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Doubly excited states of H and He in the coupled-channel hyperspherical adiabatic approach
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Doubly excited states (DES) of heliumlike systems are studied within the coupled-channel hyperspher-
ical adiabatic approach. The results of the multichannel calculations of the 'S' and 'I" DES of H and

He converging to the second (n =2) threshold are presented and compared with those found in litera-
ture.
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C&„(Q;R)=(sina cosa) ' gg, '"'(a;R)P; (r„rz) . (2)

In this paper we study the doubly excited states (DES)
of heliumlike systems using the hyperspherical adiabatic
(HSA) approach proposed in 1968 by Macek [1] for
describing the spectrum of helium atom. This approach
has been applied widely for studying the effects of elec-
tron correlations in the processes of excitation and ion-
ization of two-electron systems (see reviews [2,3]). In
most of the calculations with the HSA approach the adia-
batic approximation is used neglecting the nonadiabatic
coupling of channels in the system of radial equations
(see, for instance, Refs. [1—6]). To get accuracy compara-
ble with other known approaches one should take nona-
diabatic effects into account [7—12]. The rapid conver-
gence of the HSA expansion established in Refs. [10—12]
enables one to get high accuracy ( 10 a.u. ) of the
spectral characteristics of two-electron atoms using only
a few radial equations. In this paper we apply the
coupled-channel HSA approach to study the low-lying
DES of H and He for which nonadiabatic effects are
essential.

In the HSA approach the total two-electron wave-
function 4 expansion in the hyperspherical coordinates
[R,Q] has the form [1,2]

Ng

+(R,Q)=R g F„(R)4„(Q;R),
p=l

R =(r]+r2) Q=(ct r] r2)

tz=arctan(rz/r] ), r, = [g, , ]I],.], i =1,2 .

Basis functions 4„EL (S (Q)), where L represents
here the space of quadratically integrated functions and
S represents a five-dimensional sphere in six-dimensional
space IR, can be expanded [1] over the standard bipolar
harmonics P; —= ']/& ] (r„rz), [1„12]&[0,1,„],for the

states +'L, " with a fixed total angular momentum L,
parity ~, and spin S,

To calculate the radial functions [F&(R)]„"] and the an-

gular ones [g "](a;R)]; ], one should solve two corre-
sponding spectral problems [(A) and (B)] for systems of
coupled ordinary differential equations with fixed bound-
ary conditions imposed on the finite intervals
R E [O,R,„]and aE [O, m/4] [1,8,11,12], respectively.

In the present work the numerical solution of spectral
problems (A) and (B) has been carried out by the method
of finite elements and by the method of finite differences,
respectively. Construction of the net, approximation,
solution of an algebraic eigenvalue problem, and the pro-
gram realization are considered in detail in Ref. [13].
While solving the Sturm-Liouville problem (B) for angu-

lar functions [g,'"](ct;R)], ] we have used the following
values of the numerical scheme parameters [number of
differential equations N (or number of bipolar harmon-
ics 1,„) and number of mesh points n of the finite-

difference net]: (a) for H 'S', N =8 (1,„=7) and
n =440, (b) for H 'P', N =6 (1,„=3)and n =700;
(c) for He 'S', N =9 (1~,„=8) and n =500 (d) for He
'P', N =8 (1,„=4) and n =720. To calculate deriva-
tives of the HSA functions with respect to R we used
finite-difference formulas of the fourth order of accuracy
and the resulting tabulated potentials were interpolated
by the cubic spline. For a finite-element approximation
of radial spectral problem (A) the isoparametric
Lagrange elements of the fourth order have been used

[12,13].
In the present paper, to classify the DES we have used

the HSA classification [12] based on the general
classification of the HSA basis states [14]. In accordance
with this classification the DES are denoted by the

+'L v(n, q)~ symbol. Here v implies the quantum
number of the energy-level sequence in a given potential
curve, the quantum number n is associated with the chan-
nel threshold, q is the quantum number corresponding to
the eigenvalues of the dipole motion integral [12,15,14],
and the value of p =m.(

—1) connects gerade (p = + 1)
and ungerade (p = —1) HSA states with the value of the
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TABLE I. Correspondence between different classifications of two-

electron DES near the second threshold. Values L, S, and ~ are com-

mon for all schemes. Other quantum numbers used for the DES
classification have the following meaning: n is the principal quantum

number of the separated atom, S is the principal quantum number of an

outside electron, and the index a=a, b, c denotes different resonant

series, lf =n2 —n&, T=m, where n&, n2, m are parabolic quantum num-

bers, A =+1,0. Other quantum numbers are explained in the text.

