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We construct the Wigner distribution function for a coupled boson-fermion system. This function is

regarded as a certain "superfield" defined on the extended phase space, the points of which are labeled

by the anticommuting canonical c variables together with the ordinary ones. In this approach, the vari-

ables of a fermion and a boson are treated on a completely equal footing, and the phase-space representa-

tion is fully realized. We apply the formalism to the kinetic theory of the optical Dicke model with a

two-level atom, and show how systematically a set of the generalized Fokker-Planck equations, which

describes the effective dynamics of the radiation field, is derived from a single superfieldlike equation.

PACS number(s): 05.30.—d, 03.65.Ca

About 60 years ago, it was found by Wigner [I] that
the quantum expectation value of an observable can be
represented as the statistical average of a corresponding
classical physical quantity with respect to a certain distri-
bution function on phase space. Since then, a great many
works have been done on the phase-space representations
from both fundamental and practical aspects of quantum
theory. Various types of the representations and a class
of phase-space distribution functions have been proposed
in the literature [2]. Among others, Wigner's original
quasiprobability distribution function (WDF) is most
celebrated and is widely used in semiclassical studies of
quantum systems.

One of the most remarkable features in the phase-space
representation theories is that they do not contain any
kinds of q-number quantities (i.e., matrices or operators)
but do deal only with c-number variables.

On the other hand, in spite of the fact that a large
variety of microscopic systems in nature are composed of
interacting bosons and fermions, studies of phase-space
representations seem to have been done mainly on the
purely bosonic systems [3]. This might be due to the fact
that fermions are described by the algebra of anticommu-
tation relations, and, therefore, their corresponding clas-
sical phase space cannot be labeled naively by the ordi-
nary real or complex canonical variables. A typical ex-
ample is found in quantum-optical systems with two-level
atoms. Klenner, Doucha, and Weis [4] proposed a simple
and useful method, called the Wigner matrix formalism,
in order to investigate the phase-space dynamics of the

radiation field in the Dicke model [5]. Their distribution
function contains a linear combination of the Pauli ma-
trices describing the two-level atom. Therefore, due to
such a matrix structure, the atom is not represented by
c-number variables and the phase-space representation is
not fully realized in their approach.

In a recent paper [6], we formulated the WDF of a
second-quantized fermion by introducing the extraordi-
nary phase space. The coordinate points of this phase
space are labeled by a pair of anticommuting canonical c
variables [7] (Grassmann variables, or G variables, for
brevity). The fermionic analog of the Wigner operator
was given and the Weyl correspondence was established.
At the same time, we found some qualitative differences
between bosons and fermions in their statistical phase-
space descriptions.

In this Brief Report, we generalize our previous discus-
sion to coupled boson-fermion systems, and show that the
full realization of the phase-space representation is possi-
ble for optical models with two-level atoms. The con-
structed WDF may be regarded as a certain "superfield"
[8] in a sense that the extended phase space, on which
that function is defined, is now labeled by the fermionic 6
variables as well as the ordinary bosonic ones. We apply
this formalism to the kinetic theory of the Dicke model.
The atom variables are expressed in terms of a pair of fer-
mionic creation and annihilation operators accompanied
by a real Clifford c number. We find that inclusion of
such a c number in the Hamiltonian requires slight
modifications of the original formalism for a second-
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fd'gg =1, fd'g= fd'g'=0, fd'g=o, (3)

where d g—:dg"dg. The graded trace operation in Eq.
(1) is defined by

Trs(A")= y ( —1}"&nlAln&= fd'g&(IAI(&.
n =0, 1

[l0&, ll&=b l0&] denotes the Fock basis, and

lg& =D(g)l0& is the normalized fermionic coherent state
satisfying

f d'pig&& pl= 1 .

The operation (4) has the following cyclicity property:

Tr ( AB)=+Tr (SsA ),
provided that the sign —(+ ) is taken from the case that
both A and B are odd fermionic operators (otherwise).
[Note, however, the discussions below Eq. (19).]

