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Transient statistics for a good-cavity laser with swept losses
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We study the statistical properties of the intensity of a good-cavity laser driven across the threshold

by a linear variation in time of the cavity losses. This study is performed by using the quasideter-
ministic theory (QDT) for two cases: In the first one, case I, the control parameter a(t) changes
without bound, and in the second, case II, a(t) reaches a fixed value. The validity of QDT is then
analyzed for both cases. We characterize the anomalous fluctuations by the time t at which the
maximum appears and by the value of this maximum o . Our results show that t coincides with
the average of the time of maximum rate of growth of the intensity T. We show that in case I, t
and o scale with ~v and that the relative fluctuations are given by a universal scaling function.
The scaling of t is in agreement with experimental studies. In case II we calculate analytically T,t, and cr, and we show that the moments of the intensity are given through a scaling variable.
All the results are checked with numerical simulations.

PACS number(s): 42.50.Ar, 05.40.+j

I. INTRODUCTION

The laser switch-on can be considered as a dynamical
bifurcation with a control parameter that is continuously
swept in time through the instability point. It has been
shown that because of the critical slowing down displayed
by the laser first threshold, the dynamical bifurcation is
delayed with respect to the time at which the instabil-
ity point is crossed [1]. Deterministic analyses of this
problem in the context of laser physics include the laser
with saturable absorber [2], the laser l,orenz equations
[3], as well as their good-cavity limit [4, 5], class-B lasers

[6], and intrinsic optical bistability [7]. Fluctuations have
been considered for the laser in the good-cavity limit by
numerical integration [8], analogic simulations [9], and
analytic methods in the linear regime [10—12]. Exper-
imental results for CO2 lasers with saturable absorber
[13],Ar+ lasers [14], C02 lasers [15], and semiconductor
lasers [16] are now available. Sweeping-rate dependence
has also been discussed in connection wit, h fluid instabil-
ities [17] and general theories for the decay of unstable
states [18].

Numerical integration of the Fokker-Planck equation,
which describes the action of spontaneous-emission noise
in a good-cavity laser, has shown that the delay persists
when the sweeping rate is larger than the intensity of
the noise [8]. The dynamical bifurcation has been char-
acterized in terms of first-passage-times distribution [10]
and using the averaged intensity [11]. However, experi-
ments in an Ar+ laser driven across the threshold region
by a variation of the cavity losses analyze another mag-
nitude T that is the time at which the intensity has its
maximum slope. This study indicates that, the sweeping
rate v, and T, satisfy the relation ~vT const [14]. A
theoretical determination of T requires the solution of a
nonlinear problem because at this time the system has al-
ready started to be attracted by the stationary solution.
An analysis of the nonlinear deterministic equation has

been carried out and shows the same v i dependence for
T if the sweeping rate is large enough [4]. When the ef-
fect of spontaneous-emission noise is considered, the time
T becomes a random variable and anomalous large tran-
sient fluctuations in the nonlinear regime appear [19,20).
A nonlinear stochastic description is then desirable to
study this problem.

In this paper the study of the anomalous fluctuations
for a good-cavity laser with swept losses is made by gener-
alizing the quasideterministic theory [21] (QDT) to this
problem [22]. This generalization is performed for two
cases: in the first one (case I), the control parameter in-
creases linearly for any time with a sweeping rate v, and
in the second case (case II), it increases in the same way
until it reaches a fixed value a. The first case is of interest
in the study of slow variations of the control parameter.
The second one allows us to calculate corrections to the
instantaneous-change case. In both cases, we study the
validity conditions of the QDT. The QDT is shown to be
valid in case I when the sweeping rate is large with respect,
to the intensity of spontaneous-emission noise D, and in
case II when D is much smaller than the final control pa-
rameter a. We characterize the anomalous fluctuations
by the time t at which the maximum of the variance of
the intensity happens and by the value of this maximum

Numerical simulations show that if the sweeping
rate is of the order of D the maximum of the fluctuations
disappears and the delay in the bifurcation becomes neg-
ligible. When the sweeping rate is larger than D, t„, is
found to coincide with the average of T, (T), for both
cases I and II. This magnitude T is shown to have small
fiuctuations. These results are explained using the QDT.

