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Simple local potentials for elastic scattering of electrons by noble-gas atoms
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We study the performance of a simple I-dependent but otherwise local electron —noble-gas potential
consisting of the direct electrostatic terms plus a 1/r polarization potential, which merges into a con-

stant for r ~ rp rp depending on the target atom and the partial wave. This simple one-parameter poten-
tial reproduces low-energy elastic-scattering data by helium, neon, and argon, as well as the most ad-

vanced and sophisticated ab initio calculations. In a partial wave containing at least one occupied
single-particle state in the target atom, the condition that the highest-lying bound state in the local po-
tential has maximum overlap with the corresponding Hartree-Fock single-particle state of the atom, may

serve as criterion for determining ro.

PACS number(s): 34.80.Bm

The theoretical description of low-energy electron
scattering by inert-gas atoms has received considerable
attention for several years [1—7]. Recent studies have
been performed with potentials derived approximately on
the basis of ab initio methods [4—7] or without explicit
reference to a potential by solving a multiconfiguration
Hartree-Fock (MCHF) problem for the electron-plus-
atom system [8]. Earlier calculations based on simple
phenomenological potentials [9] had few accurate experi-
mental data for guidance. Accurate experimental phase
shifts for electron scattering by inert gases became avail-
able relatively late [10], when theoretical work had al-

ready reached a high degree of sophistication, and the
agreement obtained between theory and experiment is
indeed quite satisfactory [5,8]. Probably due to this suc-
cess there are relatively few detailed studies on how well

simple phenomenological potentials are able to reproduce
the accurate phase-shift data available today.

In this paper we study the performance of extremely
simple potentials for the interaction of electrons with
noble-gas atoms. The electron-atom potential contains
the electrostatic attraction by the atomic nucleus (charge
number Z) and the electrostatic repulsion by the N atom-
ic electrons characterized by a charge density —ep(r)
[11]:

2

V„(r)=—Z' + J
' ', d'r' . (1)

All remaining contributions due to correlation, polariza-
tion, etc. are summarized in a simple one-parameter
term

cxd /2r r ) ro
4 (2)—ad /2ro r —ro

where ad is the (experimentally known) dipole polariza-
bility of the target atom, and ro is an energy-independent
distance at which the potential (2) merges into a constant.

At first sight, the potential (1)+(2) appears to lack con-
sideration of exchange effects. One dominant conse-
quence of exchange effects is that the wave function of
the projectile electron is orthogonal to the single-particle
wave functions of the electrons in the target atom [12].
The electrostatic potential (1) is dominantly attractive at

small separations and may, together with the correlation
and polarization potential (2), support bound states quite
similar to the electronic states in the target atom. This is
in fact the case for the potentials used in this paper, so
the automatic orthogonality of scattering wave functions
to the bound states in the potential largely accounts for
exchange effects and the requirements of the Pauli princi-
ple. Exchange effects which go beyond this (automatical-
ly fulfilled) orthogonality requirement are neglected.

The potential (2) has in fact been used on top of a local
approximation to the exchange potential in a study of the
s- and p-wave phase shifts in electron-helium scattering
by Campeanu [13]. Nahar and Wadehra [14]used a simi-
lar ansatz with a smooth cutoff and an energy-dependent
cutoff parameter to describe electron-argon scattering.
Our present ansatz is one level simpler than Refs. [13]
and [14] in that it contains no explicit consideration of
exchange effects beyond the automatically fulfilled ortho-
gonality condition.

Using potentials consisting of the electrostatic poten-
tial (1) and the regularized polarization potential (2) we

calculated the scattering phase shifts for elastic scattering
of electrons on He, Ne, and Ar. The polarizabilities nd
were taken from Ref. [15] and are (in atomic units): 1.38
for helium, 2.66 for neon, and 11.08 for argon. In each
partial wave the (energy-independent) radius parameter
ro was adjusted to give best agreement with the experi-
mental phase shifts of Williams [10] in the energy region

up to 20 eV where accurate data are available. The result-

ing values of the radius parameter ro and the rms devia-

tion 0 between calculated and experimental phase shifts
are listed in Table I. Table I also contains the overlaps

($„1~PH„) between the bound states $„1 (if any) in our lo-

cal potential and the corresponding single-particle
Hartree-Fock wave function(s) illustrated, e.g., for neon
in Fig. 1. The overlaps in Table I are indeed all very
close to unity, and solving the radial Schrodinger equa-
tion subject to the condition that the scattering wave be
orthogonal to the single-particle (Hartree-Fock) bound
states (if any) occupied by target-atom electrons in the
respective partial wave leads only to marginal adjust-
ments in ro and marginal improvements in o. .
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TABLE II. rms deviations between calculated and experimental

(Ref. [10])phase shifts (in units of 10 m. ) for elastic scattering of elec-

trons by noble-gas atoms at energies up to 20 eV. The performance of
the present simple local potential (1)+(2) is compared with the adiabatic

exchange potential (AE) of McEachran and Stauffer (Ref. [4]), the polar-

ized orbital potential (PO) of Duxler (Ref. [19])for helium, and of Dasg-

upta and Bhatia (Ref. [6]) for neon and argon, respectively, and with the
MCHF calculations of Saba (Ref. [8]).

Element Phase AE PO MCHF This work

02 E =20

Q.i
I

90' i80'

He

d

12

7.4
0.97

13

2.9
1.1

6.5
1.6
0.42

4.7
3.8
0.53

FIG. 2. Differential cross section for elastic scattering of
electrons by neon at 20 eV. The experimental points are from
Register and Trajmar [18], the curve was calculated using the

(1)+(2) potential in partial waves up to 1=2. Higher partial
waves up to l =400 were included by the effective range formula

(3).

