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Investigation of a dye ring laser with backscattering
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The dynamics of the two counterpropagating modes of a dye ring laser with backscattering have been

studied experimentally. By varying the power of the pump laser, we have observed the dye-laser intensi-

ties change from random switching to anticorrelated oscillations. When the magnitude of the back-

scattering coefficient R is close to the critical value R„the laser exhibits noise-induced transition be-

tween the switching region and the oscillation region. This noise-induced effect can be attributed to

pump fluctuations. A frequency lock-in effect has been observed in the oscillation region when ~R~ is

near R, . The experimental results are compared with solutions obtained both from the analysis of the

third-order equations of motion and from the Monte Carlo simulations of these equations with additive

and multiplicative noise.

PACS number(s): 42.60.—v, 05.40.+j

I. INTRODUCTION

The effects of backscattering in ring lasers have attract-
ed a great deal of interest since the application of a He-
Ne ring laser as a gyroscope [1]. Backscattering causes
frequency lock-in between the two counterpropagating
modes when the laser is used as a gyroscope. Even for a
nonrotating ring laser, backscattering can have a major
effect on the behavior of the two modes [2—16]. Studies
of the inhomogeneously broadened ring laser have shown
that under certain conditions the two counterpropagating
modes can exhibit anticorrelated oscillations [2—8] and
sudden m. changes of their phase difference [4,5,7]. Both
anticorrelated oscillations and sudden m changes of the
phase difference have been observed experimentally in a
He-Ne ring laser [4,5,8].

In a homogeneously broadened ring laser, on the other
hand, the two counterpropagating modes exhibit random
intensity switching when the laser is operated above
threshold [17—20]. In this case backscattering can dras-
tically change the behavior of the laser and suppress the
mode switching [2,3,12—16]. Kuhlke and Jetschke [2]
first showed the existence of a critical value R, of the
backscattering coefficient R for instabilities to develop in

a homogeneously broadened laser, by analyzing the deter-
ministic equations of motion without noise terms. For
the case of ~R ~

less than R„they obtained a stable solu-
tion for the two mode intensities when the backscattering
is "off phase. " Their results do not show the usual ran-
dom switching of the intensities because of the absence of
additive noise terms in the equations. When ~R

~
is larger

than R„they obtained solutions of self-sustained intensi-

ty oscillations. Their solutions showed that the oscilla-
tions are anharmonic when ~R

~
is close to R, and become

harmonic in the limit of large ~R~. These intensity oscil-
lations have been observed experimentally in ring dye
lasers [14,15]. Recently, we have used Monte Carlo
simulations to study the equations of motion with back-

scattering and in the presence of both additive noise and
multiplicative noise [16]. Our simulation results indicate
that the laser with "off phase" backscattering has two re-
gions of operation: the switching region and the oscilla-
tion region. The model also shows that a sudden change
of phase difference of ~ between the two modes can occur
in both regions whenever one of the two intensities is
zero. The most interesting feature to emerge from the
simulations is the multiplicative-noise-driven transition
from one region to another when ~R ~

is close to R, .
Recently, Spreeuw et al. [8], using a standing-wave

representation for the coupled equations of motion in-
stead of the usual traveling-wave representation, inter-
preted the intensity oscillations to result from the fre-
quency splitting of the mode structure of the correspond-
ing passive ring cavity. They experimentally observed
the frequency splitting in a He-Ne laser [8] and in a ring
dye laser [15]. Using their standing-wave approach, they
also showed theoretically the existence of R, in a homo-

geneously broadened ring laser.
In this paper we report on experiments performed on a

dye ring laser with backscattering. The two mode inten-
sities of the laser in both the switching and the oscillation
regions have been measured. When ~R

~
is close to R„we

observe noise-induced transitions between the switching
region and the oscillation region. The experimental re-
sults are compared with our previous conclusions from
computer simulations [16]. We also observe a frequency
lock-in effect in the oscillation region. For a laser gyro-
scope, the frequency splitting is associated with the rota-
tion rate of the gyroscope, and the lock-in effect is due to
the backscattering. In our case, the frequency splitting is
connected with the backscattering and the lock-in effect
is due to cross saturation of the two counterpropagating
modes. We also observe frequency splitting in our mea-
surements. The experimental results are compared with
the solution of the deterministic equations and with the
results from the Monte Carlo simulations.
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II. EQUATIONS OF MOTION

