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Squeezing and antisqueezing for a harmonic oscillator having a sudden change of mass
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Following a recent paper by De Brito and Baseia [Phys. Rev. A 40, 4097 (1989)], the generation of
squeezing is examined for a harmonic oscillator when a sudden change of mass takes place. The
correspondence of such oscillators with the radiation field and some related results, such as modulation

of squeezing, are also considered.
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The investigation of time-dependent Hamiltonians
describing harmonic oscillators (HO), with time-
dependent mass and/or time-dependent frequency, and
their relations with coherent [1] and squeezed [2] states is
a current matter found in several papers [3,4]. It is in
this context that, say, we can mention the well-known
parametric amplifier [5] as an example of a time-
dependent Hamiltonian that generates squeezed states.

In its classical version [5], the parametric oscillator is
described by the equation

i+yx+0Q4)x =0, (1)

where .Q.(t)=a)0(l—l—esina)pt)l/2 is a time-dependent fre-
quency, € <<1, and w, is a pump-wave frequency. The
striking feature of the parametric amplifier is that, under
certain conditions [6] (e.g., @, =2w,, €=y /@), it is able
to oscillate without damping.

The quantum-mechanical version of the parametric
amplifier is described by the Hamiltonian (see, e.g., Yuen,
Ref. [2])

An=fwata+rra*+fa +rta+ra’, 2)

which is quadratlc in terms of creation and annihilation
operators @ and a'. As it is well known, this quantum-
mechanical system is able to generate squeezed states.

Another system which is a somewhat reminiscent of
the parametric oscillator is that described by the Bate-
man Hamiltonian [7]. In a previous paper [8], it was
pointed out that the (time-dependent) Bateman Hamil-
tonian
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belongs to the class of quadratic Hamlltomans, in terms
of creation and annihilation operators @ and a ' that gen-
erate squeezed states of the electromagnetic field.

Here, we intend to pursue further this line and to ex-
amine the possibility of generating squeezed states when
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a sudden change of mass takes place. Starting from Ref.
(8], we define creation and annihilation operators b(z)
and b () in terms of the usual canonical variables § and
P, through the canonical transformation [9]
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b(t)= Y g+i M (Da P (4a)
and

o M 172 ) 1/2/\

b ()= Y q— wMoe | P (4b)
wAh(:,\ri M (t)=M0exp(2)»t), A is a real parameter, and

(6,6 ']=
Substltutmg b(t) and b T(¢) in Eq. (1) of Ref. [8], name-

ly, ﬁ(t)—hw[b (0)b(2)+1 1], we obtain the Bateman
Hamiltonian in Eq. (3), whlch was rederived by many
other authors [10].

At t =0 we have that Eq. (3) describes the well-known
HO Hamiltonian

H=#w@a+1) (5)
with
a=boy= | Lo® RPN T N (©)
== T e | P
Usm% the commutation relations [§,p]=i# and
=1, we can write Eq. (4) in terms of @ and @ Tas
b(t)=p(t)a+v<z)a*, (7a)
fty=vina+unat, (7b)

where (with u>—v?=1)

W) =1VM@)/My+V My/M(1)], (8a)
V=1[VM()/My—VMy/M(1)] . (8b)
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At this point, instead of setting M (1)=Mexp(2At) as
above, which led to the Bateman Hamiltonian, we will as-
sume that the mass of the system changes suddenly as
M,—M,, at t =t,. Accordingly, this can be analytically
modeled by

M(t)=M,0(t,—t)+M,0(t —t,) , ©

where O(7) is the Heaviside step function [6(7)=1 (0) if
720 (7<0)]. Now, it is known that a squeezed state |B)
is a squeezed minimum-uncertainty state for a quadrature

component of the field, @, or 2, (al=a,, al=a,),
defined by
a=a,+ia, . (10)

Following traditional calculations (see, e.g., Yuen, Ref.
[2]) we can show that, for an eigenstate |8) of the annihi-
lation operator b(z) b(t)IB) BB ], we find with
((A9))*=(02)—(o ) for any operator 9,

V)2=l M(1)

2=l —_
(Ag,)=4(p s M, (11a)
M
21 21 770
(A@,)2=L(u+v) 4 TR (11b)

Now, substituting Eq. (9) in Eq. (11), we find, for ¢t <t,,

(A@, =1, (12a)
(AG,)?*=1, (12b)
(AG,)(AG,)=1 . (12¢)

Hence, |B(t)) coincides with a coherent state la)
(@la)=ala)), for t <t,, as it should, since b(¢,)=a [cf.
Egs. (7)-(9)].