In case I we find, using the QDT and numerical simu-
lations, that t and cr scale with ~v. This is in agree-
ment with the experimental results for (T) in an Ar+
laser [14]. With the use of the QDT, relative fluctua-
tions of the intensity are shown to be given by a uni-
versal scaling function. In case II we find, by using the
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QDT, that the time dependence of the moments of the
intensity is given through a scaling variable. This re-
sult generalizes the dynamical scaling obtained in the
inst, ant, aneous-change case [19,21]. We also obt, ain ana-
lytical expressions for t and o. , including corrections
to the instantaneous-change case as well as for the mean
value and the variance of T. We check these predictions
with numerical simulations.

The outline of the paper is as follows. In Sec. II the
model and QDT are presented. In Secs. III and IV the
validity conditions of QDT are obtained and the analysis
of anomalous fluctuations is performed for cases I and II,
respectively. Finally, in Sec. V we summarize the most
important results and draw conclusions.

II. MODEL AND QUASIDETERMINISTIC
THEORY (QDT)

The single-mode on-resonance laser can be described
near threshold and in the good-cavity limit by the fol-

lowing equation:

E = aE —B
I
E I'E+((t), (2.1)

where E = Ei + iE2 is the electric-field complex ampli-
tude, a = I' —z (I' and z are the gain and loss parameters,
respectively), and B = Pl (P is a positive parameter,
which involves the coupling constant and the polarization
and population-inversion decay rates). The complex ran-
dom term ( = (i + i(z models the spontaneous-emission
noise. It is taken as a Gaussian white noise of zero mean
and correlation

(( (t)4(t )) =2Db(t —t ). (2.2)

We will study a laser that is continuously driven from be-
low to above threshold at a sweeping rate e, by changing
the loss parameter in the following way: z(t) = Kp —vt,
with a fixed gain parameter. This corresponds to the
experimental setup of Ref. [14]. Therefore the control
parameter is a(t, ) = ap + vt(ap & 0, , v & 0) where

ap ——I' —zp. The time at which a(t) changes sign is

denoted by t, (t = ap/v) —The sta.tic bifurcation is then
reached at t. We will distinguish two cases. In the first
one (case I) the control parameter is changed without
bound,

(2 3)

In the second case (case II) a(t) reaches a fixed value a
at t»t,

ap ift (0
a(t) = t ap+ vt if 0 & t & ti

, a = ap+ ~ts if
(2.4)

The first case is of interest when the stationary-state
value is obtained as a function of the control parame-
ter. The second case is of interest in the study of fast
variations of the control parameter when switching on
the laser.

From a deterministic analysis, a time t* at which the

system becomes dynamically unstable can be defined as
the time at which the solution of the linearized determin-
istic equation starts to grow exponentially [1],

a(s)ds = 0. (2.5)

It can be shown that in cases I and II, if tq & 2t, t' = 2t,
and in case II, if ti & 2t, t' = (a —ap) /2av. In this
deterministic framework t* —t is the delay in the bifurca-
tion. In a stochastic description the dynamical bifurca-
tion point has been characterized in terms of first-passage
times [10] and using the time dependence of the mean in-
tensity [11]. Numerical integration of the Fokker-Planck
equation has shown that for a linear variation in time
of the gain parameter, the presence of the spontaneous-
emission white noise decreases the delay with respect to
the deterministic value [8]. In fact, this delay disappears
when v D. We have checked with numerical simula-
tions [23] of Eq. (2.1) that this result also holds in the
case of swept losses [22].

The stochastic analysis of the dynamical bifurcation
point only involves the linear regime. In order to an-
alyze the anomalous fluctuations, nonlinear terms must
be taken into account. To perform this analysis we gen-
eralize the QDT [21] to the case of a linear variation of
the cavity losses [22].