(q,'(t)qj(t')) =45;,5(t t') (i,j—=1,2),
I

(p "(t)p(t') ) = exp
Tp Tp

(2)

(j =1 2), (4)

58=m (8, +—82) . (6)

Here E& and E2 are the complex dimensionless ampli-
tudes of the two counter-propagating modes, a, and a2
are their corresponding real pump parameters, R, and

The starting point for our treatment is the semiclassi-
cal third-order coupled equations of motion for two
modes of a single-frequency homogeneously broadened
ring laser. With the introduction of additional terms
representing backscattering, additive noise, and multipli-
cative noise, the equations of motion can be written in the
following dimensionless form [10,20]:

E, =(a, —(E, [
—2)E2) )E, +R,Ez+pE, +q, ,

(1)
IE21' —2IE ) I')E2 +R

ATE|

+pE2 +q2

R 2 are the dimensionless complex backscattering
coefficients, q, (t) and qz(t} are 5-correlated noise terms
representing spontaneous emission fluctuations and other
additive noise, p(t) is the colored multiplicative noise
representing the pump fluctuations, Q is the strength of
the pump noise, and T is the correlation time associated
with the pump fluctuations. The backscattering is cus-
tomarily said to be "off phase" when 8&+8&=(2n +1)m
and "in phase" when 8&+82=2nm (n is an integer} [2].
We include multiplicative-noise terms in our equations
because the effects of pump fluctuations are known to be
significant for a dye laser operated not far above thresh-
old [20—22,26]. The multiplicative noise is also impor-
tant in explaining the dynamics of the laser when ~R~ is
close to R, . Since there is no simple analytic solution for
these nonlinear stochastic equations, numerical solutions
are obtained by using Monte Carlo simulations in Sec.
III.

If the multiplicative-noise terms are neglected, the
steady-state solution for Eq. (1) can be obtained analyti-
cally under certain conditions. To the coupled Eq. (1)
without multiplicative-noise terms, there corresponds a
four-dimensional Fokker-Planck equation for the joint
probability density P(E„Ez,t). The steady-state solu-
tion P, (E„E2)for the joint probability density when

R, =R 2, is given by

P, (E),E2)=const X exp[ —,'a& IE& I
+—,'a2 IE21 —,

'
IE& I

—,
' IE21 IE& I IE21 + [ ', (R &+R2 )—E', E2+c.c.]] .

After integrating over the phase difference P, we have for
the joint probability density of the two mode intensities:

P(I„I2) =const X I 0( ~
R

~ QI, I2 )

Xexp[ —,'(a, I, +a,I, ) ,'I f ,'I', ——l,—l,]—, —

R, = a(g —1)
2&2(g+ 1)

(9)

where g is the cross coupling constant for the two modes
and a(=a, =a&) is the pump parameter. g is 2 for a

where I& = lEqI, I2=1E21 IRI=IRy I =IR21 and Io is
the modified Bessel function of zero order. This steady-
state solution for R, =R

2 corresponds to the case of "in
phase" backscattering. For other situations including the
case of "off phase" backscattering, no steady-state solu-
tion has been obtained, because the potential conditions
for the Fokker-Planck equations are not satisfied. Similar
results have been obtained by Christian and Mandel [10]
for an inhomogeneously broadened ring laser operating at
line center with equal pump parameter.

When both additive noise and multiplicative noise are
neglected, the deterministic equations for a homogene-
ously broadened ring laser have been studied by Kuhlke
and Jetschle [2]. The solution for R, for "off phase"
backscattering with ~R, ~

= ~Rz~ has been found to be

I

homogeneously broadened laser and is 1 for an inhomo-
geneously broadened laser. For a dye ring laser, /=2
and R, =a/2~6. The same expression for R, has also
been derived by using a standing-wave approach [15].
The ratio of the amplitudes of the two switching modes
at the critical location where ~R

~

=R, is given by [2]

rt, ),2= [/+2+&2(/+1))'~

and r)„=1/rt,2. For /=2, rt„and g, z are, respectively,
equal to 7.9 and 0.13.

