~2.3.

The mode-coupling approximation can also be used to
calculate scaling expressions for the height-height corre-
lation function G(x,t)=([h(x"+x,t'+t)—h(x',t')]*),
where i (x,t)=h(x,t)—(h(x,t)), in the saturation limit
t'>>L% In this limit, the solution of the linear (A=0)
equation for the correlation function G (x,?) becomes (see
the Appendix)

A
G(x,z)=%fAL“%—f—[l—cos(kx)e*vkz']dk . (56)
In the asymptotic limits in which we are interested
(x,t,L— 0,x/L—0,t/L?*—0) the details of the cutoffs
on the integral will turn out to be irrelevant. Substituting
D (k),v(k) as before and noting that small k¥ dominates
the exponential in the asymptotic limit  — oo, we obtain,

2D 1

— kz[l—cos(kx) _B'km’]dk , (57)
L

G(x,t)=

where B'=(1/7)V/S,/2|A|V'D /v=B /2.

For the case of the equal-time (¢ =0) correlation func-
tion, Eq. (57) implies that for x,L — o, x /L —0, we re-
cover the linear result

2D o 1 D
G(x,0)=== — =2y =
(x,0) ﬂvxfo 5 — [1—cos(y)]dy = X = A.x (58
sothatg, = 4, /(D /v)=1.

Similarly for the case x =0, Eq. (57) becomes, making
the substitution y =B'k3’%t, and in the limit #,L —
with t << L3/2,

4DB'2/3 2/3 © B
G(O,n="——— [ 5/3(1—e »)dy
|A|D?t e
S =4, (59)
where g, =22°T'(1)S}/3 /7/3. We note that (58) and (59)

imply that if G(x 0)= A, x, then G(0,1)
so that R;=g,= A4, /(|A| 42)*/3.
R;=0.63.

Finally, we may use Eq. (57) to compute a general scal-
ing function for G (x,?) of the form

=g, (|| 427,
Taking S.=1 yields

G (x,t)=(D/v)x fgUAIVD /vt/x3?), (60)

which is the same as Eq. (24), with 4, =D /v. Making
the substitution y =kx, Eq. (57) becomes in the limit
X,t— 00, x <<L,

2Dx
v

Gx,n=="[" yl [1—cos(y)e ~27""/x 1ay . (61)

This implies the existence of a scaling function of the
form
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f ( )_ G(X,t) 0.231 | LA B R AL
o(u)=—-22"
D x i RSOS ]
v 0.230 |- _
——1.0
0 372 m / ~ |
:lf %[l—cos(y)e VS "y , (62 f’ —0—0.75
Too Yy S o229} —o—05

where u=|A|VD/vt/x*? fg(0)=1, and fg(u) L .
—g,u?’? for u>>1. In the next section we present the 0.025 L .
results of extensive simulations of several different ’
surface-growth models in d =2 which we conducted in - .
order to test our scaling predictions, as well as the nu- DY B R B B
merical values obtained from the mode-coupling approxi- .0.001 0.003 0007 0.011 0.015
mation. V12

IV. NUMERICAL SIMULATIONS

A. Discrete models

In order to test our scaling analysis and mode-
coupling-approximation predictions, we have simulated
three different growth models which are believed to be in
the KPZ universality class in d =2. The first two
models—a RSOS growth model [9] and the single-step
model [7,22]—were studied as a function of driving force
J, while the ballistic deposition model [7] was studied in
the irreversible limit. In the RSOS growth model each
site to be updated attempts either to grow (h—h +1)
with probability p ., =(1+f)/2 or to shrink (h—h—1)
with probability p_ =(1— f)/2, subject to the RSOS re-
striction |k (i)—h(i£1|<1. Similarly, in the reversible
single-step model the growth rule is A (i)—h (i)%2, sub-
ject to the same nearest-neighbor height restriction as in
the RSOS model, with the initial state given by A (i)=0
for i odd, and A (i)=1 for i even. The value f =0 corre-
sponds to completely reversible (A=0) growth, while
f =1 corresponds to completely irreversible growth. Fi-
nally, for the ballistic deposition model the growth rule is
h(i)—>Max[h (i +8),h(i)+1], where & refers to nearest
neighbors. We used a parallel updating scheme in which
either an odd or an even sublattice was selected, while
each growth-shrink step was attempted on each site of
the selected sublattice with probability 1 and periodic
boundary conditions were used. For the RSOS model the
sublattices were chosen randomly, while for the other
two models odd and even sublattices alternated. Our unit
of time is one full sweep of the lattice, and our length unit
is simply the lattice spacing.