Let us assume that the initial electric field E, (0) is

distributed according to the Gaussian distribution below
threshold. Therefore the initial intensity has an expo-
nential distribution with mean value, (I(0)) = D/ I

ap

This is valid when nonlinear terms are negligeable, i.e. ,

(1(0)) «I ap
I /B The lin. earized version of (2.1) can be

solved with this initial condition. The solution for the
intensity is

I(t) =I h(t) I' e'f' '~'l" (2 6)

(lh(t) I') = +»
lap I

—2 fo' a(s') ds'd (2.7)

In the linear solution
I h(t) I plays the role of an effec-

tive random initial condition for the deterministic evolu-
tion. The QDT consists in replacing the actual process
(2.1) by a process obtained from the nonlinear determin-
istic solution of (2.1), changing the initial condition by

I h(t) I',

I h(t) I' e'f ~&')0"'
I(t) =

1+2B
I h(t) l~ j e~ fo '&' l"' ds

(2 8)

This approximation is valid whenever two diAerent stages
of evolution can be distinguished: an initial linear fluctu-
ating regime and a nonlinear regime where the evolution
is essentially deterministic. This corresponds to the ex-
istence of a time tp in the linear regime, such that for
times larger than tp the process I h(t) I2 becomes a ran-
dom independent variable

I h(oo) I
. For these times the

evolution will be deterministic. In the following sections

where h(t) is a complex Gaussian process with variance
[10]:
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we use this criterion to obtain the regions of validity of
the QDT.

III. ANOMALOUS FLUCTUATIONS: CASE I

In this section we consider case I [see (2.3)]. We begin
our analysis of the validity conditions of QDT for this
case by calculating the average of the process

I h(t) I~. If
we substitute (2.3) in (2.7) we obtain (I(to)) « (ao + vtp)/B (3.3)

We can also deduce (3.2) if there is a matching time tp

(tp & t), such that the nonlinear terms are negligible for
times smaller than tp and ~v(tp —t) & 2. If this last
relation holds,

I h(tp) Iz=I h(oo) I~ and the evolution for
t & t p is then deterministic. The evolution before t p is
well approximated by the linearized equation (2.6) if the
following condition is satisfied:

e ds
( 2 ~u(t t)-

(I h(t) I') = 1+
V" -/a, //~p

where I(tp) is given by

(to) =I h(to) I (3 4)

(3 1)

This stochastic process becomes a time-independent ran-
dom variable

I h(oo) I
when ~v(t —t) ) 2. In this time

regime the QDT expression for the intensity (2.8) can be
written as I(t )

2 f,
' (ap+ps)ds

I(t) =
I+ 2BI(tp) j f'o("+"') '

ds
(3.5)

and the second term is the stationary intensity at tp. The
intensity for times greater than tp is the solution of the
nonlinear deterministic equation with the random initial
condition I(tp):

I h(~) I2 ev(t t) ——pt

I(t) =
1+ 2B

I h(oo) I f e"(' ')' "' ds
(3 2) If we substitute I(tp) given by (3.4) in (3.5) we obtain

the following expression for the intensity:

I h(t ) I2 ea(t-t) -Pt
I(t) =

1 + 2B
~

h(te) ~

J' e"(* '~* "' de —J' ' e"(* ')' -"'
de)

(3.6)

We can consider two cases ~v )I ap I (fast sweeping)
and ~v &&I ap

I
(slow sweeping). If ~v &I ap

I
the

condition (3.3) is equivalent to

BD 2
gg zpe (3.7)

where zp = ~v(tp —t). If this last condition holds, it can
be shown that

t,o

2B(I h(tp) I ) exp[v(s —t) —vt ]ds « 1. (3.8)
p

Therefore if (3.7) holds with zp & 2, we obtain the QDT
expression (3.2) from (3.6). The validity condition of
QDT in the case of fast sweeping is then given by

BD « 10 if ~v &
I

ap I
.

ap
(3.9)

2B(I h(t) I') 2 f'(a yps') ds'd (( I (3.10)

After some calculations we then obtain a necessary con-
dition for the validity of the QDT in the case of slow
sweeping:

We now consider the case of slow sweeping (~v
&(I ap I). For the linear description to be valid up to
a time tp & t, the average of the second term in the
denominator of (2.8) has to be very small,

« e "" if ~v &&I ap I
.

