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Transparent potential for the one-dimensional Dirac equation
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For the Dirac equation in one dimension, a transparent potential is constructed such that the
transmission probability is unity at all energies. The potential is related to a soliton-type solution of the
nonlinear Dirac equation with a specific type of nonlinearity that exhibits "supersymmetry. "
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To begin, let us review the nonrelativistic version of
the problem that we are going to examine. Consider the
Schrodinger equation in one dimension

d + U(x) 1((x)=sf(x) .
2m dx

It is understood that U(x)=0 if ~x~ is sufficiently large.
If U(x) is such that a wave of any shape incident on the
potential, say, from the left, is transmitted to the right
without reflection, then U(x) is said to be reflectionless
or transparent. If the incident wave is a plane wave, the
transparency should hold for any wave number or ener-

gy. An elegant method for constructing transparent po-
tentials was given a long time ago by Kay and Moses [1].
Later an intriguing relationship between the transparent
potentials for the Schrodinger equation and the soliton
solutions of nonlinear Schrodinger equations was found
by Nogami and Warke [2]. They considered the mul-
ticomponent nonlinear Schrodinger equation

d
2m

—g g„P„(x) P„(x)=e„{t„(x),
v=1

(2)

U(x) = —g g„P (x),
v=1

(3)

with n =1,2, 3, . . . . For each value of n, this U(x) can
be identified with one of the transparent potentials, and
vice versa.

In the simplest case of n = 1, we find

where g )0 and n is the number of the components of
the Schrodinger wave function. They showed exact one-
to-one correspondence between the transparent potentials
constructed by Kay and Moses and the potentials defined

by

solutions of this specific type should be related to trans-
parent potentials [5].

The purpose of this Brief Report is to point out a simi-
lar situation in a relativistic model. In this model the
Schrodinger equation (1) is replaced with the Dirac equa-
tion in one space dimension

[ap+Pm+PS(x)+ V(x)]g(x)=EQ(x), (6)

where and henceforth c =Pi=1 and p = id/dx—The.
relativistic energy E includes the rest mass m, which we
assume to be nonzero. The wave function f is a two-
component spinor. The a and P are 2X2 Pauli matrices,
which we choose to be a = tT~ and P=a, . For the poten-
tial PS+ V, which we specify below, we solve Eq. (6) for
the transmission problem.

The relativistic version of Eq. (2) (with n= 1, for sim-

plicity) is the following nonlinear Dirac equation:

[ap+~m &g, (4'W—» g.[A —a(4'a4)—]]4(x)

=Etc/(x) . (7)

This equation appears in the massive Thirring model,
which in turn is related to the nonlinear cr model in one
time and one space dimension [6]. Equation (7) has a
soliton-type bound-state solution [6—8]. Since a =cr, ap
is real; this allows P to be a real function of x such that
(P a{t ) =0. The question that we now ask is: When used
in Eq. (6), is the potential

PS+ V= Pg, ($ PP) g—„PP— (8)

transparent? The S is a Lorentz scalar and V is the
zeroth component of a Lorentz vector. We will see that
potential (8) is transparent if and only if g, =0.

In solving Eq. (7) it is convenient to express the two
components of 1( in terms of two real functions g(x) and
8(x),

P(x) =(tt/2)' sech(~x), e, = —(A /2m)tc

U(x)= —gP (x), g =2k tt/m .

(4)
p( ) ( )

cos8(x )
sin8(x)

When this U (x ) is used in Eq. (1), the transmission prob-
ability turns out to be unity for any incident energy [3,4].
Note that e, of Eq. (4) is fixed for a given value of g,
whereas s of Eq. (1) for the transmission problem
represents an arbitrary continuum energy. We do not
know of any obvious intuitive reason why the soliton

dn==(m —g, q cos28)qsin28,
dx

d8 = ( m —g, g cos28)cos28 —Ett —g, g
2

(10)

Then Ptg=g2 and PtPP=ri cos28 Equation .(7) becomes
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The above two equations can be combined to yield

ri [(2m g—, rI cos28)cos28 2—E& —g„g ]=const . (12)