Ne

Ar

d

f

7.1

2.7
2.0

7.3
4.4

37
1.9

6.6
2.7
2.6

15

5.4
61
2.2

1.6
2.9
1.2

5.8
4.6
9.2
4.3

3.6
2.9
1.1

10
5.1

21

1.5

ison we interpolated the calculated values via a spline
routine and evaluated the rms deviation using the 27
(helium) or 22 (neon, argon) data points given by Willi-
ams. The phase shifts calculated with the present poten-
tial (1)+(2) are shown together with the experimental
data in Fig. 3. In each case the phase is drawn to start at
nba, where nb is the number of bound states in the
respective partial wave. In this way all phase shifts
would converge to zero in the high-energy limit accord-
ing to Levinson's theorem, if the simple potential model
were valid for all energies.

The simple one-parameter local potential consisting of

(1) and (2) describes the available experimental phase
shifts in the energy range up to 20 eV with a rms devia-
tion o of less than 1' in all cases except for the s wave
(1.8') and the d wave (3.8') in the electron-argon scatter-
ing. In the latter case, where there is a pronounced reso-
nance at about 14 eV, our results are nevertheless closer
to the data than the AE and PO results.

For helium and argon the present results are also
better than the fits of Refs. [13] and [14], respectively,
where the deviation between calculated and experimental
phase shifts is 1.5 to six times larger than in our calcula-

1.0- 20- 3.—

0.5- i.0

0.0 0. 5 1.0 0.0 0. 5

l=2

1.0
0
0.0 O. 5 1.0

k (a.u. ) k (a.u. ) k (a.u. )

FIG. 3. Experimental (crosses [10]) and calculated (solid lines) phase shifts for elastic electron scattering on helium (a), neon (b),

and argon (c).
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tion. The fact that the fit in Ref. [13] used the same
cutoff parameter rp in the s and p waves is compensated

by the freedom of choosing one of five different 1ocal ap-
proximations to the exchange potential. The ca1culation
in Ref. [14] also uses an l-independent cutoff parameter,
but it is adjusted independently at each energy and shows
considerable nonsystematic variations at low and inter-
mediate energies.

All in all the simple (1)+(2) potential containing one
phenomenological parameter in each partial wave per-
forms better than most of the available potentials and
even compares favorably with the most advanced ab ini-
tio calculations, namely the MCHF calculations of Saha.
For the d wave in argon the MCHF calculation of Saha,
which does not explicitly refer to an electron-atom poten-
tial, is the only one yielding a rms deviation of roughly
the same magnitude as can be achieved in the other cases.
The rms deviations obtained with the various potentials
under investigation are larger by a factor 2 (our calcula-
tion}, three (Ref. [14]},four (AE) and seven (PO).

The theoretical foundation for the (1)+(2) potential be-
comes sounder if there is an independent criterion for
determining the parameter rp without having to refer to
data. The fact that the fitted potentials support bound
states of more than 99% overlap with the bound
Hartree-Fock single-particle states points towards the fol-
lowing possible criterion for determining rp: in a given
partial wave l choose rp such that the overlap between
the highest bound state and the Hartree-Fock single-
particle wave function with the same number of radial
nodes is a maximum. Reference to the highest bound
state follows from the observation that the overlap of the
lower-lying bound states with the corresponding
Hartree-Fock single-particle states is always close to uni-
ty and rather insensitive to the value of rp.

The above criterion of maximum overlap makes a lot
of sense in the more general context of justifying local po-
tentials for electron-atom scattering. As long as the tar-
get atom is well described by a Hartree-Fock wave func-
tion the orthogonality of the scattering wave function to
the occupied Hartree-Fock single particle states is a strict
consequence of the requirements of the Pauli principle,
and it is brought about in the static exchange model by

complicated nonlocal contributions in the potential. A
local potential without bound states resembling the occu-
pied Hartree-Fock single-particle states would violate
this orthogonality requirement. Maximizing the overlap
between the bound states in the potential and the occu-
pied single-particle states in the target atom means op-
timizing the fulfillment of the orthogonality requirement.

We have redone the calculations with parameters rp
determined by the maximum-overlap criterion described
above. The results are listed in parentheses in Table I.
The values rp obtained by applying the maximum-overlap
criterion agree to within a few percent with the best-fit
values. The rms deviation of the calculated phase shifts
from the experimental values is of course larger when us-

ing the potentials based on the maximum-overlap cri-
terion (which now contain no fitting parameter), but they
are still of the same order of magnitude as the results of
the AE and PO calculation (see Table II}.

Summary. As far as elastic scattering at comparatively
low energies goes, the complicated effects of exchange
and correlation in the interaction of an electron with a
helium, neon, or argon atom appear to be adequately de-
scribed by a single (energy-independent) parameter in
each partial wave. In the ansatz used in the present pa-
per this parameter is the distance rp at which the asymp-
totic polarization potential merges into a constant. The
requirements of the Pauli principle are largely accounted
for by the automatic orthogonality of the scattering
waves to the bound states of the local potential, which
simulate the occupied single-particle states in the target
atom. In a given partial wave containing at least one oc-
cupied single-particle state in the target atom, the condi-
tion that the highest-lying bound state in the local poten-
tial has maximum overlap with the corresponding
Hartree-Fock single-particle state of the target atom may
serve as a criterion for determining the parameter rp.
The values of rp determined in this way agree to within a
few percent with the values obtained by fitting phase
shifts to experimental data. Apparently the correct value
of the dipole polarizability and good fulfillment of the
orthogonality condition required by the Pauli principle
are the key ingredients needed to reproduce experimental
phase shift data in the low-energy region.
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