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Semiclassical chaos in quartic anharmonic oscillators
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Quartic anharmonic oscillators with dissipation and external force terms are studied in the semiclassi-
cal approximation. The equilibrium states are related to the quantum states by ratios of the semiclassi-
cal to quantum scales in length, action, and energy. The ratios give a measure of the departure of semi-
classical from quantum invariants. In three cases semiclassical chaos is found to occur with the destruc-
tion of the equilibrium states and/or semiclassical invariants, but the quantum states are not destroyed.
The fourth case is anomalous.

PACS number(s): 05.40.+j, 03.65.Sq, 05.45.+b

I. INTRODUCTION

The possibility of quantum chaos has been investigated
by quantization of classical maps [1] and by the introduc-
tion of Lyapunov exponents for quantum dissipative sys-
tems [2] and for quantum systems driven by external
time-dependent terms [3]. A general procedure also fol-
lows from the Zaslavskii criterion, which requires the de-
struction of integral invariants including the energy
states [4]. In this paper we consider the Zaslavskii cri-
terion for quartic anharmonic oscillators with dissipation
and external force terms. We follow a semiclassical
Hamiltonian procedure that gives the canonically quan-
tized energy ground state as well as the semiclassical
Hamilton equations which yield the equilibrium states. It
is shown that the equilibrium states are related to the
ground state by the ratio of the quantum to semiclassical
length scales and the ratio of quantum to semiclassical
action. The quantum and semiclassical scales are explic-
itly stated and provide a measure of the departure of
semiclassical from quantum invariants.

In three of the four cases considered semiclassical
chaos is found to follow from the destruction of integral
invariants and/or equilibrium states, but the quantum
states are not destroyed. The fourth case is found to be
anomalous.

II. BASIC EQUATIONS

We consider the Hamiltonians for four quartic anhar-
monic oscillators with dissipation and external force
terms in the semiclassical approximation. The classical
Hamiltonian with dissipation is not well defined, but the
quantum Hamiltonian can be defined as a complex func-
tion in the semiclassical approximation. Semiclassical
complex Hamiltonians with dissipation have been studied
by several authors and procedures have been given for
finding the decay time [5]. It has been shown by several
investigators that Hamiltonians for the anharmonic oscil-

V(x) = ,'e2ax + ,'e—413x— (2)

6p =+ 1 and e4 =+1. The dissipative term has been
chosen so that Hamilton's equations give the Duffing
equation and the three other second-order differential
equations which follow with @2=+1and e4=+1 from the
Euler-Lagrange equation. The equivalence of the Euler-
Lagrange equation and Hamilton's equations was proved
by Mandelstam and Yourgrau [8].

Utilizing different procedures, three of the four cases
have been considered in the literature [9—11]. Utilizing
terminology from mechanical engineering, the four cases
can be characterized as follows.

(i) Soft spring and positive stiffness [9]:

@2=+1, @4=—1 . (3)

(ii) Hard spring and negative stiffness [10]:

@2=—1, @4=+1 .

(iii) Hard spring and positive stiffness [11]:

F2=+1, @4=+1 .

(4)

(5)

lators can be represented as multinomial expansions in

zk =xk+iyk defined on complex phase space and
z~t)/Bz' is the corresponding operator [6]. The con-
nection between the Hilbert space %„of the quantum-
mechanical system defined on (x „x2, . . . , x„) and the
function space y defined on zk = ipk+qk has been stud-
ied by Bargmann [7] and the extended Hilbert space
which admits complex Hamiltonians with dissipation has
been studied by several investigators [5]. In this paper we
utilize the oscillator variables &2m zk =Apk+imroxk

We consider the quartic anharmonic oscillator Hamil-
tonians

H(p, x, t) =a2p~+ V(x)+ ,'imtoyx —xfcos(Q—t),

where
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(iv) Soft spring and negative stiffness: ued fraction from

@2=—1, @4=—1 . (6)

i Az = [z,H] = [z,z*], aII
(7)

[z,z*]= —2ab,

We now consider the four cases and compare the re-
sults. We utilize the following equations [12):

2 2m co,x,
&

flCt) g %cog

2 E2+ C4a'/3P 2 %cog
E2+ 6'4

3P a'/3P( )

and

mx =Ap — mx,CO/

COg

—Rp = f cos(Qt), —av
Bx

(10)

8z~[z,z*]
az'

where z =ctp+ibx, H(z, z*)=u+iv, a =tri /2m, and
b =m cu, /2. The normalized canonical variable
z =x+iy and the corresponding operator were intro-
duced by Fock in 1928 and have been utilized by Barg-
mann and others [6] in studies of the complex rotation
group and the harmonic and anharmonic oscillators, by
Lanczos in a complex representation of Hamilton's equa-
tions [13], by Hioe, MacMillan, and Montroll in studies
of the anharmonic oscillator [6], and by Strocchi [14] and
Heslot [15] in complex representations of quantum
mechanics.