In our simulations the driving force f was varied from
0.5 to 1.0. For each value of f, the saturation width
coefficient C;, =w(L, )/L'/?> was measured. The non-
linearity parameter A was also measured by determining
the change in the average saturation velocity ¥V, as a
function of overall tilt |VA| for systems of size L =512.
The tilt in the interface was enforced by using screw
boundary conditions as in Ref. [32] and averages were
taken over times of the order of 10’ Monte Carlo steps
(MCS). Figure 1 shows typical plots of the saturation ve-
locity as a function of tilt for the RSOS model for
S =0.5, 0.75, and 1.0. Similar plots for the single-step
model are shown in Fig. 2. We found that A was roughly

FIG. 1. Saturation velocity ¥ vs |[Vh|? for the RSOS model
(L=512) for f=1.0 (triangles), f=0.75 (circles), f=0.5
(squares). Data for f=0.75 and f =0.50 have been shifted up
by 0.0637 and 0.1206, respectively, for clarity. Solid lines are
linear fits with slope A /2= —0.22, —0.15, and —0.10.

(but not exactly) proportional to the driving force f and
almost exactly proportional to the velocity as expected.
Figure 3 shows our results for the saturation width
w(L, ) as a function of system size L for the RSOS and
single-step models for different values of the driving force
f. The widths were obtained from averages over very
long runs of the order of 10’ MCS. Similar data were ob-
tained for the ballistic deposition model. Surprisingly, we
find little variation of the surface width with driving force
S for a fixed system size for both the RSOS and single-
step models. From the best fits to the data, we obtained
for the RSOS model C; =0.230%0.003, while for the
single-step model and ballistic deposition model we ob-
tained C; ~0.28 and C; =0.22, respectively [33]. For
the single-step model, it is not completely surprising that
C; is independent of driving force f, since it is known for
the case of random updating [22,34] that
C, =1/v'12~0.29 is independent of driving force. This
is slightly larger than the measured value for C;, which is

0.344

0.343

0.342

o)

0.341

V(L

0.340

0.339

0.338 1 l 1 l 1
-0.002 0.002 0.006

IVhi?

FIG. 2. Same as Fig. 1 but for single-step model. Data for
f=0.75 and f =0.50 have been shifted up by 0.087 and 0.172,
respectively, for clarity. Solid lines are linear fits with slope
A/2=—0.340, —0.265, and —0.172.

0.010
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FIG. 3. Saturation width w(L, ) vs L'/? (L =16-720) for
the reversible single-step model and RSOS model with alternate
sublattice updating, for different values of the parameter f.
Dashed-line fits have slope C; =0.28 for the single-step model
and C; =0.23 for the RSOS model.

most likely due to crossover effects.