Next, for ¢t >t,, we find [cf. Egs. (9) and (11)]

(A, )2=l(1+n), (13a)
1
2—
(A@,)*= 4 TR (13b)
(A@,)(AB,)=1, (13¢c)

with n=AM /M, and AM=M,—M,.

If M, <M, then 1<0 and the quadrature @, (@,) is
squeezed (enhanced); the reverse being true for @, (@,) if
M, >M,. Of course, if 77 << 1, the squeezing is very weak
and becomes irrelevant. The foregoing results show that
a sudden change of mass produces squeezing in one quad-
rature of the field, since the coherent states at masses
different from the oscillating mass are squeezed states of
the oscillator.

What about a physical interpretation? For a HO
suffering from continuous changes of mass (as, e.g., in
Ref. [8]) a paper by Colegrave and Abdala [4] has argued
that the counterpart of such a system (exhibiting ex-
ponential evolution) is a single mode of an electromagnet-
ic field in a Fabry-Perot cavity. Following this point of
view we have that for a sudden change of mass, as as-
sumed in this paper, the counterpart of such a HO would
be a single mode of a (coherent) field inside an optical
cavity having an electrooptical crystal used as a con-
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trolled gate (shutter) for Q switching a laser.

What would happen if we had a sudden change of mass
followed by another sudden one? Namely, if instead of
having the Eq. (9) yielding M,—M, at t =t¢,, we had

M(t)=M,6(t,—t)+M,0(t —t,)O(t,—1t)
+M,6(t —t,), (14)

which yields M,—M, at t =¢t, and M|, >M, at t =t,.
In this case, the connection between the quadrature, say,
a,=(a+a 1z)/2 in terms of the operators b(t), b T(¢), for
t; <t <t,, given by

a,=(u—b()+wu—btw, (15)
with [cf. Eq. (8)]

p=L(V'M,/M,+V'M,/M,), (16a)

v=LV'M,/My—V'My/M,) , (16b)

should be written, in a second step, in terms of b (1),
bM(e) for t > t,. However, since

b(=pb)+vb i), (17a)
5T )y=vb+ub ), (17b)
with [cf. Egs. (8) and (16)]
=LvVM,/M,+V'M,/M,) , (18a)
=LVM,/M,—V'M,/M,) , (18b)
we obtain, from Egs. (15)-(17).
a,=La+a")
=Lu—v)u'—v)b (0+b"T(0)] . (19)

Following the same procedure, we find for the quadrature
a,

=l_at

a, 2i(a a’')
=%{(,u+v)(u’+v’)[5’(t)—b’T(t)]] . (20)
Now, if one assumes that M, =M, which means that the

system returns to its original mass M, then we have [cf.
Egs. (16) and (18)] u’'=pu, v'= —w, and from Egs. (19) and

(20) we obtain (with u?—+*=1)
ay=Hp—vp+v)b6'+b6™M
=%(3,+3"r) (21a)
and
8= (B'—5"). (21b)

2i

In this case for the final state |8’), which is an eigen-
state of the operator b’ fort> t,, we obtain

(A@, =1, (22a)
1, (22b)
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(Aa,)(Aay)=1, (22c¢)
which shows that the system returns from the squeezed
state |8) to a coherent state |3’ ), thus characterizing ex-
actly the reciprocal of squeezing and, to be consistent
with nomenclature, it should be called antisqueezing.

This does not mean that the final coherent state |B')
coincides with the initial coherent state |a) and, of
course, a point deserving a mention is that concerning
the Berry phase for such an evolving system. In this con-
text, a recent paper by Mizrahi [11] has studied the Berry
phase (without assuming the adiabatic hypothesis)
through the use of the invariants of Lewis and Riesenfeld
[12] for time-dependent Hamiltonians as in the present
case.

Since our model following Eq. (14) led to a reversible
squeezing, its control through the mass change, when
available, leads one to think of the possibility of obtaining
modulation of squeezing. If such an effect is of practical
or theoretical interest [13], then the results obtained from
Eq. (14) turn out to also be a motivation in this direction.

As a final remark, we should mention that an alterna-
tive procedure to diagonalize our time-dependent Hamil-
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tonian can be implemented by employing the transforma-
tion (§,9)—(0 (1), P(1)) as [14]

172

A M(1)

= |——
Q1) M, l q, (23)
o= | o "

t)= p .

M) P (24)
This leads to the time-independent Hamiltonian

A A ﬁz A

A(0,P)= oM, +1iMyw50 * (25)

with subsequent application of the Dirac diagonalization
formalism in terms of a new annihilation operator b'#b
yielding, however, the same fluctuations as calculated in
the present approach [cf. Egs. (11)-(13) and (22)].
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