Lowest

State

0(270)Q

—0.124 901 4
—0.124 901 4
—0.125 921 3
—0.125 932 5

1(2,0)„

—0.124 708 7
—0.124 708 7
—0.125 021 6
—0.125 022 2

0(2,1)„

—0.124 265 2
—0.124 348 0
—0.124 350 2
—0.124 350 7

TABLE III. Dependence of the energy values (in a.u. ) of the H 'P'
DES near the n =2 threshold on the number of radial equations Nz.

State
2s+1L m

number

of
series

's'

1po

'Reference [18].
References [16,24].

'Reference [17].

Cooper,
Fano, and

Prats'

2sSs+ 2pSp
2sSs —2pSp

2sSp+ Ss2p

2sSp —Ss2p

2pSd

Lipsky
and

Conneely

(n, S,a)

(2,S,a)
(2,S,b)

(2,S,a)
(2,S,b)

(2,S,c)

Lin'

S(lf, T)„"

S(1,0)2
S( —1,0)2+

S(0, 1)2

S(1,0)&

S( —1,0)&

This
work

v(n, q)

v(2, 0)
v(2, 1)g

v(2, 1)Q

v(2, 0)„
v(2, 2)Q

Other
calculations

'Reference [4].
bReference [9].
'Reference [26].
Reference [27].

'Reference [28].
Reference [29].

—0.125 955
—0.125 96b
—0.125 965'
—0.125 972 6d

—0.126048'
—0.126098

—0.125 03

—0.125 015'
—0.125 023 3

—0.125 201

—0.123 82

—0.124 34'

—0.124 351'

TABLE II. Dependence of the energy values (in a.u. ) of the H'S'
DES below the second (n =2) threshold on the number of radial equa-

tions N&.

State

N„ 0(2,0)g

—0.148 630
—0.147 168
—0.148 098
—0.148 598
—0.148 654
—0.148 665

1(2,0)g

—0.125 865
—0.125 768
—0.125 828
—0.125 969
—0.125 993
—0.125 995

2(2,0)g

—0.124 855
—0.124 847
—0.124 863
—0.124 900
—0.124907
—0.124909

spin S indicating an additional g or u parity of the basis
HSA functions under the interchange of electrons. The
correspondence between the HSA and other
classifications of two-electron DES near the second
threshold is given in Table I. The comparison between
different classification schemes [3,16—18] of the DES and
the peculiarities of the HSA classification in adiabatic
and diabatic representations have been described in Ref.
[1&].

The results of calculations of the energies 'S' and 'P'
DES of H versus the number of radial equations Nz are
compared with other theoretical calculations in Tables II
and III. It is seen from Table II that for the 'S' states
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the adiabatic approximation gives very good energy
values. Switching on the coupling with the second chan-
nel somewhat shifts the energy levels upwards, the value
of this shift rapidly diminishing with increasing number
of the level U. This means that angular correlations be-
come weaker with increasing v. Inclusion of the third
shell and further increase of the number of equations
changes the energy value only in the fifth or sixth digit
after the point, i.e., inclusion of three shells (six states of
the HSA basis} provides accuracy of calculations not
worse than 10 a.u. The results thus obtained agree
well with the results of other calculations with the in-
clusion of a larger number of states.

Consider now 'P' resonances in the e -H scattering.
The analysis of Table III shows that the behavior of these

Other
calculations

—0.148 782
—0.147 896
—0.148 777'
—0.148 695
—0.148 79'

—0.125 973b

—0.126015
—0.125 845

—0.125 012

—0.124 662d

0-
—2

0 5 (10 )
15

—8-
—10-
—12

20 0 5 (10 )
15 20

'Reference [20].
Reference [16].

'Reference [21].
Reference [25].

'Reference [6].

FIG. 1. Effective potentials W»(R ) =H»(R)+ U„(R )
—0.25R (in Ry) for p =2, 3,4 and matrix element
H„„(R)=(r)@„(Q;R)IBR~B@„(Q;R)/r)R ) of the radial cou-
pling between the second (p=2) and the third (v=3) channels
for H 'P'
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TABLE IV. Energy levels —E (in a.u.) of the He S' DES below the n =2 threshold.

Present work

State

u(2, q)

0(2,0)

1(2.0)',

2(2,0)

0(2,1)

1(2,1)g

2(2 1 )g

One

channel

0.772 151

0.584 316
0.542 052

0.605 546

0.543 870
0.525 622

Three

channels

0.778 002
0.589 393
0.544 563
0.619825

0.547 582

0.526 640

Six

channels

0.778 824

0.590 158
0.544 863
0.621 927
0.547 849

0.527 507

Conneely

and

Lip sky'

0.775 245

0.588 142

0.544019
0.615 133
0.546 940
0.527 203

Burke

and

McVicar"

0.7762

0.5871

0.5427

0.5945

0.5440

0.5257

Bhatia
and

Temkin'

0.778 813
0.590079

0.622 748

0.548 234

Ho"

0.777 87

0.589 92

0.621 98
0.548 09

Oza'

0.7778
0.589 86

0.544 87

0.620 52

0.547 87

0.527 62

Macias

and

Riera

0.778 405

0.589 925
0.544 878

0.619277
0.547 759
0.527586

'Reference [16].
Reference [30].