III. MONTE CARLO SIMULATIONS

Numerical solutions of the coupled equations of
motion [Eqs. (1)—(6)] have been obtained by using Monte
Carlo simulations [16]. Figure 1 shows the computer re-
sults for the two mode intensities I,(t) and Iz(t) as a
function of time. The values of Q and T used in the
simulations are, respectively, 100 and 0.5 based on previ-
ous measurements [21,22]. The pump parameter a is tak-
en to be 100 and the corresponding R, is calculated to be
20.4 from Eq. (9). The value of ~R~ is 120 and is much
larger than R„with ~R ~ /R, =6.0. The intensity oscilla-
tions are seen to be harmonic and anticorrelated. These
results are consistent with those predicted from the deter-
ministic analysis [2]. The period of the oscillations in di-
mensionless units is 0.027. This is close to the value
0.026 determined by using the formula T =n. /~R

~ [5]. In
this simulation the value of 50 is 10'. Because 58 is not
equal to zero, the modulation of the two intensity modu-
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FIG. 1. Plots of dimensionless intensities vs dimensionless
time from Monte Carlo simulations on Eqs. (1)—(6), with dimen-
sionless iteration step size equal to 0.000001, a, =a2 =a =100,
IR, I=IR2I=IRI=120, 8, =8g=85' (58=10'), Q=100, and
T~=0.5. R, =20.4 and ~R~/R, =6. The two intensities exhibit
anticorrelated harmonic oscillations.

lations is not 100% and neither one of the two modes
vanishes at any time. The computer solutions also indi-
cate that sudden changes of m in the relative phase of the
two modes do not occur under these conditions. The m-

phase changes take place only when 5l9 is equal to or very
close to zero and one of the two mode intensities van-
ishes. Simulation results also show that for fixed values
of

~
R

~
and a, although the intensity modulation decreases

with increasing 58, the oscillation frequency remains the
same and does not depend on the value of 56I.

Figure 2 shows the time evolutions of the two mode in-
tensities when ~R~ is near but larger than R, . The pump
parameter used is 80 and ~R~ is 20. From Eq. (9), R, is
calculated to be 16.3. Compared with the situation
shown in Fig. 1, ~R~ is closer to R, this time. The ratio
of ~R~/R, =1.2 and 58=10'. The intensity oscillations
are anharmonic and have a period of 0.21. This value is
quite different from the period 0.16 obtained from the
formula T =rr/iR t This is due to an eFect similar to the

R, = A = (a+p) .
2&2(g+ 1) 2&2(g+ 1)

(12)

R, can be interpreted as having a random component
which is determined by the pump fluctuations. Whether
the two modes exhibit random switching or periodic os-
cillations depends on whether iRi is smaller or larger
than R, at that instant of time. This phenomenon can
also be viewed as a consequence of the laser being in-

frequency lock-in effect in a ring-laser gyroscope, and will
be discussed in more detail below. Small Auctuations in
the intensity profiles and small variations in the periods
of the individual oscillations are due to the multiplicative
noise. Although the oscillating mode intensities appear
to vanish at certain times, the corresponding computer
results for the relative phase of the two modes do not
show any sudden m.-phase changes. If we compare Figs. 1

and 2, for the same values of 50, we see that the intensity
modulation in Fig. 2, where ~R~ =20, is closer to 100%
than that in Fig. 1, where iR~ =100. Other simulations
show that for a fixed and nonzero 58, the intensity modu-
lation increases with decreasing ~R ~.

Figure 3 shows the two mode intensities as a function
of time when ~Ri is very close to R, . The pump parame-
ter used is 100, corresponding to R, =20.4, and ~R i is 20.
The two intensities now exhibit both random switching
and anticorrelated oscillations. Similar results have been
obtained previously by the author [16]. Figure 3 shows
that there exists a certain threshold value of the intensi-
ties, above which the laser exhibits switching, whereas
below it exhibits oscillation. This can be explained by
taking account of the pump fluctuations. The effect of
pump fluctuations on backscattering can be understood
by replacing the constant pump parameter a by a random
pump parameter,

3 =a+p,
where a(=a& =a2) is the constant pump parameter and

p is the rnultiplicative-noise term. Equation (9) is then re-
placed by
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FIG. 2. Time evolution of intensities obtained from Monte
Carlo simulations on Eqs. (1)-(6) with dimensionless iteration
step size equal to 0.00005, a, =a&=a =80,
=~R~ =20, 8,=8,=85' (58=10 ), Q=100, and T, =0.5.
R, = 16.3 and

~
R

~ /R, = 1.2. The intensities exhibit anharmonic
oscillations.