BD
ap v

(3.11)

These conditions agree when ittv )I ap
I

with the ones
[18] found for the validity of the Suzuki matching proce-
dure [19]. However, when +v ((I ap I

we get a more strin-
gent condition. The diR'erence between both cases is that
in the first case (I(t)) is for times t t of the same order
as (I(0)), whereas in the second case (I(t)) )) (I(0)).
Therefore, for a linear description to be valid up to the
matching time t p & t, the sweeping across the bifurcation
must be faster in the second case.

We have checked with numerical simulations that if
the condition (3.9) is satisfied in the case ~v &I ap I, the
QDT describes correctly the anomalous fluctuations, as
can be seen in Fig. 1. We also give an example in Fig. 2
in which the condition (3.9) is not verified. In this last
figure we see how the QDT description of the average
and variance fails to describe the results of the numerical
simulations of Eq. (2.1).

We now study the transient anomalous fluctuations of
the intensity using the QDT. It is well known that in
the decay of an unstable state (instantaneous change of
the pump parameter), fluctuations, 0.2 = (I2) —(I)z,
have an anomalously large maximum [18—20]. However,
when v D the maximum disappears, as can be seen in
Fig. 3. In this situation the intensity follows adiabatically
the steady-state value associated with the instantaneous
control parameter [8]. We will characterize anomalous
fluctuations by the time at which the maximum takes
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FIG. l. Average intensity and fluctuations vs time for
B = 1/2, D = 10, ap = —0.05, and v=10 calculated from
simulation (solid line) and from QDT (dotted line).

FIG. 3. Fluctuations vs time for B = 1/2, D = 10
ap = —0.5, and v = 0.003 (dash-dotted line) and 0.001 (solid
line). The anomalous fluctuations peak disappears if v ~ D

place, t, , and by the value of this maximum o . We
also consider the time T at which the intensity reaches its
maximum rate of growth. This time has been measured
for an Ar+ laser with swept losses [14].

We have performed simulations of (2.1) for B =
a=0.001, ao ———0.5, and ao ———0.05, and for several val-
ues of the sweeping rate. In Fig. 4, logos(T) and Iogqot~
are represented versus the logarithm of the sweeping rate
for ao ———0.5. In the figure we see that t„, coincides with
the average of T for a large range of values of v. This
last fact can be explained in the framework of the QDT
by considering that the largest amplification of the ini-
tial fluctuations occurs at the time of maximum rate of
growth of the intensity, T. This time T is well defined
(relative fluctuations smaller than 0.06) when v & 1 for
ao ———0.5. This corresponds to the region of validity of
QDT. We also observe in Fig. 4 that for these values of
v, (~ ap ~( V v), the scaling ~v(T) const is verified.
This scaling is in agreement with experimental data [14]

and with deterministic analysis for large enough v [4, 5].
An explanation in the framework of QDT for both the
scaling v/v (T) const and for the small relative fluctu-
ations oT /(T) (where oT2 —(T2) —(T) ) can be given
in the following way. An equation for T can be obtained
from (3.2) by setting d I/dt ~q-T ——0:

ex' X= —(3 —gl —4/X2),
A+ j, e"'du

where

(3.12)

~veap/s

2B
i
h(oo) i'

I~0l/V ~

e dQ, (3.13)

and X = ~n(T —t) This c.ondition is similar to the one
found in the deterministic analysis of Ref. [4]. The differ-
ence lies in the random character of the initial condition

~
h(oo)

~
. The condition (3.12) is an implicit equation

whose solution only depends on the random variable A.

A
V

A
I—
V

10 15
t

20 —3 0
—lo9, p v

FIG. 2. Average intensity and fluctuations vs time for
B = 1/2, D = 10, ap = —0.05, and v=0.02 calculated
from simulation (solid line) and from QDT (dotted line).