Hamilton's equations (7) give the equations of motion

and g is a measure of the departure of semiclassical from
quantum invariants. Thus canonical quantization gives
quantum to semiclassical scale ratios in length and action
and energy. The semiclassical and quantum scales are as
follows:

Length Energy Action

Quantum
m co

h (19)

Semiclassical
3P

2 X2
1+

3P x' 3P
(20)

&2 a
X

e4 p
(21)

The quantum to semiclassical ratios provide a measure of
the departure of semiclassical from quantum invariants.
Note that the semiclassical invariants -p ' and diverge
as p~O. The initial value problem with f=O gives the
constants of the motion

mX+ mx+ =f cos(Qt),av
CO Bx

(12) CO']/Ap'= ' mx',
COg

(22)

which is the Duffing equation for @2=+1 and @4=—1,
and no quantization (co, =co).

We consider first the initial-value problem with f=0.
Canonical quantization gives

and
2

+ ,'i+-&a a
co e4 p

H (a,P, y }= — ,'e~+-
Ct)g

[z,z*]= —A'co, ,

and from

(13) Thus the equilibrium states are related to the quantum
states by the ratio of A to the semiclassical action

a'v a@ a
BX ~x BX

mx — mx =const,
COg

(14)

t2

2
XO

2a me@,

e4 /3 A'
(24)

which holds for periodic solutions, we obtain

e~a+3e4Pxo =mco, , (15)

which gives

2
1 ~a

2 62
&4 CO

3P
XO

0.'
(16}

2
XO

2X
g 7

3
[e~+e4(x 0 /x „)]

(17)

where x,|=a/3P, the semiclassical energy is the contin-

The ratios of quantum to semiclassical scales in length,
action, and energy are

f cos(Qt) =trip+ BV
Bx

(25)

Then a new Hamiltonian can be written in terms of the
internal variables

av
(Hp, px)=a p2+ V( )x+ 'imcoyx —xRP+—

2 BX

(26)

The external force term xf cos(Qt) is an interaction
term coupled to the internal variables by x. It is
equivalent to an oscillating string potential added to V.

At f)0 the interactions change x' and p'. The new equi-
libriurn states are found as follows: Hamilton's equations
provide a solution for f in terms of the internal variables
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and new Hamilton equations obtained. The new con-
stants of the motion represent the initial values shifted by
the external force and f can be written in terms of the
new constants. The new Hamilton equations are

and the second-order equation of motion

mx + mx +ax P—x '=f cos(Qt),
COg

(36)

BH .. CO+co, = —iz =co, ap — &m /2x' az* COg

which with no quantization (co, =co) is the Duffing equa-
tion. Note that (36) is a semiclassical equation as is evi-

dent by setting h=0 in the Hamilton equations from
which (36) follows. The quantization rule gives

(27}

2
COg1—
CO a men,

(37)

The new constants of the motion are

&z a
X

e43P ' (28)

and

COPAp'= ' mx',
COg

(29)

f'=
', eiax'— (30)

is the effective force in the internal equilibrium and the
equilibrium energy is

H(a, P, y)= —
—,', e2+ —,

'

COg

+ ,'i+— ~2

co E4 3P
(31)

III. THE CASES F2=+1 AND e4=+1

In this section we consider the four cases (3)—(6).

We see that the semiclassical scales and x', p', H(a, p, y ),
and x'f' are functions of P ' so that the destruction of
equilibrium states occurs as p~O provided that the equi-
librium states exist: ei/e~= —1 and x' is real. Otherwise
the equilibrium states are imaginary. The destruction of
the semiclassical invariants in length, action, and energy
also occurs as p~O provided there is a positive definite
solution of (16) and the invariants are positive definite. In
the following section we consider the four cases (3)—(6).

The ratios of quantum to semiclassical scales in action
and energy are

xo 3P R a ~~a
2

='9
a mco, 3P (1—

x&~ /x, &)

(38)

These ratios with the quantization rule give cubics in g
and co, with solutions which must be positive definite.
The solution defines the quantization region if it exists in
terms of a numerical constraint on the energy scale ratio
3A'coP/a .

The equilibrium states are functions of p ' so that the
destruction of equilibrium states occurs as f~~ as
P~O and co, ~co. The observed period doubling occurs
as co, ~co [16]. The canonically quantized states
fico, ~fico continuously as f~~. The semiclassical
scales are also functions of p ' and are destroyed as
P~O provided there is a positive definite solution for co,
and the scales are physical. Thus for case (i) semiclassical
chaos occurs with the destruction of semiclassical equilib-
rium states and integral invariants if they exist, but the
quantum states are not destroyed.