FIG. 3. Time evolution of the two intensities obtained from
Monte Carlo simulations on Eqs. (1)—(6) with dimensionless
iteration step size equal to 0.000 05, a l

=a z
=a = 100,

IR i I

= IR z I

= IR I
=20, 8i =8&=85' 1~8= 10 ), g=)00, »d

T =0.5. ~R~ is near the critical value R, (=20.4).
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directly driven by multiplicative noise to operate between
the random-switching region and the periodic-oscillation
region.

It is well known that a dye ring laser exhibits random
mode switching when there is no backscattering. When
one mode switches on, the other mode switches off and
only one of the two counterpropagating modes is on at
one time. The most probable intensity of the "off" mode
is zero. But in the presence of backscattering, the most
probable intensity of the "oF' mode is no longer zero, al-
though it is still small compared to the intensity of the
"on" mode. This effect has been predicted from the
deterministic analysis [2] and it can be seen in the switch-
ing region in Fig. 3. The ratio of the mean intensity of
the "on" mode to the mean intensity of the "oF' mode is
estimated to be about 8 from Fig. 3, and this is consistent
with the value of 7.9 obtained from the deterministic cal-
culation at

~
R

~

=R, . Our simulation results also show
that the magnitude of the mean intensity of the "off"
mode increases with increasing strength of backscatter-
ing, provided ~R~ (R„andthe ratio of the mean intensi-

ty of the "on" mode to the mean intensity of the "oF'
mode increases with increasing a.

Figure 4 shows a plot of the frequency of the oscilla-
tions versus the magnitude of the backscattering
coefficient. The dotted line represents cu/2=~R~. The
five solid curves are solutions for the cases a=70, 100,
150, 200, and 250 (from left to right). Each curve is ob-
tained from Monte Carlo simulations based on the cou-
pled equations of motion, Eqs. (1)—(6). The
multiplicative-noise terms were neglected in these simula-
tions and only the additive-noise terms were included.
This is because including multiplicative-noise terms is
equivalent to adding a stochastic component to the pump
parameter. In order to obtain a well-defined value of the
pump parameter, many realizations are required, and this
was beyond the computational ability of our VAX sta-
tion. However, the coupled equations indicate that the
results without multiplicative noise should be similar to
those with multiplicative noise. The graphs shown in
Fig. 4 are similar to the frequency lock-in graphs ob-
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FIG. 4. Plots of intensity oscillation frequency vs ~R~ ob-
tained from Monte Carlo simulations. Both axes are in dimen-
sionless units. The dotted line is co/2=~R~. The five solid
curves are simulation results for a=70, 100, 150, 200, and 250
(from left to right). This diagram is similar to the frequency
lock-in diagram for a ring-laser gyroscope.

tained previously for a ring-laser gyroscope [1,23,24]. In
the gyro case the lock-in effect is attributed to the back-
scattering and the beat frequency of the two counter-
propagating modes is proportional to the rotation rate.
In our case, the frequency of the oscillations is related to
the magnitude of the backscattering coei5cient while the
lock-in effect is associated with the cross saturation of the
two modes. The role of the cross saturation in the lock-in
effect can be easily understood if the equation of motion
for the phase difference is written in the standing-wave
representation [15] and then compared with the phase
equation for the laser gyroscope [23]. A similar phase
equation has been obtained by Lamb to explain the
frequency-locking phenomenon of a three-frequency laser
[25].

When
~
R

~

is close to R, and in the absence of multipli-
cative noise, simulation results show that the additive
noise is also involved in driving the laser between oscilla-
tion and switching regions. The effect of the additive
noise is not significant in the previous simulations be-
cause the strength of the multiplicative noise has been as-
sumed to be comparatively larger. Near the region
~R =R„wewere not able to obtain a well-defined value
of the oscillation frequency because the intensities be-
come extremely anharmonic and it is hard to distinguish
between oscillations and switchings. If one interprets the
switching region as the one where the system is locked
and the oscillation region as the one where the system is
unlocked, then both additive and multiplicative noise
could be described as being responsible for locking and
unlocking the system. Centeno Neelen et al. [15] have
numerically studied the deterministic equations of motion
when ~R~ )R, and obtained a similar lock-in diagram.
Because they have not included the effect of noise, their
results showed a well-defined oscillation frequency even
when ~R~ is very close to R, . Cresser et al. have studied
the effect of quantum noise in He-Ne ring-laser gyro-
scopes [23,24]. Their simulations also showed that the
additive quantum noise is involved in unlocking the sys-
tem [24].