The early-time behavior of the surface width w(L,t)
was also measured for each value of the driving force f
and for each model. Simulations with very large system
sizes (L =262 144, averaged over 20 runs) were used in
order to avoid saturation effects. Simulations were car-
ried out for times of the order of 2 X 10* MCS, so that for
all values of f the expected asymptotic ¢!/ behavior was
observed at late times. Plots of the surface width w(L,¢)
for the RSOS model for five values of f are shown in Fig.
4(a), while Fig. 4(b) shows the same data, with the time ¢
scaled according to Eq. (22b) by the factor (AC})!/3, us-
ing the measured values of A and C;. Equation (23) im-
plies that C,=R(AC})!”? so that at late times (when ¢!/3
behavior is observed) the data in Fig. 4(b) should all be
superimposed. We see that as predicted there is reason-
ably good data collapse even at early times. Figure 4(c)
shows a log-log plot of the same data showing the ap-
proach to the l-exponent behavior. Similar data are
shown in Fig. 5(a) for the single-step model, along with
the scaled data in Fig. 5(b) which again show a reasonable
data collapse. We note that if the scaled data for the
RSOS model and single-step model are plotted in the
same graph, they agree reasonably well even at early
time.

For each value of f and for each model, the coefficient
C, was determined from fits of the form
w(L,t)=C,t'*+b to the late-time data. Fits to this
form as well as fits from log-log plots yielded the same
value of C, within a few percent. The amplitude ratio
R =C,/(AC})!3 was then calculated from the measured
values of C, and C;. Figure 6 shows a summary of our
results for the amplitude ratio R plotted as a function of
the scaling parameter |A|C}. As predicted by our scaling
and mode-coupling analysis, R is essentially universal for
all models and values of f. From the average of the data
we obtain R =3.45+0.05. Figure 7 shows the same data
for all three growth models in the form of a log-log plot
of C, versus |A|(C;)*. In agreement with the scaling pre-
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diction (23) all the points lie on a universal line of slope
equal to 1. From the y intercept of the straight-line fit to
this data we obtain R ~3.42. We note that these values
of R are close to our mode-coupling-approximation pre-
diction R =3.7.

In order to test the universality of the scaling function
for the width in Eq. (22) we also determined w(L,?) for a
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FIG. 4. (a) w(L,t)(L =262144) vs t for (top to bottom)
f£=1.0,0.866, 0.75, 0.612, and 0.5 for the reversible RSOS mod-
el. (b) Same as (a) but with time scaled by a factor of |A|C{. (c)
Log-log plot of RSOS data scaled as in Eq. (22b). Dashed line
has slope 0.33.
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system of intermediate size (L =2048) from early-time to
saturation for both the single-step model and the RSOS
growth model with f =1. Averages were taken over 256
runs of 80000 MCS. Figure 8(a) shows a scaling plot of
our results. The asymptotic scaling functions for both
models are essentially identical when scaled in the form
of (22a) as predicted by our scaling analysis. Also shown
is the mode-coupling prediction Eq. (52) for the scaling
function with periodic boundary conditions, which has
been numerically summed with S, =1. Although we do
not expect the mode-coupling approximation to be exact,
we see that there is reasonable agreement. Thus, our
simulation results for the surface width appear to confirm
the validity of our scaling results in d =2. Figure 8(b)
shows a log-log plot of the data in Fig. 8(a).

We have also analyzed the scaling properties of the
correlation function G(x,t) in order to determine the
universal amplitude ratio R;. Simulations were conduct-
ed on the single-step model, since this model appears to
show asymptotic behavior even for small size. In order
to compare with our previous simulations, we first calcu-
lated G (0, ¢) for the irreversible (f =1) single-step model
with alternate sublattice updating. We note that for the
random-site updating version of this model, 4, =1, since
at saturation the interface may be shown [34] to be a ran-
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FIG. 5. (a) w(L,t)(L =262144) vs t for (top to bottom)
f=1.0, 0.75, 0.612, and 0.5 for the single-step model. (b) Same
as (a) but with time scaled by a factor of |A|C}.
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FIG. 6. Numerical estimates for amplitude ratio

R =C,/(|A|C})? from data for RSOS, single-step, and ballis-
tic deposition models for different values of the driving force f.
Average value (dashed line) is 3.45+0.05.