FIG. 4. Ioggp (T) (circles), and loggp t (stars) vs logyp v.
If ~v &~ ap (

the points describe a. straight line with a slope
0.499.
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It can be shown by deriving (3.12) with respect to A that
—Xthe variation of the root X is AX e AA. When

~v &~ ao ~, it is easy to see from (3.1) that large vari-
ations of v change slightly the distribution of

~
h(oo)

~

Then the changes in A are essentially due to the ~v fac-
—Xtor. Due to the e + factor there is a large range of

sweeping rates such that AX && 1 and then X const
(note that in the nonlinear regime X & 2). Then, in
this case (i/v )~ ao ~) we get V v(T) const with small
fluctuations for T.

Therefore, we have shown that the T = O(v i/2) law
is correct, provided that V/v )~ ao ~. This result agrees
with the deterministic analysis [5]. If i/v «~ ao

~

the
deterministic result [4, 5] is different: T = O(v i). The
same conclusion can be obtained, including fluctuations,
when the QDT is valid, that is, for small enough values
of the intensity of the noise with respect to the sweeping
rate [see (3.11)]. In the limit v ~ 0 we get from (3.12)
and (3.13) the following expression for T:

C3

0 0.5 1.5
loq io v

I

2.5

FIG. 5. Maximum fluctuations vs logio v for B = 1/2,
D = 10, and ao ———0.5. When ~v &~ ao

~

the points
describe a straight line vrith a slope 0.567.

1+4 'I I+
I/( )I' (3.14)

where P is the value of the following function:

0/

(~) I') J-I I/We"'du

(3.15)

(3.16)

at t, z„, = i/v(t —t), and Ei(p) is the exponential-
integral function [25]. As can be seen from Fig. 5,
where logioo is plotted vs logiov, o /i/v const when

V v &~ ao ~. We can understand qualitatively this scaling
in the following way. First, the denominator in (3.15)
does not change with v, due to the scaling z~ (X)—
const. Second, the numerator is a function that changes
slowly for the values of P found in the simulations. For
instance, P varies between 0.17 and 0.22 when v varies
between v=6 and 600 for the values of the parameters
ao ———0.5, D = 10, and 8=0.5. This variation of
P produces a change in the numerator of (3.15) smaller
than 3%. Note that if we take into account that X has
small fluctuations and (X) z, we can write (3.12) in
the form

1 X= —3 — 1 —4X2.

This result is in agreement with the deterministic analysis
[4]: the domain where T t' = 2

~
ao

~
/v increases when

~
ao

~

increases or when the initial condition increases.
The expression for o~ can be found from (3.2) by av-

eraging over the initial condition
~
h(oo)

~

/' 1
i/2

p I

—ep-Ei(p-) —e' "'&i(p-)'
o„, (p„,

2Be ' I I, I/We"'du

P ~

- .«, (P)-"PE'(P-)
I

&p

(I)
(3.18)

In Fig. 6 we show that by increasing v, this scaling func-
tion is approached. This corresponds to the fact that the
accuracy of the QDT approximation increases with v [see
(3.9)]. This scaling has a different nature than the one
found in the instantaneous-change case [18, 19] for the
time dependence of (I"(t)). Note that due to the fact
that a(t) is always changing with time, (2.3), the mo-
ments of the intensity [see, for instance, (3.15)] do not
scale directly with P(t). In case II we find a generaliza-
tion of the dynamical scaling for (I"(t)).

A
V

should vary slowly with v.
The relative fluctuations for all times are given from

(3.2) by the following universal scaling function:

(3.17)

Therefore, for the scaling X const to be correct (I+P~)

FIG. 6. Relative fluctuations vs InP for the scaling func-
tion (solid line) and B = 1/2, D = 10, ao = —0.5, and v =
5 (dashed line), 50 (dash-dotted line), and 500 (dotted line).
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IV. ANOMALOUS FLUCTUATIONS: CASE II

In this case the control parameter reaches a fixed value
a in ti (ti & t) [see (2.4)]. This is an interesting case be-
cause it permits us to calculate corrections, owing to the
finite sweeping rate, to the instantaneous change assump-
tion made in classical studies of transient statistics [18,
19].

