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Relaxation of highly vibrationally excited KBr by Ar
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Exact formulation of the impulse approach, also known as the quantum-mechanical spectator model,
is used to investigate the rapid deactivation of highly internally excited KBr, written as KBr*,by Ar-
a phenomenon not previously understood. The model of inelastic scattering at the repulsive wall, ap-
proximated here by a hard-core potential, using the impulse formalism is compared with the experimen-

tally observed results obtained by scattering KBr with Ar. The calculation is in excellent agreement
with the measured results for the 75' center-of-mass (c.m. ) scattering angle, while the calculated results
for the 45' c.m. scattering near the peak (nearly elastic scattering) are a factor of about 1.5 smaller than
the measured results. This is an impulse calculation where the collision energy is supplied by the inter-
nal motion of the target and not by the translational motion of the projectile.

PACS number(s): 03.80.+r, 34.50.—s

The past thirty years have seen a great deal of progress
in the understanding of elementary collision processes
[1]. The underlying mechanism for the relaxation of
highly vibrationally and rotationally excited molecules,
however, remains elusive. Fisk and co-workers [2—5], in
a series of papers, have reported the relaxation of highly
vibrationally excited KBr, denoted by KBr**,by various
collision partners. KBr" produced by the reaction of K
with Br2 in a crossed molecular beam [6] has about 41
kcal/mole of vibrational energy (average vibrational
quantum number =90) and is described by a rotational
temperature of roughly 1500 K (average rotational quan-
tum number =126). The KBr" beam thus produced is
again crossed with another beam which may consist of
Ar, Nz, CO, or other molecules at a modest collision en-

ergy of about 1 kcal/mole (roughly 0.04 eV). The relative
differential cross section for the deactivation of KBr**as
a function of the KBr recoil velocity for several scatter-
ing angles is measured for various collision partners.
There are small differences in the shape of the curves for
the relative differential cross section for different collision
partners, but the important result of the experiments is
that a substantial fraction of the roughly 2-eV internal
energy may be converted into translational energy of rela-
tive motion in a single collision. This is not to imply that
none of the internal energy of KBr" ends up as vibra-
tional and rotational energy of its molecular collision
partner. In fact, recoil velocities of KBr resulting from
the collision of KBr'* with CO2 are smaller than those
resulting from the collision with Ar. This may be the re-
sult of additional channels available resulting from the
collision with COz. The conclusion is that the vibrational
and rotational quantum numbers of KBr** change by
several tens during a single collision. Further, the large
changes in the internal quantum numbers occur with ap-
preciable probability. For example, during a collision
with Ar at a c.m. scattering angle of 75', the probability
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of KBr acquiring a c.m. recoil velocity of 1 km/s is about

4 as large as the probability of having a near elastic c.m.

recoil velocity of 0.2 km/s. The corresponding ratio at a
c.m. scattering angle of 45' is about —,', . It is not possible

to reconcile these observations with the existing theories
[1]. Three-dimensional classical trajectory calculations
using various potential-energy surfaces underestimate
highly inelastic scattering of KBr" by Ar [7].

Relaxation of the vibrational degree of freedom, simply
called the VT process, is described by the Landau-Teller
[1,8] model. This model for atom-diatom collisions ap-
proximates the atom-diatom interaction potential by the
sum of the atom-atom potentials. In addition, it assumes
that the time duration of the collision is much smaller
than the period of internal motion. Both these assump-
tions are well known to the students of scattering theory
as the impulse approximation (IA). LT is a one-
dimensional model in which rotations play no role. This
model, of course, cannot be used to calculate differential
cross sections. In this Brief Report we show how an ex-
act IA calculation developed earlier [9] can be used to
theoretically calculate the differential cross sections mea-
sured by Fisk and co-workers [2—5].