'Reference [20].
~Reference [21].
'Reference [23].
"Reference [25].

resonances, identi6ed with different potential curves near
the second threshold, differs greatly. For the 'P' 0(2,1)„
shape resonance, switching on the coupling with the
second channel lowers the adiabatic value of the energy
by 10 a.u. Further increase in the number of channels
changes only the Mth or sixth digit after the point. For
the Feshbach resonances 'P' v(2, 0)„(v =0, 1) below the
n =2 threshold, the adiabatic approximation provides en-
ergy values above the channel threshold; only inclusion of
a strong coupling between the second and third channels
shifts these resonances down below the threshold. A
strong coupling between the second and the third chan-
nels is due to the presence of the quasicrossing point at
R = 13.66 between the potential curves (2,0)„and (2, 1)„,
which results in pronounced maxima of the matrix ele-
ments of the radial coupling in the vicinity of this point
(see Figs. 1 and 2). A standard way of removing singular-
ities of the matrix elements at quasicrossings is passing to

the diabatic representation [2,9] in which quasicrossings
become exact crossings. This allows one to calculate the
spectra of DES with the required accuracy in the one-
channel approximation [2—5,9,19], especially for high-
lying states [6]. In the present paper we have calculated
the positions of the 'I" shape and Feshbach resonances
using the procedure of diabatic interpolation [1,4] of po-
tentials in the region 11 &R & 15. We have gotten the
following energy values: —0. 124372 a.u. for the shape
resonance and —0. 126019 and —0.125020 a.u. for the
6rst two Feshbach resonances, respectively. These values
are in good agreement with analogous calculations of Lin
[4] and Christensen-Dalsgaard [9] (see also Ref. [19]),
with the four-channel HSA calculation of the present pa-
per and with the results of other calculations (see Table
III).

Tables IV and V represent the results of the energy-
level calculations of 'S' and 'I" DES of He, including a

TABLE V. Energy levels —E (in a.u.) of the He 'I"DES below the n =2 threshold.

Present work

State

U(2, q)„

0(2,0)„
1(2,0)Q

2(2,0)„
0(2,1)„
1(2,1)„
2(2,1)„
0(2,2)„
1(2,2)„
2(2,2)Q

'Reference [24].
Reference [30].

'Reference [22].
Reference [21].

'Reference [23].
Reference [29].

One

channel

0.668 367
0.556 999
0.530 722

0.550 229

0.527 573
0.517 815
0.545 163

0.526 375

0.517 343

Four
channels

0.692 842

0.563 976
0.534 367
0.597 014
0.546450
0.527 351
0.547 096
0.527 513
0.518014

Lipsky

and

Conn eely'

0.688 36
0.562 92
0.533 86

0.586 56

0.546 21

0.527 13

0.546 81

0.527 45

0.51802

Burke

and

McVicar"

0.6883
0.5625

0.5335

0.5963
0.5448

0.5263

0.5462

0.5270

Bhatia
and

Tem kin'

0.692 89

0.563 89

0.59708

Hod

0.693 13
0.5640

0.597 07

0.546 92

Oza'

0.6928
0.564 01
0.534 32

0.597 07
0.546 47

0.527 29

Macias

and

Riera

0.692 13
0.563 79
0.534 25

0.597 30
0.546 13

0.527 11

0.547 01
0.527 55

0.517 87
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FIG. 2. H 'P' matrix elements

=(4„(Q;R)i'd@„(Q;R)/BR ) for @=2,3 and v=3,4.

20

Q„„(R)

gence of the HSA expansion for DES, though the rate of
convergence for He is somewhat lower than H . Never-
theless, the results of calculations of He DES in the HSA
approach show that it is sufficient to use a small number
((4} of radial equations to get a required accuracy
( —10 a.u). It is seen from Tables IV and V that our re-
sults are in perfect agreement with the best variational
calculations [20—22] and with the 20-state close-coupling
method with pseudostates [23] which provide the most
exact values of DES energies.

The high rate of convergence of the HSA expansion
and the correct and natural way of taking into account
the electron correlations make the coupled-channel HSA
approach very attractive for carrying out systematic cal-
culations of spectral characteristics of two-electron sys-
tems. It would also be interesting to apply the mul-
tichannel HSA approach to study the nonadiabatic effects
on the widths of autoionizing states and photoionization
cross sections of heliumlike systems.

different number of shells. The results thus obtained are
compared with other theoretical calculations. As it is
seen from these tables the contribution of the second shell
is very essential, but decreases with increasing the num-
ber of level v. The analysis of Tables IV and V confirms
the conclusion, made for DES of H, about the conver-
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