IV. EXPERIMENTS

The experiments were performed with the apparatus
outlined in Fig. 5. The dye laser is in the form of a four-
mirror folded ring laser, as described previously [26].
The active medium is a 2.3X10 molar solution of rho-
damine B in water and methanol and is made to Aow con-
tinuously through a 1-mm-thick dye cell. The dye laser is
optically pumped by the 514.5-nm line of an argon-ion
laser. Three uncoated etalons of thickness 0.1, 1, and 20
mm are inserted to ensure single-frequency operation.
The wavelength of the dye laser is 603 nm during the
measurements. The backscattering is provided by a
0.15-mm-thick uncoated intracavity glass plate G which
is aligned perpendicular to the laser axis. During some of
our measurements, the backscattering is controlled by
changing the angular alignment of the thick etalon (20
mm) alone. The ring laser is operated very close to the
symmetric configuration (a, =az) by keeping the average
intensities of the two counterpropagating modes nearly
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The optical spectrum of the ring laser is monitored and

measured by using two scanning Fabry-Perot interferom-
eters, with free spectral ranges of 2 GHz and 300 MHz
and finesses of 50 and 300, respectively. The two output
intensities of the laser are measured with two photo-
diodes each of 4 MHz bandwidth. The diode output sig-
nals are simultaneously recorded by two DSP Technology
analog-to-digital converters (ADC's) that have 12-bit pre-
cision and 2 MHz bandwidth. A PDP/11-73 computer is
used to read the time records of the intensities from the
memory of the ADC unit through the CAMAC Data-
way. For measuring intensity oscillations above 2 MHz,
a pair of fast photodiodes with 100 MHz bandwidth is
used in conjunction with a 300-MHz oscilloscope. A
Spectra-Physics 401B power meter is used to calibrate the
output signal from the photodiodes.

In our measurements, tuning the dye laser to the "off
phase" backscattering condition is achieved in the follow-
ing way. The laser is first adjusted to oscillate at a single
frequency, by monitoring one of the output intensities
with the two scanning Fabry-Perot interferometer s
FP1,FP2. Then the pump power of the argon-ion laser is
decreased until the dye laser is operating close to thresh-
old. In this case the pump parameter is small and this re-
sults in a small value of R, . The intracavity glass plate or
the 2-mm etalon is then aligned to reflect the backscat-
tered light onto the counterpropagating beams, and it is
fine adjusted to produce stable intensity oscillations of

maximum modulation. During the adjustment, the laser
intensities are monitored by photodiodes and their values
are continuously displayed on the oscilloscope. The
backscattering coefficient ~Ri is kept constant during
each series of measurements. Instead of varying iRi to
change the laser from oscillations to switching, we vary
R, by changing the pump power of the argon-ion laser.
An increase in the pump parameter of the dye laser re-
sults in an increase in the value of R, . When R, becomes
larger than ~R, the dye laser changes from anticorrelated
oscillations to random switching. Therefore, by adjust-
ment of the pump power of the argon-ion laser, the inten-
sities of dye laser can be tuned between oscillations and
switching. With the laser operating in various stages, the
two output intensities are recorded with the transient di-
gitizer. In our experiments, it was not possible to fine
tune 5t9 when the backscattering was due either to the in-
tracavity glass plate or the 2-mm etalon. Moving either
intracavity element in any direction along the laser axis
does not change 58. Fine tuning of 0, and 82 can be
achieved by using external mirrors that provide the back-
scattering [5,14].

Figure 6 shows the optical spectrum of one of the oscil-
lating modes, as measured with a scanning Fabry-Perot
interferometer having a free spectral range of 300 MHz
and resolution of 1 MHz. The spectrum shows a frequen-

cy splitting measured to be 16.7 MHz. The correspond-
ing frequency of the intensity oscillations was determined
to be 16.4 MHz with two 100-MHz-bandwidth photo-
diodes connected to a 300-MHz-bandwidth oscilloscope.
The difference in the height of the two peaks is believed
to be due to pump fluctuations and the slow scan rate of
the Fabry-Perot interferometer. Using the value v=16.7
MHz and the equation iR i

=~lT, the value of iR
~

in real
units is determined to be 5.25 X 10 sec '. The amplitude
reflectivity r is found to be 0.15 by using the formula

iR~ =(cr)/L, where c is the speed of light and L is the
cavity length (0.84 m for our laser). The intensity
reflectivity r for this case is 2% and is reasonably close
to what is expected for an uncoated optical surface. In
the previous calculation, the equation