The impulse approach, as formulated by Chew and co-
workers [10—12] has been applied to the vibrational-
rotational excitation of a diatom during its collision with
energetic atoms by Bogan [13], Eckelt and co-workers
[14-17],and Beard and Micha [18]. The basic premises of
the IA have already been mentioned. It has been shown

by the present authors that the resulting equations can be
solved exactly [9] without resorting to the peaking ap-
proximation. One benefit of the exact solution, in con-
trast to the peaking approximation where the two-body t
matrix is evaluated for a given value of the spectator
momentum and which had been used in all of the earlier
atom-diatom studies [13—18], is that the relative momen-
tum p3 and the intramolecular momentum due to
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vibrational-rotational motion q3 enter the formulation on
an equal footing. This permits a solution of the problem
where the collision energy is provided by the vibrational-
rotational motion of the diatom rather than the relative
translational energy of the atom-diatom motion. The ex-
pression for the differential cross section is given else-
where [9] and will not be repeated here. We use a hard-
core potential to represent the atom-atom interaction.
For the internal energies under consideration the lowest
state of KBr is ionic [19]. We approximate the Ar-K+
and Ar-Br hard-core radii by the corresponding values
for Ar-Ar and Ar-Kr, respectively. The latter parame-
ters were taken from Hirschfelder, Curtiss, and Bird [20].
The sensitivity of the calculation to this approximate po-
tential is discussed later. Having selected the potential
we carry out an exact impulse calculation [9]. The
KBr'* wave functions were obtained using a potential
function constructed from spectroscopic constants [21]
and extrapolation by a Pade [2,2] approximant [22], add-
ing the centrifugal term to obtain the effective potential-
energy curve.

Figure 1 is a plot of the differential scattering cross sec-
tion (cm / sr), at a c.m. scattering angle of 75', for vibra-
tionally elastic scattering of KBr (u =90, j =126) by Ar,
as a function of j' (solid circles). Also shown are the con-
tributions to the cross section by collision of Ar with Br
(squares) and K+ (triangles). In addition to the peak due
to elastic scattering, the Ar-Br cross section shows su-
pernumerary rotational rainbows and a rotational rain-
bow [23] at j'=70. The cross section for scattering of
K+ alone by Ar gradually decreases from the peak at
elastic scattering. The scattering amplitudes from the
two scattering centers interfere constructively for even 6j
and destructively for odd Aj. This interference as well as
the rotational rainbows give rise to the complicated pat-
tern for the variation of the differential cross section
(solid circles) for the Ar-KBr system. It should be noted
that the scattering from K+ dominates for large hj while
the scattering from Br makes a larger contribution for
smaller hj. This is entirely appropriate since K+ is far-

ther from the c.m. of the molecule than is Br and a
given change in the relative momentum leads to greater
torque during a collision of Ar with K . Near the elastic
peak the scattering from Br dominates because of the
larger Br -Ar hard-core collision diameter. The cross
section drops sharply when j' exceeds 140 because the
available translational energy is almost used up. The
differential cross section at the c.m. scattering angle of
45 shows modulations similar to those observed at 75'.
The only difference is that the rotational rainbows appear
at smaller values of hj. Again, this is reasonable because
a given change in the linear momentum produces a larger
torque at 75' than at 45'.

Figure 2 gives the same plot as in Fig. 1 for the final vi-

brational level 50. The theory of rainbows for the
vibrational-rotational transitions is under development

[24]. The structure of the differential cross section as a
function of j' is understandably more complicated than
that found in the very instructive earlier [23] study of ro-
tational rainbows in the vibrationally elastic situation.
The Ar-K+ differential cross section clearly shows
several supernumerary rainbows and a rainbow at
j' =240. The reason for large variations in the
differential cross section in the j'=80 to 130 region for
the Ar-Br system and almost no variations at all for the
Ar-K+ system is not yet completely understood. It ap-
pears related to the fact that for a given change in the ro-
tational quantum number a larger change in the quantum
number for the orbital motion, and a greater change in

the phase, is required for the Ar-Br collision than for
Ar-K+ collision. The scattering from K+ again makes
the dominant contribution to the cross section for large
changes in j. Also, even for small changes in the rota-
tional quantum number the scattering from K+ is not
much smaller than the scattering from Br . It is also
seen that, compared to the vibrationally elastic scatter-
ing, the differential cross section is only smaller by less
than a factor of about 10 for u'=50 when about 40% of
the vibrational energy is converted into translational en-

ergy of relative motion. Our model reproduces the exper-
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FIG. 1. Calculated differential cross section for scattering of
KBr (v =90, j = 126) by Ar with a relative translational energy
of 1 kcal/mole at a center-of-mass (c.m. ) scattering angle of 75
and final vibrational quantum number U'=90 as a function of
the final rotational quantum number (j').