dom walk of steps of height 1. We expect this to be
true as well for our parallel-updating version since A4, is
a steady-state quantity, and from measurement of G (x,0)
directly, we obtained A, =~0.95. Figure 9 shows our data
for G(0,z). The data fits the expected form
G(0,t)= A,t*”3 with coefficient A,~0.55. Using our
measured value A>~—0.68 and A,=1 we obtain
Rg=A,/(|A| 42)**~0.71. We note that our mode-
coupling prediction R; ~0.63 is slightly below this value.
Also shown in Fig. 9 is G(0,?) for the single-step model
with random-site updating for which 4,~=0.71. For this
model, it is known [21,23,24] that A=—1 (as well as
A, =1) so that we again obtain R; =0.71.

We also tested our scaling predictions for the satura-
tion velocity amplitude ratio R, =Cy /(AC}?), which is
expected to have the value R, =6.0 as was noted earlier
from known properties of the random-site updating
single-step model. From simulations of the irreversible
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FIG. 7. Log-log plot of C, vs |A|C} for all three growth mod-
els. Circles are for RSOS model (f =0.5, 0.612, 0.75, 0.866, and
1.0), triangles are for single-step model (f=0.5, 0.612, 0.75, and
1.0), and square is for ballistic deposition model. Dashed-line fit
has slope 0.331+0.005.
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RSOS growth model with alternate sublattice updating,
we obtained A=—0.44 and C; =0.23, and C;,~ —0.154,
which implies R, ~6.6. For our single-step model, using
A=—0.68, C;=0.276, and C,=—0.335 we obtain
Ry ~6.4. However, using the known asymptotic value of
C, =1/V'12 for the single-step model (which should not
depend on whether our updating is parallel or random),
we obtained R, =5.95, in much better agreement with
the expected value R, =6.0. Thus, we expect that the
fact that our values are slightly higher than expected is
mainly due to crossover effects. In Table I, we summa-
rize our results for the amplitudes A, C,, C;, 4,, and 4,,
and amplitude ratios R and R for our discrete models.
As a test of a somewhat weaker form of universality,
we have also studied the scaled-height-fluctuation distri-
bution functions P(X) at saturation in d =2, where
X =6h /w(L, ») is the local height fluctuation scaled by
the rms total height fluctuation (84 =h —(h )). Figure
10(a) shows the scaled-height-fluctuation distribution
functions for two different growth models in d =2 at sat-
uration. One model is the irreversible RSOS model
(f =1) with random-site updating [9], while the other is
a variation of the ballistic deposition model, in which the
deposited particle heights are uniform random numbers
between O and 1. The distributions are essentially identi-
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FIG. 8. (a) Scaling function F(x)=w(L,t)/(L'>C, ), where
x =|A|Crt/L3"? [see Eq. (22)] from simulations of single-step
model and RSOS model (f =1). Solid line is from numerical
summation of Eq. (52), with S, =1. (b) Log-log plot of (a) show-
ing behavior for small x.
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FIG. 9. G(0,7) vs t*”* for single-step model (f =1) with
random-site updating (triangles) and with alternate sublattice
updating (squares). Dashed lines are linear fits to data with
slopes 4,=0.71 and 4,=0.55.

cal for the two models. Figure 10(b) shows semilog plots
of the same data, indicating that the distribution at satu-
ration is Gaussian as expected [10,20] and can be fit to
the form P(X)=(1/V2mo?)e “X*/2’ The slope of the
fits, which is close to 1, indicates that o =1, since scaling
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FIG. 10. (a) Distribution functions P(X) for the scaled-
height-fluctuation X =8k /w(L, ) at saturation (L =512) for
RSOS model and continuous ballistic deposition model with
f=1. (b) Semilog plot of distribution functions P(X) in (a).
Linear fits have slope —0.46 (RSOS) and —0.47 (ballistic depo-
sition).