The Wigner operator (2) has the properties

Try[A/(P, P'}5~(/3', P")]=5' '(P —P'}, (7)

Tr[b ~(P,P* )b/(P', P'* ) ]=—,
' exp(2''*+ 2P*P' ), (8)

with the 6 5 function defined by 5' '(P —P'):—(P—P')(P*
—P'*). Equation (7) shows that b,/ forms a complete set
in the space of relevant operators. For example, one can
verify that Eq. (1) is inverted as

p/
= f d p Wf (p p )Zll f (p, p" ) .

It is important to see that there exists the Weyl
correspondence [10]also in fermion theory:

A(P, P*)=Try[A (b, b )b/(P, P*)],
A (b, b ) = f d P A (P,P')b/(P, P'),

(10a)

(10b)

quantized fermion. We also show how systematically a
set of the generalized Fokker-Planck equations, describ-
ing the effective phase-space dynamics of the radiation
field, is derived from a single superfieldlike equation for
the total WDF.

First, we recapitulate the basics of the phase-space rep-
resentation of a second-quantized fermion proposed in
Ref. [6].

With the system density operator p&, the WDF of the
fermion is written as

W/(P, P') =Trs [p/b/(P, P') ] .

5/(p, p ) is the fermionic analog of the ordinary Wigner
operator [9], and is defined by the 6 Fourier transform
of the G variant unitary displacement operator
8(g)=exp(b g

—g*b):

8/(P, P*)=f d (exp[ (P'g —g"P)]8—(g) . (2)

Here, b and b are, respectively, the creation and annihi-
lation operators of a fermion obeying the anticommuta-
tion relations [b, b ] =1, [b, b ]

= [b,b j =0. P' and P
are the corresponding classical phase-space G variables.
The Berezin integrations over 6 numbers [7] are normal-
ized as follows:

A (P,P' }= —,
' f d g exp[2(P'g —g'P) ] A (g, g* ) . (12)

This result should be compared with boson theory where
the expectation value is directly connected to the average
of the phase-space quantity with respect to the WDF.
Thus we see one of the essential differences between fer-
mions and bosons in their phase-space representations.

Introduction of a bosonic degree of freedom is straight-
forward. The total WDF is now written as

W(a, a', P,P')=Trs[phb(a, a')b/(P, P')], (13)

where b.b(a, a') is the ordinary bosonic Wigner operator
[9]

b, i, (a,a*)= f d zexp[z"(a —&)—z(a' —a )], (14)

with d z=—d(Rez)d(Imz). a' and u are the complex
classical phase-space variables that corres ond to the bo-
son creation and annihilation operators & and d obeying
the commutation relations [8,& ]=1, [&,8]=[8,8j'
=0. In Eq. (13), the standard trace operation is under-
stood for the boson part.

The WDF (13) is defined on the extended phase space
labeled by the fermionic G variables as well as the ordi-
nary bosonic variables, and, therefore, one may regard it
as a certain "superfield" [8].

For the later discussion, we present here some of the
basic formulas of the operator correspondence relations:

(1'sa)

P+—,bb,,=b,, P+—
2 BP

' / / 2 gp*

(15b)

b, b= P'+ — b, , b, b= P+-f 2 alp f f =
2 ap* f

In Eqs. (15b), the operations 8/BP and 8/c}P with respect
to the G variables denote, respectively, the left and right
diff'erentiations [7].

Next, we examine this formalism for the kinetic theory
of a simple optical system. Let us discuss it by employing

where A ( b, b ) and A (p, p* } are a Weyl-ordered opera-
tor and its corresponding physical quantity in phase
space, respectively. We note that these correspondence
relations can be established not with the standard trace
operation but with the graded trace operation (4).

From Eqs. (8) and (9), the quantum expectation value is
found to be represented by the phase-space average as

& A &—=Tr(p/A )=f d P W&(P, P*)A(P,P*) . (11)

A (P,P') is not directly equal to A (P,P'), but is given by
its G Fourier transform
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the Dicke model [5] of a two-level atom interacting with
a monochromatic radiation field. The system Hamiltoni-
an is given by

H=Qa &+—,'co&, +g(& +it)&„. (16)

The creation and annihilation operators it and & and the
Pauli matrices & denote the radiation field with frequency
0 and the atom of level distance co, respectively. g is a
coupling constant.

