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Nonadiabatic Berry phase in rotating systems
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The time-dependent Schrédinger equation for a particle in general rotating systems is solved analyti-
cally, and the exact solutions are used to study the nonadiabatic Berry phase. It is shown that the nona-
diabatic Berry topological phase appears in general rotating systems for purely mechanical reasons and
is observable. An alternative expression for the nonadiabatic Berry phase is given and discussed.

PACS number(s): 03.65.—w

The adiabatic Berry topological phase [1] has been
studied extensively by both theoretical [2—-7] and experi-
mental [8-12] physicists in recent years, and much
knowledge and deep insights have been obtained in con-
nection with physical problems such as the Aharonov-
Bohm effect [3], non-Abelian gauge theories [4], chiral
anomalies [5] and fractional statistics [6], and the quan-
tum Hall effect [7]. In a fundamental generalization of
Berry’s results, Aharonov and Anandan [13] have
dropped the adiabatic condition and studied the Berry
phase for any cyclic evolution by identifying the time in-
tegral of the expectation value of the Hamiltonian as the
dynamical phase. A noncyclic and nonunitary generali-
zation has also been studied [14]. The existence of the
nonadiabatic Berry phase has been verified experimental-
ly [15-17]. It turns out [13,18,19] that a nonadibatic
Berry topological phase defined for any path [0, T]— H in
the Hilbert space H is the same for all paths in H which
project to a given closed curve in the projective Hilbert
space P. This is a very important conclusion. However,
generally speaking, such a definition is too general and
formal to provide a tractable calculation of the nonadia-
batic Berry phase, since it is related to the dynamical
effect on the adiabatic Berry topological phase as a whole
physical problem [19]. In other words, the concrete
study of the nonadiabatic Berry topological phase de-
pends on the specific structure of the Hamiltonian of the
systems.

A general rotating system is a practical model that is of
both theoretical [20-22] and experimental [23] interest,
especially in its quantum-interference effects and related
phenomenon. The analytical solution of a particle in gen-
eral rotating systems can be obtained and the theoretical
predictions can be tested by experiments. We have ob-
tained the adiabatic solution of the rotating system and
discussed a possible experiment to probe Berry topologi-
cal phase in a previous publication [22]. In this paper we
will solve the problem exactly and use it to study further
the nonadiabatic effect on Berry’s topological phase.
Now consider a dynamical system with a Hamiltonian in
an inertial frame r'=(x',y’,z’) given by

ﬁZ
A=——Vv2+U("), (1)
2m

with U(r’) a central-field potential. By means of a canon-
ical transformation in the active sense, one can, from Eq.
(1), obtain exactly a time-dependent Hamiltonian [20]

2 A
A=t vive)-wnt, )
2m

in a reference frame r=(x,,z) attached to a physical sys-
tem that is being rotated at any varying angular velocity
w(t) about a fixed center related to the inertial frame. In
Eq. (2),

L=(L,.L,L,) (3)

is the angular momentum of the system. The equation of
motion for a particle is

Y, (1)
S =A()¥,(1) . 4
Let
V,(t)= exp —éE,t exp —éfzﬂ(t)]
X exp -—éf},a(l) R(riy (1), (5)
then the equation of motion for ¥,(¢) is
ay,(¢)
it ‘g’t =h(t) (1) . 6

In Eq. (5) the radial functions R,(r) are the eigenfunc-
tions of A’ with eigenvalues E, and in Eq. (6) the opera-
tor A (1) is

h(=—uL,, (7)
where

2n=—wo-A0+282 cosatr), ®)
with
A(t)=(sina(t) cospB(t), sina(t)sinB(t), cosa(t)) . 9

The time-dependent parameters a(t) and B(t) are deter-
mined by
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dA(t) _ Tdp(t)
—_— = X = — _ —
T = WOXA), (10) Yim mfo L1~ cosa(n)dr . 1)
with the boundary condition
We note from Eqgs. (21) and (16) that y,, is indeed a
A(T)=A(0), (1n

where T is the evolution period. The solutions of (4) and
(6) are

()= exp +éfzfolﬂ(t')dt' $,(0) (12)
W, (1)=0,(t)R,(r),(0) , (13)
with
0,(1)=exp —éElt exp —éfzﬁ(t)]
i
X exp —nya(t)