45 UNIVERSALITY IN SURFACE GROWTH: SCALING...

5389

TABLE I. Summary of results from discrete model simulations for amplitudes A, C,, Cy, 4., and

A,, and amplitude ratios R and Rg.

Model f A C, (4, C.,C/l, 4, R (Rg)
RSOS 0.5 —0.20 0.283 0.23 3.43
0.612 —0.25 0.304 3.42
0.75 —0.30 0.330 0.23 3.50
0.866 —0.36 0.348 3.48
1.0 —0.44 0.372 0.23,0.34 3.47
Ballistic 1.0 0.83 0.43 0.218,0.313,0.588 3.49
Single-step 0.5 —0.344 0.43 0.276 3.41
0.612 —0.414 0.466 3.48
0.75 —0.53 0.50 3.44
1.0 —0.68 0.54 (0.55) 0.276,0.145,0.95 3.42 (0.71)

the height fluctuations by the saturation width implies
that (AX)>=1. We have previously observed similar be-
havior in a study [35] of the Zhang model [36] with
power-law noise in which a cutoff in the range of the
noise was introduced. As the system size was increased
(for a fixed cutoff), the exponents crossed over from those
appropriate to power-law noise to the ordinary KPZ
values a=1, B=1, while the height-fluctuation distribu-
tion crossed over from a power-law tail [37] to Gaussian
distribution.

We note that a study of the scaled distribution func-
tions (for the related directed polymer problem at 7T"=0
and for the ballistic deposition model) has been recently
carried out in the early-time regime by Kim, Moore, and
Bray [38]. For both models, they found that the scaled
J

distribution was universal and asymmetric. More recent-
ly this work has been extended for the directed polymer
problem by Krug, Meakin, and Halpin-Healy [28]. An
analytical determination of this distribution function in
the early-time regime remains a challenging problem.

B. KPZ equation

We have also numerically integrated the KPZ equation
in d =2 in order to determine the universal coefficients u,
and u; and the universal amplitude ratio R directly. The
KPZ equation was integrated on a lattice with grid spac-
ing Ax and system size L (in units of Ax) using the
discrete representation [25]

h(i,t +1D)=h(,0)+At(v/AxH)[h (i +1,6)=2h (i,t) +h (i —1,1)]
+At(A/8Ax2)[h(i +1,6)—h(i —1,0)*+ V2D At /Ax £(i,1) , (63)

where £(i,¢) is Gaussian noise of unit strength indepen-
dently generated at each site. Typically, we took Ax =1
or Ax=1 while At was taken to be 0.005 or 0.01, and
periodic boundary conditions were used. Care was taken
to keep At small enough so that we obtained reasonably
good convergence, i.e., the results were independent of
At. As a test of our integration scheme, we first studied
the linear (A=0) case for a variety of values of D and v
and obtained good agreement [39] with the exact result
w2(L, 0 )=2Dt'"?/V2mv [Eq. (41)].

As a further test of our integration scheme as well as of
our scaling predictions (21b) and (25b), we also measured
the steady-state quantities #; and g, directly. Figure 11
shows plots of the saturation width w (L, ) as a function
of system size L from integration of the KPZ equation
with D =1, v=1 (Ax =1,At=0.005), and two different
values of A. We see that within fluctuations, the satura-
tion width is essentially independent of A as predicted.
From the slope of the best fit to the data, we obtain
u; =C; /V' D /v=0.29, which is in reasonable agreement
with the value u; =1/v12 (0.288) predicted by Eq. (42b)
for the case of periodic boundary conditions. The corre-
lation function G (x,0) (for a system of size L =512) was

—

also measured (see Fig. 12) for two different values of A
and as expected, very little dependence on A was found.
The slope of the fit is about 0.45 in approximate agree-
ment with the mode-coupling prediction 4, =D /v=0.5.
The value obtained is slightly lower than predicted, most
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FIG. 11. w(L, ) vs L'/? from numerical integration of the
KPZ equation for D =0.5, v=1.0, with A=0 and 5. Solid-line
fit has slope C; =0.20+0.01.
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Scaling plot of data in (a) using Eq. (18).
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likely because of the small system size.