We are interested in localized solutions such that
g(x)~0 as ~x ~

~~; then the constant in Eq. (12) is zero.
We also assume that E~ ~m as the interaction is
switched off. There is only one such solution that is given
by

tan8(x) =- a. tanh(~x ) v=(m Es—)'~ (13)
m+E~

2a [Ez +m cosh(2ax ) ]

g, [m +Etc osh(2a x)] +g„[Ee+m cosh(2')]rI (x)=

(14)

Since Eq. (7) is nonlinear, the normalization of P is non-
trivial. We impose the condition

J dxPP= J dxrl =1,
which leads to the energy eigenvalue

(15)

„,»0=[g.(g, +g. )]'" .
[1+(g,/g„)sin g]'~

If g, ~0, Eq. (16) is reduced to

Ee =m [1+(g, /4) ] (17)

The scalar potential S = —g, g cos28 in this special case
becomes

—22
S(x)=

m +Escosh(2~x)
(18)

y=fi/v D, D =m +E+S—V,
Eq. (6) becomes

(19)

1 d E —m+W g=cy, c.=
2m dx 2m

(20)

where 8'is given by

8 ( )=S+ 2EV+S' V—
2m

The above expressions for the solution have been tran-
scribed from Ref. [7] by putting N=2 and rewriting gs,
gi, A,z, and Eii as g„—g„, a., and Eii, respectively [9].
The Es of Eqs. (16)—(18) is fixed for given values of g,
and g„; this Ee should not be confused with E of Eq. (6),
which represents the (arbitrary) energy of the incident
particle.

Let us denote the upper and lower components of tt by
f, and Pz, respectively. Then Eq. (6) can be reduced to a
Schrodinger-like equation by eliminating $2 in favor of
g, . More conveniently, if we define g by

Note that W is energy dependent. We can have a feel
for the energy dependence from Table I, which shows the
value of W(0) for Elm=1.0, 1.5, and 2.0. For the
values of the g's, if we specify z ( & m ), or equivalently
Ez, and the ratio g, /g„, then g, and g, are determined.
Let us arbitrarily assume that a /m =0.1 or
E~/m =1.0513. . . . For the ratio g, /g„, we consider
the following three cases.

Case A. Pure V: g, =0, g„AO.
Case B M. ixture of S and V: g, =g„+0.
Case C. Pure S: g, AO, g„=O.

The W(0) depends on E no matter how g, and g„are
chosen. The energy dependence of W decreases from A
to B, and it becomes very small in C, but it does not
disappear. In fact, the energy dependence of 8' cannot
be eliminated by any choice of functions S(x) and V(x).
Potential C turns out to be exactly transparent, but it is
different from any of those known transparent potentials
(for the Schrodinger equation) that are energy indepen-
dent.

We have numerically solved Eq. (6) with the potential
of Eq. (8), and calculated the transmission probability.
Actually we did this by means of Eq. (20). For the poten-
tial, we considered the three cases A, B, and C, as defined
above. Figure 1 shows the transmission probability

~

T(
versus (E —m) lm for the three potentials. Potential B is
more transparent than A, and potential C is completely
transparent. Although we show results only for
~ =0.1m, we have confirmed that the transparency of
potential C holds for any choice of the value of K

(&m ). Let us add that, for potential C, which is a
Lorentz scalar, there is exact symmetry between positive-
and negative-energy solutions of Eq. (6). Hence the tran-
sparency holds for negative energies (E & —m) as well.
When E & —m, D of Eq. (19) becomes negative, but Eqs.
(20) and (21) can still be used as such.

In the transmission problem with the Schrodinger
equation, the transmission probability ~T~ in general
vanishes at threshold. The result that ~T~ =1 even at
threshold implies that there is a bound state at threshold
[11].To be more precise, this bond state is what Aktosun
and Newton called the "half-bound" state [12]. We
found that potential C indeed has such a bound state.
We first confirmed that potential (I +A, )W'( ,xE=m),
where 0& A, «1, has two bound states, the ground state
with e= —~ /2m and the first excited state with e=O.
Then we examined how the two states vary as A, ~O. Re-
call that U(x) of Eq. (5) also has a bound state at thresh-
old [4].