B. Hard spring and negative stiffness: @2=—1 and @4=+ 1

The Hamiltonian is

H(p, x, t)=a p ,'ax + ,'px——+,'imco—yx x—fcos(Qt)—.

(39)

A. Soft spring and positive stiffness: e2= + 1 and e4= —1

The Hamiltonian is

H(p, x, t)=a p + ,'ax ,'px +—,'imco—y—x x f—cos(Qt) .—

(32)

The quantization rule gives

2'+1='P 2

CO

The ratios of quantum to semiclassical scales are

(40)

2
Xp

2
xci

i6COg

3P (
—I +xo/xi)

(41)
cz mm,

and we find that physical scales exist for a positive real
sum of the continued fraction or a positive real solution
of the cubics in g or co, .

Hamilton's equations give the second-order equation of
motion

CX Ct) V'x' =, Ap'= ' mx',
3P co~

(33)

2 2
, . y o.

co 3P
H( P y)= —,', +—' y

COg

(34}

(42)mx+ mx —ax+Px =f cos(Qt) .
COg2 cxx'f'=—

3
(3&)

The constants of the motion with f)0 are

The equilibrium states for the initial-value problem with

f=0 are (21)—(23) with e2/@4= —1, and they are all posi-
tive definite. With the external force turned on the new
Hamilton equations give
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and

&2—
3

corAp'= ' mx',
COg

2 cxx'f'= ——
3

(43)

(44)

(45)

is less than 0 and there are no equilibrium states.
At f) 0 the equilibrium energy is negative and there

are no real x' or hp'. The ratios of semiclassical to quan-
tum scales are positive definite and diverge as P~O. The
quantum states h co, ~h co continuously. Thus xf~ ~ as
/3~0 destroys the semiclassical invariants, but the quan-
tum invariants are not destroyed.

and the equilibrium energy is

H (a, /3, y ) = —,', + —,
'

Cog

'2
2

+—'I
ci) 3/3

(46)

D. Soft spring and negative stiffness: @2=—1 and E'4= 1

The Hamiltonian is

H(p, x, t)=a p ,'a—x —,'/3—+—,'icky—mx =xf cos(At) .

The equilibrium states are real and they are functions
of P '. The semiclassical and quantum scales are posi-
tive definite. The same considerations hold as for case (i):
as f~ ~ as P~O and co~co„ the semiclassical equilibri-
um states and invariants are destroyed, but the quantum
states are not destroyed.

C. Hard spring and positive stiffness: e2 = + 1 and e4= + 1

This case has been extensively studied utilizing various
procedures [11]. It has been known since the work of
Bender and Wu that there is a singularity as /3~0 in the
energy obtained from the Rayleigh-Schrodinger perturba-
tion series. Subsequently Simon and others utilized a
scaling procedure to find the energy spectrum in the
semiclassical approximation. The Hamiltonian is

(53)

The quantization rule gives

~a + 3/3 A'

e mco,
(54)

mX+ mx —ax —Px =f cos(Qt) .
Ct)~

(55)

The initial value problem at f=O gives imaginary con-
stants of the motion from

which does not have a positive definite solution for co, .
Thus the ratios of the semiclassical to quantum scales are
not positive definite. Hamilton s equations give the equa-
tion of motion

H(p, x, t)=a p + ,'ax + ,'/3—x + ,'im—calyx —xfcos(Q—t) .
&2—X (56)

The quantization rule gives the scale ratios

(47)

and

corAp'= ' mx',
COg

(57)

~a
1

3/3

Cd

Xo—
2

(1+x 0/x, i )

(48)
H(a, /3, y) = —

—,'+ —,
'

'2
2+;r a

co /3
(58)

Hamilton's equations give the equation of motion

mX+ mx+ax +Px =f cos(Qt) .
COg

(49)

is negative for all a, P, y. At f)0 the equilibrium energy
is less than 0 and there are no real x' or hp'. As /3~0 the
unphysical equilibrium is destroyed and co, /co ~—1.

We consider first the initial-value problem with f=O.
The constants of the motion from

IV. SUMMARY

&2—X

and

corAp'= ' mx'
COg

are imaginary and

H ( a, /3, y ) = —
—,
' + —,

'

0

2 2

ci) /3

(50)

(51)

(52)

Three of the four anharmonic oscillators considered
are found to approach semiclassical chaos as the external
force term x'f'(/3 ')~ ~ as /3~0. In the asymptote
/3~0 the equilibrium states are destroyed and/or the
semiclassical scales in length, action, and energy are des-

troyed, but the quantum states if they exist change con-
tinuously as hco, ~hen and are not destroyed. In the
fourth case with e2= —1=@4 the equilibrium states are
unphysical and the semiclassical scales are anomalous
and are destroyed as /3~0. The quantum states if they
exist are not destroyed.
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