X exp +é'13, J'awnar (14)

We now consider a cyclic solution which is related to
Berry’s topological phase. If the initial state is chosen as

¢Im(0)=Ylm(0’¢) ’ (15)

then

W, (t)= exp

i t ’ ’
—ZfOE,m(t )dt ]
x 3 D{!,.(0,a(1),0)

<

X exp[ —im'B(t)]R/(r)Y,,(6,¢) , (16)

where spherical harmonics Y,,,(0,4) are the eigenfunc-
tions of the operator Ez with eigenvalues m#, DY), are

m',m

the Wigner functions with rank /, and E,,, (¢) are given by
E, (t)=E,—mQ(t)% . (17)

After one period, a nonadiabatic Berry’s topological
phase shift will be induced. Using Eq. (11) we have, from
Eq. (16),

V. (T)= exp(—i®,, )V¥,,(0), (18)

where the total phase shift is

q’l’”:%for

Following the definition given in Ref. [13], the dynamical
phase is readily obtained using Eq. (16):

E,m(t>+mi’%ﬁ]dt . (19)

%f0T<‘I’zm(t”ﬁ(t)l\l/,m(z))dt

dp(t)
dt

and the nonadiabatic Berry phase

_ 1 pr
=5 [ B +m cosa()A)dr ,  (20)

geometric phase associated with a curve in the (projec-
tive) Hilbert space, as claimed by Aharonov and Anan-
dan [13]. It is interesting to note that Eq. (21) can be
rewritten as

y{m:_mﬂ(cl) s (22)

where (C, ) is the solid angle that C, subtends at A =0.
This equation indicates that the nonadiabatic Berry phase
can also be regarded as a geometric property of a closed
curve C, in the A-parameter space. This result indeed is
of general nature: For the dynamical systems with a
time-dependent Hamiltonian of the form H(7)=H (R(¢))
with R(¢) a set of parameters, removing the dynamical
phase part, the evolution of the wave function W(¢) is
determined by a set of renormalized parameters
A(t)=A(R(1)). In the adiabatic limit, A(¢)=R(¢), so that
the adiabatic Berry phase can be regarded a geometric
property of the R-parameter space [1]. For our rotating
systems, in this limit, i.e.,

d w
— | 23
ar | Twl <|wl|, (23)
we have
A=Y (24)
[wl

and Eq. (22) becomes
Yim=—mQ(C,), (25)

which recovers the adiabatic results [22]. In Eq. (25),
Q(C,,) is the solid angle that C, subtends at w=0.

Although it is straightforward to obtain Berry’s topo-
logical phase from Eq. (21) [or Eq. (22)] in general nona-
diabatic cases, it should be calculated numerically, since
the solutions of Egs. (9) and (10) should be obtained by
numerical calculation. In what follows we proceed to il-
lustrate analytically the above results through a simple
example. Let

w(t)=(w sing cos(wyt),w sing sin(wyt),w cosd) . (26)

From Egs. (9) and (10) we get
A(t)=(sina cos(wyt), sina sin(wyt), cosa) , (27)
where «a is given by

w cosp —w,

cosa= , (28)
w?—2ww, cosdp+w}

and then, from (21),
Yim = —2mm(1— cosa) . (29)

Obviously, Eq. (29) can be rewritten as y,;,, = —m Q(C, ).
Despite the differences between the situation con-
sidered here and the adiabatic cases [22], the nonadiabat-
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ic Berry phase is, in principle, observable in general rotat-
ing systems. Following the experimental program sug-
gested in Ref. [22], we can extract the nonadiabatic Berry
phase easily from the data by varying appropriately the
initial state and identifying the time integral of expecta-
tion value of the Hamiltonian [Eq. (20)] as the dynamical
phase.

In conclusion, the nonadiabatic Berry’s topological
phase in general rotating systems has been studied in de-
tail. We have solved analytically the time-dependent
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Schrodinger equation for a particle in general rotating
systems. It has been shown that the nonadiabatic Berry
phase appears in general rotating systems purely due to
mechanical effects and is observable. An alternative ex-
pression for the nonadiabatic Berry phase is given and
discussed.
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