For the energy range shown in Fig. 1, the kinetic ener-

TABLE I. The energy dependence of W(0), in units of m, of
Eq. (21). Three sets A, B, and C of the values of the g's have
been chosen. In all eases, sc /m =0.1.

1 dD d2D

8mD d& dx
(21) (E —m)/m 0.0 0.5 1.0

It can be shown that D(x) has no zero for any values of
the g's; hence IVof Eq. (21) is well defined [10].

A (g, =O,g„AO)
B(g, =g„XO)
C(g, ~o,'g. =o)

—0.1054
—0.1027
—0.1

—0.1572
—0.1283
—0.0994

—0.2088
—0.1540
—0.0991
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FIG. 1. The transmission probability
~ T~ vs (E —m)/m for

the three potentials A, B, and C, defined in the text. Potential C
is exactly transparent, i.e., ~

T~t = 1 at all energies.

1 d
, +U+ 0+=&4~

2@i dx

where g+=(Pikgz)/&2, and

(22)

U~(x)=S+ S k
2ltl dX

(23)

gy E —m is less than 0.01m, much smaller than the depth
of the potential. The latter is about 0.1m; see the column
for (E —m)/m =0 of Table I. In this sense, potentials A
and B are nearly transparent. At threshold, however, po-
tentials A and B become completely opaque, i.e., ~ T~ =0.
For each of the potentials A and B, there are two bound
states. Unlike potential C, however, the excited state
near threshold has a finite (although very small) binding
energy. If S and V, and hence ~, are all much smaller
than m, and if E =m, the relativistic system is reduced to
its nonrelativistic counterpart; potentials A, B, and C are
all reduced to the nonrelativistic potential U(x) of Eq.
(5), which is transparent. In this sense the opaqueness of
potentials A and B is due to relativistic effects.

In the special case of V=O, the Dirac equation (6) ob-
tains "supersymmetry" and can be reduced to the follow-
ing two uncoupled equations [13]:

In contrast to Wof Eq. (21), U+ are independent of ener-

gy E. The U+ are neither even nor odd with respect to x,
but U+ (x)= U ( —x). It follows from time-reversal in-
variance that the transmission coefficient for U+ is the
same as that for U . If tclm~0 and Etiam, U+ of Eq.
(24} are both reduced to U(x) of Eq. (5). We examined
Eq. (22) numerically and confirined the transparency of
U+ [14,15). Equation (22) is of the form of the
Schrodinger equation. Therefore one might expect that
the transparent U+ belong to the family of Kay and
Moses's potentials. This does not seem to be the case,
however. With the restriction that the transparent po-
tential supports only one bound state of a finite binding
energy, Kay and Moses's method uniquely leads to U (x )

of Eq. (5), except that the origin (x=0) can be chosen ar-
bitrarily. The U(x) of Eq. (5) and U+(x) of Eq. (24) are
all transparent, energy independent, and have the com-
mon feature of two bound states, with c.= —~ /2m and
c.=0, respectively. The solution of the inverse scattering
problem is not unique in this situation.

In summary, we found for the one-dimensional Dirac
equation (6) that the pure Lorentz scalar potential
S = —g, (gtPP) is transparent. Here, P is the bound-state
solution of the nonlinear Dirac equation (7) with g„=0.
An admixture of a Lorentz vector potential mars the ex-
act transparency. We suspect that the problem of tran-
sparency is relevant to the question of whether the
soliton-type solution of Eqs. (13)—(17) is entitled to be
called a "soliton" [8]. It would be interesting to examine
soliton-soliton collisions with the nonlinear Dirac equa-
tion. We can construct more complex solitonlike solu-
tions in the Dirac version of the multicomponent
Schrodinger equation (n ) 1). Such a generalization
would also be interesting.

Note added in proof. Subsequent to completion of this
work we realized that the U+(x) of Eq. (24) do in fact be-
long to the family of Kay and Moses's potentials. In this
situation an analytical solution of the problem is feasible.
We plan to present such an analysis in a forthcoming
publication.

If we substitute S of Eq. (18), we find

2a E~[Ett+m cosh(2tcx) Wttsinh(2ttx )]
U~(x}=-

rn [m +Eiicosh(2ttx)]
(24)
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