~

R i

=m IT has been
used because iR

~
)&R, and the frequency lock-in effect in

10

Transient

Digitizer
PDP 11/73
Computer

4-
CO

CD

FIG. 5. A schematic diagram of the experimental setup. In-
side the dye ring laser, E1, E2, and E3 are, respectively, 0.15-,
1-, and 20-mm uncoated etalons; G is the backscattering glass
plate, DC is the dye cell; P is the intracavity prism; and OC is
the output coupler. FP1 and FP2 are scanning Fabry-Perot in-
terferometers. D1 —D4 are photodiodes. NDF is the neutral
density filter.
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FIG. 6. Optical spectrum of one of the oscillating modes.
The frequency splitting was determined to be 16.7 MHz and the
frequency of the intensity oscillations was measured to be 16.4
MHz.
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this region is negligible. Similar frequency splitting has
been measured in a He-Ne laser [8] and in a dye ring laser
[15].

Figure 7 shows the measured time evolution of the two
intensities I,(t) and Iz(t) recorded with an ADC sam-
pling rate of 2 MHz. The intensity oscillations are an-
ticorrelated and anharmonic. The period is approximate-
ly 9 psec. The ratio of ~R ~

to R, is found to be 1.2. This
ratio is determined by keeping ~R~ fixed and measuring
the ratio of the intensities at which the laser change from
oscillation to switching to the amplitude of these oscilla-
tions. This is justified because R, is proportional to the
pump parameter a, which in turn is proportional to the
light intensity. Therefore,

~
R

~ /R, can be determined by
measuring I, /I, where I is the amplitude of the oscilla-
tions in Fig. 7 and I, is the threshold intensity at which
the laser changes from oscillations to switching. The
small amplitude fluctuations are due to pump fluctuations
as shown in the simulations. The measured data show
that neither of the two intensities vanishes during the os-
cillations, which indicates a small but nonzero 58. Figure
7 can be compared with the simulation results shown in
Fig. 2 in which ~R

~ /R, is also equal to 1.2. In our exper-
iments, the intensity oscillations are found to become
nearly harmonic when the ratio ~R~/R, becomes large.
Harmonic oscillation was also observed by Schroter and
Kuhlke [14]and by Cresser et al. [23].

We have observed a frequency lock-in effect when the
intensities of the dye laser is tuned from anticorrelated
oscillations to random switching. For a fixed ~R ~, the fre-
quency of the oscillations is found to decrease with in-
creasing pump power of the argon-ion laser. We attri-
bute this effect to lock-in of the two optical frequencies of
the standing-wave mode. Figure 8 shows a plot of the os-
cillation frequency of the intensities versus the pump pa-
rameter. Instead of studying the oscillation frequency as
a function of ~R~, we measured the frequency of the in-
tensity oscillations as a function of the amplitude of the
oscillations, which corresponds to the pump parameter.
This is because ~R ~

cannot be varied systematically with
our current experimental setup. The data shown are
measurements for three different values of ~R ~. The solid
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FIG. 8. Plot of intensity oscillation frequency vs pump pa-
rameter. The values of ~R~ for curves (a), (b), and (c) are
6.9X10' sec ', 5.3X10' sec ', and 2.8X10' sec ', respective-
ly. The solid curves are simulation results for ~R~ =25, 19, and
10 in dimensionless units.

curves are obtained from Monte Carlo simulations on
Eqs. (1)—(6), with the multiplicative-noise terms neglect-
ed. Each curve is formed by joining more than 20 com-
puted points together. Each point is obtained by averag-
ing over two simulations. The roughness of the curves is
due to the additive noise and can be removed by averag-
ing over more realizations from the simulations. All data
in Fig. 8 are fitted with a single scale factor such that one
dimensionless unit of time corresponds to 3.6X10 sec.
The values of ~R~ in real units for the three curves are
determined to be 6.9X10 sec ', 5.3X10 sec ', and
2.8X10 sec ', and are independent of the scale factor.
The corresponding values in dimensionless units are 25,
19, and 10.