In order to measure the coefficient u, and the ampli-
tude ratio R directly, as well as to test our general scaling
relation Eq. (18), we also measured w(L,t) at early times.
In these simulations, the system size (L =2!8) was taken
to be very large to avoid saturation effects, with Ax =4
and Ar=0.005. Figure 13(a) shows log-log plots of our
raw data for the surface width w(L,t) in d =2 for three
different values of v (v=1.0, 1.3, and 2.0) with D =0.5
and A=5. We note that for v=1.0 and v=1.3 the data
already show the expected ¢!/? behavior at late times.
Figure 13(b) shows the same data scaled using the scaling
form (18). The data scale reasonably well using this form.
The small deviations observed are within the fluctuations
and are essentially due to the difficulty of integrating the
KPZ equation for long times accurately. From the mea-
sured values of C, for v =1.0 and v=1.3, we obtain
u,=C,/[A3(D/v)*/3]=~0.61, which is close to our
mode-coupling-approximation  prediction  u,~0.71.
Combining the measured values of u, and u;, we obtain
R =u,/uf’*~3.2+0.1, which is in reasonable agreement
with the value R =3.4510.05 obtained earlier from our
discrete simulations.

V. DISCUSSION AND CONCLUSION

Using a scaling approach, we have derived expressions
for the behavior of the asymptotic surface-width and
correlation-function amplitudes as a function of macro-
scopic parameters for several different surface-growth
models. From these expressions, we predicted a variety
of universal amplitude ratios as well as universal scaling
functions for these equations. We note that, in contrast
to the type of scaling arguments used to predict ex-
ponents (which involve estimating the scaling behavior of
fluctuating quantities over different length scales) our
scaling analysis is exact. The only implicit assumption is
that there are no additional length scales, such as small-
length-scale cutoffs, which (while not present in the con-
tinuum equations) become important in the analysis of
discrete models.

In particular, we assumed that the noise correlations
were of the form (n(x,t)n(x’,t")) =81 x—x")8(t —t'),
with no short-length-scale cutoff on the & functions. For
some models, such as the KPZ equation for d >3 for
which a phase transition is known to occur [3,16,17], this
may not be the case. One example is the problem of a
one-dimensional interface with surface tension v, which is
roughened by quenched random impurities of strength A
at a temperature 7. For this problem, the equal-time
correlation function amplitude ( 4, ) has been shown [40]
to depend on a transverse cutoff length (a ) as well as the
macroscopic parameters 7, v, and A. In this case, how-
ever, a scaling analysis similar to ours, but which takes
into account the short-length cutoff, may still be per-
formed.

In the case of the KPZ equation in d =2, however, our
assumption that the short-length-scale cutoff is irrelevant
in the asymptotic limit is justified by the fact that our
mode-coupling approximation yielded the same scaling
form as obtained from our scaling analysis. In particular,
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our mode-coupling analysis indicated that the growth
coefficients, as well as the steady-state coefficients and
amplitude ratios R and Rg, are independent of cutoffs in
the asymptotic limit and thus are truly universal. In ad-
dition, our simulation results appear to confirm this re-
sult. In the case of the other surface-growth models we
have analyzed (Secs. IID and IIE), we expect this as-
sumption also to hold for d <d,, since a similar scaling
analysis [42] predicts correctly the growth exponents for
these models. We note that results similar to ours for the
KPZ equation have also been obtained by Hwa and Frey
[41] for the correlation function G(x,t), using a self-
consistent mode-coupling analysis, which they claim is
exact. The value of R predicted (0.69) is consistent with
our simulations.

