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Line-by-line far-infrared spectra of Hcl in dense Ar: Asymmetric profiles
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A previously reported spectral theory [Phys. Rev. A 44, 3023 (1991)]is used to analyze the existence of
a highly density-dependent asymmetry in the rotational lines of the far-infrared spectrum of HCl in Ar
at 162.5 K and densities between 100 and 480 amagat. This asymmetry is explained in terms of disper-
sive components due to considering mixing effects between lines. In particular, the rotational lines mak-

ing up the spectrum have a super-Lorentzian (sub-Lorentzian) shape in the low- (high-) frequency side.

PACS number(s): 33.10.Cs, 33.10.Ev, 33.20.Ea, 33.70.Jg

In a recent work [1] (hereafter referred to as I) the
influence both of the memory and mixing (nonadditivity)
effects in the far-infrared spectra of Hcl in Ar at
moderate densities (between 100 and 480 amagat) was
quantitatively analyzed. From this study, two main con-
clusions were extracted.

(i) Memory effects, i.e., the existence of a finite correla-
tion time for the absorber-perturber interaction, are not
important at all considered densities.

(ii) Mixing effects between lines are very significant at
all reported densities, especially far from the centers of
the absorption lines where the observed profiles are
markedly non-Lorentzian, in agreement with previous
theoretical and experimental studies on the vibration-
rotation band shapes both for diatom-atom [2—5] and for
molecule-molecule [6—10] systems.

In paper I, the analysis of memory and mixing effects
I

was made on the basis of considering the spectra as a
whole. This Brief Report is devoted to presenting a line-
by-line study. In particular, explicit calculations of the
dispersive components associated with mixing effects
show the existence of a significant asymmetry in the rota-
tional lines, yielding super-Lorentzian (sub-Lorentzian)
lines in the low- (high-) frequency side.

The theoretical model has been described in detail in I.
From Eqs. (3.4)—(3.6) in that paper, it is straightforward
to obtain that, under Markovian conditions, the theoreti-
cal dipolar absorption coefficien a (co) can be written as
a superposition of contributions from individual rotation-
al lines in the form

aM(~) —y aM(~) y [ pMa(i~)+ Ma( c)o]

J J

with

al(co) =j"(co)(J +1)e paa&i(J+ '—)Re[A ( )] (2)

a,j(co)=—,'iri I, f(co)(j+1)e ~ "'1'1+"([(j+2)/(2j+3)]Re[A +2 +&(co)Ai+& J(co)[C(co +& +2)+C(col+&i)]]

+[j/(2j +1)]RetAJ 1 &(co)A&+& J(co)[C(coj i 1) +C( c&o+ il)]]
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where
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(8)

C(co)=( —i co+i, ')

In the above equations n is the number density of the po-
lar active molecules, p is the permanent dipole moment
of the diatomic, co' means the Bohr frequencies of a
quantum rigid rotor, and A. and t, are two phenomeno-
logical parameters denoting, respectively, the squared
absorber-perturber interaction strength and its correla-
tion time.

Equation (1) shows that each absorption line aj (co) is
the sum of two terms: a Lorentzian (secular contribu-
tion) line ao,.(co) with half width I .+, . and shift b, +, .

Eqs. (2) and (5); and a dispersive (interference contribu-
tion) component a, (co), Eq. (3), which accounts for the
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mixing effects between the absorption line j—+j +1 with
the j+l~j+2 line (first resonant term Rl), with the
j —l~j line (second resonant term R2) and with the
emission j+ 1~j line (antiresonant term AR).

Now, the theory is applied to analyze the asymmetry
induced by the dispersive components in the different ro-
tational lines making up the theoretical spectrum for HC1
dissolved in dense Ar at T=162.5 K and at Ar densities
of 100, 200, 300, 400, and 480 amagat. The values of the
stochastic parameters involved in the theory, k and t„
are summarized in Table I in I.

Figures 1 —3 show the behavior of some j-rotational
transition lines for the HC1-Ar system at 100, 300, and
480 amagat (at the remaining Ar densities of 200 and 400
amagat an intermediate behavior is observed). In these
figures the upper, intermediate, and lower drawings
show, respectively, the shape of some secular, interfer-
ence, and final lines. In these figures, as well as in the fol-
lowing, the normalization has been chosen so that the
maximum value of a (co) [=g a (co) j, with 0(j(10,
will be unity for each density. Dotted lines in Figs.
1(c)—3(c) show a (co).
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FIG. 2. Same as Fig. 1, but at 300 amagat.
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FIG. 1. Markovian line-by-line profiles for the HCI-Ar sys-
tem at 100 amagat and 162.5 K, obtained with values for the pa-
rameters A, and t, collected in Table I in I. Each line is indicat-
ed by the initial j of the rotational transition. (a) Secular
profiles ag(co), Eq. (2); (b) interference components al;ico), Eq.
(3); (c) total profiles a, (u) =aoj(co)+a»(co). Dashed line in (b)
is a, (co)=g.aij(co) and dashed line in (c) is a (co)=g.aj (co)
0~j ~10.

0.2—

15050 100 200
(cm )

FIG. 3. Same as Fig. 1, but at 480 amagat.
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the differences between the secular and resulting rotation-
al lines are greater than those at low densities due to the
increasing importance of the mixing effects [1].

(ii) Both at low and high densities the shoulders for
high j values (j)6) gradually disappear because the in-
tensity of the dispersive components for high frequencies
(co) 150 cm ) is practically negligible in comparison
with the intensity of the secular components at the same
frequencies.

A straightforward consequence from the asymmetry
induced by the dispersive components is the observed be-
havior in the theoretical lines az(m): super-Lorentzian
(sub-Lorentzian) in the low- (high-) frequency side. This
result is better understood from Fig. 6, where we have
plotted, for 300 amagat, some Lorentzian and interfer-
ence profiles. It is observed that each dispersive com-
ponent a/~(co) achieves its maximum (positive) value in
the windows between the ao (co) and ao. +,(co) secular
lines and a maximum (negative) value in the windows be-
tween the a++ &(co) and acj. +z(co) secular lines, being neg-
ative or near zero otherwise. In the troughs between two
low secular lines, for instance, j=2 and 3, the positive-
dispersive contribution is greater than the negative-
dispersive contribution, while in the troughs between two
high rotational lines, for instance j=6 and 7, it is the
negative-dispersive contribution that predominates over
the positive part. So, positive-dispersion components at
low frequencies progressively transform into negative-
dispersion components at high frequencies. Thus super-
Lorentzian behavior of the low j-rotational lines becomes
sub-Lorentzian behavior for the high j-rotational lines.

We note the great similarity between Fig. 6 in this pa-

0.6--

0.4--

0.2i

I

t

l

I j=2

(

j

t

it

I

/

l

!

I

I I I

III I

v

-0.1
co (cm )

-1

FIG. 6. Influence of the interference components a»(co)
( ) on the secular profiles apj(co) ( .) due to line mixing
for some j-rotational transition lines at 300 amagat. Vertical
dash-dotted lines denote the positions of the maxima for apj (N).

per and a scheme on the influence of the dispersive corn-
ponents due to line coupling for some j lines in the R
branch of the self- and N2-broadened v3 CO2 vibration-
rotation band (cf. Fig. 9 in Ref. [7]).
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