Figure 9 shows the two recorded intensities I, (t) and
Iz(t) when the value of ~R

~
was very close to R, . As the

figure indicates, when the intensity is larger than a cer-
tain value, the laser exhibits mode switching, while below
this value, it exhibits periodic oscillations. This is similar
to the simulations shown in Fig. 3 and has been explained
above as due to the effect of pump fluctuations. By
measuring the oscillation intensities for various pump pa-
rameters and plotting a similar diagram, such as Fig. 8,
we determine ~R~ to be 5.8X10 sec ' in real units. The
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FIG. 7. Plots of the measured intensities vs time when
~R

~ /R, = 1.2. The intensity oscillations are anharmonic.

FIG. 9. Time records of measured intensities of the dye ring
laser when ~R ~

is close to R, . Due to the effect of pump fluctua-
tions, the laser exhibits both switching and oscillations.
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FIG. 10. Time evolution of measured intensities similar to
Fig. 9 but with an expanded time scale. The ratio of the two
switching intensities is approximately equal to 8 and is close to
the theoretically predicted value 7.9.

FIG. 11. Time evolution of the measured intensities when the
laser is operated in the switching region. Insets show the inten-
sities of the "off" mode with a vertical magnification of 20. The
ratio of the average "on" intensity to the average "ofr ' intensity
is about 100.

corresponding value in dimensionless units is 21. From
Eq. (9}, the value of the pump parameter of the dye laser
at 1R1=R, is determined to be 2.8X10 sec ' in real
units. This value lies within the range of pump parame-
ters for another dye laser operated not far above thresh-
old determined by Roy, Yu, and Zhu [27]. Figure 10
shows records of the two measured intensities near
1R1=R, on an expanded time scale. The period of the
oscillations is measured to be 13.3 @sec. The oscillations
are anharmonic and are consistent with the predictions of
both the deterministic analysis and the Monte Carlo
simulations. In the switching region, the ratio of the two
intensities at ~R1=R, is found to be approximately equal
to 8, which is close to the theoretical value of 7.9 ob-
tained from Eq. (10}.

Figure 11 shows records of the two mode intensities
when the laser is operated in the switching region. The
insets show the intensities of the "off" mode with a verti-
cal magnification of 20. The most probable intensity of
the "off" mode is nonzero and this is different from the
case without backscattering. The ratio of the intensity of
the "on" mode to the "off" mode is found to increase
with increasing pump parameter, and this is consistent
with both our simulation results and the deterministic
analysis [2]. In Fig. 11, the ratio of the "on" intensity to
the "off" intensity is measured to be about 100. By
measuring the oscillation intensities with various pump
parameters and plotting a diagram such as Fig. 8, we
determine ~R~ to be 2.4X10 sec '. The ratio a/1R~ is
approximately 20. Using the formula obtained from the
deterministic analysis [2] for 58=0, the value of the in-
tensity ratio is calculated to be 390. From Monte Carlo
simulations, the intensity ratio obtained for a/~R1=20
and 50 equal to 10' is 389. The large discrepancy be-
tween the measured intensity ratio and the calculated
value is not well understood. Other measurements show
that the discrepancy becomes smaller when the pump pa-
rameter is decreased. When R, = ~R~, where a/~R~ =4.9,
the measured value is consistent with the theoretical pre-
diction. The discrepancy may be related to the accuracy
of measuring the small intensities of the "off" mode. It

may also be connected with the use of the third-order
laser theory for the calculations and simulations, even
when the laser operates far above threshold.

V. CONCLUSION

The dynamics of the two intensities of the dye ring
laser with near "off phase" backscattering have been in-
vestigated experimentally. We have observed the two
counterpropagating intensities of the dye ring laser
change from random switching to anticorrelated oscilla-
tions by varying the pump power of the argon-ion laser.
Noise-induced transitions between the switching region
and the oscillation region are experimentally observed
when 1R1 is close to R, . We attribute this noise-induced
effect to the pump fluctuations whose large fluctuating
strength dominates over the effect of the spontaneous
emission noise. The ratio of the "on" intensity to the
"off" intensity at 1R1=R, is determined to be 8 and is
consistent with the theoretically predicted value of 7.9.
When the laser is operated in the oscillation region, the
period of the oscillations is found to change with the
pump parameter. This can be attributed to the lock-in
effect of the two standing-wave mode frequencies. The
experimental results are compared with the analytic solu-
tion of the deterministic equations of motion and with
the Monte Carlo simulation results. All experimental re-
sults are found to be in good agreement with the theory,
except for the ratio of the "on" intensity to the "off" in-
tensity when the laser is operated well inside the switch-
ing region with ~R~ &&R, .
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