We now summarize our results for the KPZ equation
in d =2. From simulations of two different discrete mod-
els we have confirmed the existence of a universal scaling
function of the form of Eq. (22a). In addition, from simu-
lations of three different discrete models for several
values of the driving force f, we have determined the sur-
face width amplitude ratio R ~3.45+0.05, the correla-
tion function amplitude ratio R; ~0.71, and the velocity
scaling amplitude ratio R, ~6.510.1. We note that our
results for R, are somewhat higher than expected on the
basis of known results which imply R, =6.0 for the
single-step model. However, we have shown that this is
most likely due to crossover effects. Our results for R
may be compared with recent work by Krug, Meakin,
and Halpin-Healy [28] who measured the universal am-
plitude ratio ¢, =[C}/(|A| 42)**1=u?/g}*~0.40.
Since g, =1 this implies R =1/c, /u}’*~3.3 in reason-
able agreement with our results. Our results for R imply
that for the experimentally measurable case of free
boundary conditions, R/=R /22/3~2.1.

In addition to our simulations, we have also carried out
a mode-coupling-approximation calculation using the
first-order renormalization-group equations. From this
calculation we confirmed the scaling forms predicted by
our scaling analysis and found reasonable agreement with
our simulation results, finding in particular u,~0.71,
R ~3.7, and R;=g,~0.63. In addition, we found very
good agreement with our simulation results for the scal-
ing function F(x) with periodic boundary conditions.
From our mode-coupling calculation we also confirmed
that the steady-state coefficients are the same as for the
linear (A=0) case, for which we found u; =1/V'12,
uf=1/v6,and g, =1.

We have also determined the universal constants and
amplitude ratios from direct integration of the KPZ
equation in d =2, from which we obtained R =3.2%0.1
and u,~0.61, in reasonable agreement with our simula-
tion results, as well as obtaining good agreement for the
steady-state coefficients u; and g,. Good agreement with
our general scaling form (18) from simulations for
different values of v was also obtained. One problem that
still remains is an exact analytical determination of the
universal coefficients u, and g,. Similarly, it would be in-
teresting to know if there is a simple relation between R
and Rg, or if these two quantities are essentially indepen-

dent universal constants.

The results obtained here should be useful in establish-
ing a more quantitative connection between the KPZ
equation and various discrete growth models. In addi-
tion, we expect that the scaling analysis employed here
should be useful in the analysis of experiments and in the
study of a variety of other models of surface growth. The
concept of universal amplitude ratios and scaling func-
tions is one which will most likely be applied rather gen-
erally to both experiments and models in the future. In
particular it is interesting to speculate that Eqs. (18)-(26)
might also hold in the case of the Zhang model [36] of
surface growth, which is a generalization of the (discrete)
KPZ equation to include a power-law distribution in the
noise amplitude [P(n)=1/9*"']. For this model, u-
dependent exponents have been observed in both d =2
and 3 [35-37,43,44]. In d =2 it has been suggested as an
explanation for recent experiments on flow in porous
media [29,30]. However, the application of our scaling
ideas in this case is not entirely certain, since it has been
argued [45] that the Zhang model does not correspond
properly to a continuum form of Eq. (2).
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APPENDIX

In this appendix we derive Eqs. (40) and (53) for the
surface width w?(L,t) and correlation function G (x,¢) in
the linear (A=0) case, which are the starting point of the
mode-coupling calculation.

1. Calculation of surface width w (L, ¢t)

transform hk,t)
Edwards-Wilkinson

Performing the  Fourier
=(1/2‘rr)ffwdx e *h(x), the
equation becomes

%—’Z:—vkzmﬁ(k,:) , (Ala)
where

<ﬁ(k,t)ﬁ(k',t'))=%8(k +k')o(t—1t') . (A1b)
The solution of (A1) may be written as

ﬁ(k,t)=f0'ds Ak, s)e ~ vk =9 (A2)

assuming a flat interface [4 (x,0)=0] at t =0. The width
squared w? is then given by

w?=(h(x,1)*)
=(/ 7 k™R [ arre i) .