FIG. 2. Calculated differential cross section for scattering of
KBr (v =90, j =126}by Ar with a relative translational energy
of 1 kcal/mole at a c.m. scattering angle of 75 as a function of
the final rotational quantum number (j') for v'= 50 (hv = —40).
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FIG. 3. Calculated and measured difFerential cross section
for scattering of KBr (U =90, j =126) by Ar with a relative
translational energy of 1 kcal/mole at a c.m. scattering angle of
75 as a function of the c.m. recoil velocity of KBr. The peak of
the measured cross section is normalized to agree with the peak
of the calculated cross section. The hard-core radii used are
3.40 A for K+-Ar and 3.85 A for Br -Ar. The four curves plot-
ted are (i) Experimental measurements (dotted line), (ii) Ar-KBr
calculation (solid line), (iii) Ar-K+ calculation (dashed line), and
(iv) Ar-Br (dash-dotted line).

imental observation that the large vibrational quantum
number changes take place with significant probability.
For the c.m. scattering angle of 45', the scattering from
Br may be neglected.

Figure 3 is a plot of measured and calculated
differential cross sections as a function of KBr recoil ve-

locity in the c.m. system for a c.m. scattering angle of 75',
the largest scattering angle for which measurements are
available. The calculated differential cross sections in
this figure as well as in the previous ones took K+-Ar and
Br -Ar hard-core radii to be 3.40 and 3.85 A, respective-
ly. The maximum of the measured relative differential
cross section is normalized to agree with the peak of the
calculated cross section. The calculated differential cross
sections were averaged over an interval of 50 m/s of the
KBr c.m. recoil velocity. The agreement between the cal-
culation and the experiment is remarkable. Also shown
in Fig. 3 are the results due to scattering by K+ alone
and Br alone. For nearly elastic collisions scattering
due to Br makes a larger contribution while for highly
inelastic collisions (the ones with large KBr recoil veloci-
ty), only the contribution from K+ is important. When
the K+-Ar and Br -Ar hard-core radii are taken to be
4.81 and 5.44 A, respectively, only the magnitude of the
calculated differential cross section changes; the shape of
the curve for the differential cross section as a function of
the KBr recoil velocity remains unchanged. Similar re-
sults were obtained when the two hard-core radii were
taken to be 3.40 and 5.44 A.

Figure 4 gives a plot of the differential cross section as
a function of the KBr recoil velocity for the c.m. scatter-
ing angle of 45, the smallest angle for which the experi-

FIG. 4. Same as in Fig. 3 except the c.m. scattering angle is
45'. The cross sections plotted are now absolute. The normali-
zation is taken from Fig. 3.

mental observations are available. The curves plotted are
for scattering of Ar by KBr,K+,Br as well as the exper-
imentally observed results. Now the comparison between
the calculations and measured results is absolute, the nor-
malization factor being determined in Fig. 3. Highly in-
elastic collisions are again well described as due to
scattering of Ar by K+ alone. Nearly elastic scattering is
underestimated by the calculation. This appears to be
due to using a very simple model potential and ignoring
the attractive part of the atom-ion potentials. This may
also be the reason that the dip in the differential cross
section at about 350 m/s KBr recoil velocity is not repro-
duced by the calculation.

In summary our model of the relaxation of highly
internally excited KBr" during collision with Ar yields
good agreement with the measured values at a c.m.
scattering angle of 75'. The comparison with the experi-
mental measurements for a 45 c.m. scattering angle
yields good agreement for large KBr recoil velocity,
while the calculation underestimates the nearly elastic ex-
perirnental results by a factor of about 1.5. This is prob-
ably due to the neglect of the long-range attractive poten-
tial, which plays an important role for near elastic
scattering at small c.m. scattering angles. Finally, be-
cause there are so many closely spaced final states in-
volved in the calculation, the KBr recoil velocity distri-
bution as a function of the calculated differential cross
section is dependent only on the relative magnitudes and
not on the shape of the state-to-state differential cross
sections. This, we believe, makes the shape of the calcu-
lated KBr recoil velocity distribution rather insensitive to
the hard-core parameters used.

Thus an application of the IA to a situation where the
collision energy is provided by the internal motion of the
target also marks an explanation of the observed rapid
deactivation of highly excited KBr**.

The authors are grateful to Dudley Herschbach for
suggesting this problem.
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