We can distingish two cases: In the first one, a » ~v,
the anomalous fluctuations peak occurs before ti. This
corresponds to case I (slow sweeping). In the second case,
a & ~v, the times of interest are larger than tt. This is
an interesting case because the instantaneous change case
is included here, As in the preceding section we begin our

analysis of the validity conditions of QDT in this case by
calculating the average of the process

I h(t) I
from (2.4)

and (2.7)

(D 2D
(Ih(t) I') =

I
+

&I ap I

e-" du
I

vt
& (

—2at e —2at)D
a

(4.1)

valid for times t ) ti. This stochastic process be-
comes a time-independent random variable Ih(oo)I when
2at )) 1. In this time regime the QDT expression for the
intensity (2.4) can be written as

I(t) = I h(oo) I exp( —vt, + 2at)

( —gt ~v(t y
—t) g t

1+ 2B
I h(oo) I

e" dtt+ (e2at e2att)
~v ~t 2a

(4.2)

BD «10 '. (4.3)

In a way similar to case I, the QDT will be valid when
there exists a time to in the linear regime such that ato ))
1 and (I(tp)) « a/B Whe. n a » I ap

I
this is equivalent

to the following condition:

scaling holds directly for (I"(t)). This is due to the fact
that for the times of interest (t & ti) the pump parame-
ter is constant. We can now write the averaged intensity
and the variance as functions of 0:

(())=—( + )[ — ' ()] (4 7)

Numerical simulations show that when (4.3) is fulfilled
the approximation given by (4.2) is accurate. Recently
another approximation based on a step function for I(t)
has been considered [12]. This kind of approximation
gives very good results in the relaxation from a marginal
state [24]. However, Eq. (4.2) shows that the step func-
tion approximation cannot be correct in the relaxation
from an unstable state.

If we consider a range of parameters such that (4.3)
is fulfilled, an analysis of the anomalous fluctuations can
be performed by using the QDT. The advantage of this
case with respect to case I is that we are able to get ana-
lytical expressions of t and (T) in which the corrections
to the instantaneous change case due to the finite sweep-
ing rate are included. The moments of the intensity can
be calculated by averaging (4.2) over the distribution of
I h(oo) I

. They show a temporal dependence given by a
dynamical scaling parameter 0:

o(8) = —(1+C8)8[1/8 —e Er(8) —e E, (8)]'i,

where

C = B(I h(~) I')(7 —2~)

(4.8)

(4 9)

a
)

BD
I

—+ (e2« —1)
a IapI

(4.10)

BD /'1 1

a a IapI
(4.11)

The moments depend on 8 and C in the same way as in
the instantaneous-change case, but changing C and the
scaling parameter 0. The corresponding parameters 0
and C~ of the instantaneous-change case are

where

2B() ie(oo)
~ ) (o+ —(e '(' ")—1))2

&(a —ao)/+

(4.4)

(4 5)

When v &) a2 we obtain that 8 and C coincide with the
corresponding ones (8 and C ) of the Q-switching.

Now we will characterize the anomalous fluctuations by
t~ and ~, as in the previous case. The value of 0 at t
can be calculated from the condition do/d8Ie t)(t l

—0.
This condition is an implicit equation whose root de-
pends very slightly on C when (4.3) holds, because
C BD/a I ap

I
is very small. The root of the equation

is 8(t )=0.4188. Now t can be found from (4.4)
dQ.

iaoi//v
(4.6)

This generalizes the dynamical scaling found in the
instantaneous-change case [18, 19]. Unlike case I, this

t = —lnI
(

2a (B8(t )y(I h(oo) I )

20.'
+ 1 + tg.

(4.12)
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We now calculate T by setting d I/dt ~, T ——0, where

I(t) is given by (4.2)

1 1 ((i h(oo) iz)

»(I ~(~) P) I h(~) I' ).
(4.13)

The average and variance of T are easily calculated by
averaging over the exponential distribution of

~
h(oo) ~z,

and they read

(T):
2

I
ln

(~ g( ) ~z)
+ '7Euler I

+ i ( ' )

o = 0.2381—. (4.18)

This expression has been also checked with numerical
simulations.

esting fact is that the variance of T only depends on the
final value of the control parameter. The comparison be-
tween the results of the simulations for crT and those from
Eq. (4.15) can be made showing a relative error always
lower than 2% for the parameters of Fig. 5.