Substituting (A2) into (A3), and taking into account Eq.
(A 1b), we obtain

(A3)
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w2=£f°° dkftdse—2vk2(t—s)

s dk—(l e k) (Ad)

27Tv

Putting in cutoffs A; ~1/L and A, ~1/a due to the sys-
tem size L and the lower length cutoff a, we obtain

fdk

—2vk t)

wiL,t)= (A5)

2. Calculation of u for free boundary conditions

We would like to calculate the quantity w (L, ),
where w f(L, o0 ) is the surface width at saturation in a re-
gion of size L embedded in a much larger system of size

N. By definition we have
2
[th (x,t)dx} > .
0

wf(Lt < fh xtdx> <£2
(A6)

Substituting for h(x,?) its Fourier transform as above
and using Egs. (A1b) and (A2), this may be rewritten,

fdk

X(l_e—ka t) ,

wi(L,t)= [(kL)?/2—14cos(kL)]

(A7)

where A,~1/a and Ay ~1/N. In the t— o (saturation)

limit, this becomes (taking # =kL, L/a>>1, and

L/N—-0)

2 _2DL po 1 . 5 0 _D

WHL, 00) =% [ “du—r[u?/2—1+cos(u)] =L
(A8)

J

<f dk e xR (k¢ +z')f_°° dk'e“""'ﬁ(k’,t’)>.

Substituting Eq. (A2) as before this becomes

Clxn= [ dice™= 4 [ ag Rtk s1e 0079 [ der e [ Tdst Rk, sne N

Taking into account Eq. (A1b) we obtain

k2 nD o : t+1
C(x,t)=e vk“(t+2t )_f dk elkxf ds
T — 0

:e—vkz(r+2t')2 fjo dkeikxf_+d(As )S(As)fo'ldSeZVkZS ,

lkX(e‘vkzt_ —vkz(t+2t’))

e

’

xt—2—m/f dk

where As =s—s'and S

fdk

zkx —vk?2t
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which implies uf =1/V/6.

This result may also be obtained from an analysis of
the single-step model as follows. For the single-step mod-
el, it may be shown [34] that at saturation the interface is
a random walk of up (o;=-+1) and down (o,=—1)
steps. For a given walk (realization of {o;}),
(h), =1 /L}_‘,{“h» where h; =3} _,0,, which implies

(h), = 2 —i+1)o;

i=1
and

i

20

=1

L L
W)= W= T

Averaging over all realizations of o;, we obtain

({h?).),=1/LSEi=L /2 for large L, and
1k .

(((h)L)2>a=F2(L—z+1)2=L/3
for large L. Subtracting we obtain wf(L w0 )=L/6,
which implies Cf =1/V/6. For the single-step model,
D/v=1 since for periodic boundary conditions,
C,=1/V'12 and u, =1/V'12. (This is also consistent
with A4, =D/v=3F (0?)/L=1) Thus, u{=Cf/
v'D /v=1/V6.

3. Calculation of G (x,t) for Edwards-Wilkinson equation

We first note that one may  write
G(x,t)= 2C(O 0)—2C(x,t), where C(x,t)={(h(x +x',t
+t')h(x',t')) and A(x,t)=h(x,t)—(h(x,t)),. For the

case A=0, {h(x,#)),=0 so that in terms of the Fourier
transform A (k,t) one may write

(A9)

(A10)

2 t 2.0
er sf dsle‘vk SS(S—S’)
(4]

(A11)

=(s +s’)/2. In the saturation limit (¢’ >>L?) this becomes

(A12)
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so that
G(x,t)=2C(0,0)—2C(x,1)

2D > 1. — vkt
ol dk~ 7 [1—cos(kx)e ™7 .

Putting in the appropriate cutoffs, we obtain Eq. (56).

(A13)
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