Finally, the value of 0. can be easily calculated from
(4.8) for P = 0.4188; therefore a is proportional to the
stationary value of the intensity:

0.6413
(4.15)

where pE„~«—0.5772. In the case a &&( ap (, simple ex-
pressions of t and (T) with corrections of the order
(a/v) to the instantaneous change case can be calculated:

—
~

ln + 0.8704
~
+ —,1 ( a(ap[ l a

2a i, BD j 2v' (4.16)

(T) = —
~

ln + 0.5772
~
+ —.1 ( asap[ ) a

(4.17)

E

I

2
log, o v

FIG. 7. (T) and t vs logio v for B = 1/2, D = 10
u = 5, and ao = —0.5. Circles ((T)) and stars (t ) are the
results of the simulations and the lines are calculated from
(4.16) and (4.17).

The main contribution to t~ and (T) comes from the
logarithmic term, because if QDT is valid then this term
dominates, as can be seen from (4.3). Due to the same
main dependence of t and (T) we obtain, as in case I,
that the time at which the maximum appears is nearly
the average of T. In fact, t is always slightly greater
than (T). The fact that t and (T) are nearly equal can
be inferred from the analysis made in the instantaneous-
change case [19—21]. In this paper we show this equiv-
alence in an analytic way. In Fig. 7 the theoretical ex-
pressions show a good agreement with the results of the
simulations, when the condition a ( i/v is fulfilled. We
also see in this figure that the relation t~ & (T) is veri-
fied according to Eqs. (4.16) and (4.17). Another inter-

V. CONCLUSIONS

In this paper the quasideterministic theory is general-
ized to explain the statistical properties of the intensity
of a good-cavity laser when t,he losses are varied linearly
in time. This generalization has been performed in two
cases, I and II. In the first case the control parameter
changes without bound and in the second one it reaches
a fixed value. We have shown that QDT is valid when
the spontaneous-emission noise is much smaller than the
sweeping rate, in case I, and much smaller than the fi-
nal control parameter, in case II. We have checked the
validity conditions of QDT using numerical simulations.

The QDT has also been used [26, 27] to study the sta-
tistical properties of the transient response of a gain-
switched semiconductor laser. When saturation eA'ects
are negligible, this problem is equivalent to a type-A laser
with swept losses. The intensity fluctuations 0 also show,
for semiconductor lasers, large transient anomalous fluc-
tuations associated with the decay of an unstable state
as in lasers of type A. However, due to the relaxation os-
cillations that characterize the nonlinear regime of lasers
of type B, these fluctuations follow the relaxation os-
cillations. Another difference is the existence of a local
minimum in o at the time that the mean intensity reaches
a maximum in the oscillation.

The QDT is used to analyze the anomalous fluctua-
tions of the intensity appearing in the nonlinear regime
of type-A lasers with swept losses. To characterize these
anomalous fiuctuations, we have studied the time t at
which the maximum fluctuations appear and the value of
this maximum cr . t is found to coincide with the aver-
age of the time T at which the intensity has its maximum
slope.

In case I, when the sweeping rate is large enough with
respect to the initial value of the parameter, we have
found that t~ and o~ scale with the sweeping rate in
this way: t i/v and 0 —i/v. We have also shown
that the dependence on time of the relative fluctuations
is given through a scaling variable In case II, when the
sweeping rate is large enough with respect to the final
value of the pump parameter, we have seen that the mo-
ments of the intensity depend on time through a scaling
variable that generalizes the dynamical scaling found in
the instantaneous-change case. Due to the fact that the
control parameter is constant at the times of interest we

have been able to calculate t and (T), showing in an an-
alytic way that t (T). To finish the characterization
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of the anomalous fluctuations we have also calculated
o.,„,which is proportional to the stationary intensity. All
these facts, predicted by the quasideterministic theory,
have been checked with numerical simulations.
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