To apply our formalism to the system described by Eq.
(16), we must contrive to transfer the Pauli-matrix repre-
sentation to the second-quantized oscillator representa-
tion for the atom variables. A simple method may be the
substitution &+~b, & ~b, &,~2b b 1[&—~

=——,'(&„
i& )]. This substitution preserves the Pauli-matrix

algebra as long as b and b satisfy the usual anticommu-
tation relations. In this case, however, there appears the
sum of statistically bosonic and fermionic quantities in
the Hamiltonian. [Here the term "bosonic (fermionic)
quantity" means that it commutes (anticommutes) with G
odd numbers, e.g. , P's in the preceding discussion. ]

Fortunately, this difficulty can be overcome simply by
introducing a real Clifford c number "e" [11] in the fol-
lowing way:

&+~cb, 0. ~bc, &,~2b b —1, (17)

(pc)(cp*)= —(cp')(pc) . (19b)

Therefore, in calculations with c, one has to pay attention
to the following points: (i) the cyclicity property of the
graded trace operation in Eq. (6} does not hold if both A
and 8 include c irreducibly, and (ii) the order of the prod-
uct in the integrand in Eq. (11) must be fixed as WA.

The time evolution of the WDF defined by Eq. (13)
may be carried by the system density operator p. In the
Schrodinger picture, it is determined by the von Neu-
mann equation

provided that this c number satisfies the properties c = 1,
eh+bc =cb +b c =0, cP+13c=cP"+P'c =0. Under
this substitution, the Pauli-matrix algebra is again kept
unchanged, and the Hamiltonian becomes bosonic as
desired.

Thus, instead of the form (16), we employ

A'=M &+co(b b —
—,')+g(a +&)(cb +bc) . (18)

The Clifford c number c is also contained in the system
density operator, the WDF, and the physical quantities
concerning the atom, in general. Clearly, the operators
cb and bc are not even fermionic operators and, similar-
ly, cP' and Pc are not G even quantities, since

Tr [(bc)(cb )]=—Tr [(cb )(bc)), (19a)

(22)

With the explicit form of the Hatniltonian (18), L is
found to be

1 a—iL=A a*——
2 Ba

1 8a+—
2 Ba'

+ co p'+—1 a
2 8

1 8+
2 Qp~

1

2

+g (a+a')+—1

Ba

xc (P*—P)+- a
2 BP Qp"

(23)

Thus, we have the generalized Fokker-Planck equation

+LW+ WL =0,
at

(24)

which may be regarded as a certain "superfield equa-
tion. "

Now we note that the WDF depends on the fermionic
variables only through the combinations Pc and cP' [12].
Therefore, the expansion of the WDF in terms of these
nilpotent variables has the following form:

W= Wo(a, a*)+ W~ (a,a')Pc

+ W& (a, a' )cP*+Wz(a, a" )PP* . (25)

Clearly, the expansion coefficients are the ordinary func-
tions of the radiation field variables alone. Wo and W2
are real, while W& is complex. This should be compared
with the usual superfield expansion [8] where some of the
expansion coefficients are fermionic.

To see the physical meanings of these functions, we
calculate the phase-space averages with respect to the
atom variables. From Eqs. (10a) and (12), the Wigner
equivalents and their 6 Fourier transforms are, respec-
tively, found to be

In the second equality, the cyclicity property of the grad-
ed trace operation has been used. This is indeed feasible,
since b,f is an even fermionic operator. [See the above
point (i).]

By virtue of the operator correspondence relations (15),
we know that there always exists the operator L satisfy-
ing

bbbf8(a, a, b, b )

i—L a, a*. . „.P,P', , h&bf .
a a, a a

'aa'aa*' ' 'ay'aP'

i = [H,p],. Bp
at

and, accordingly,

BW
i Tr ([H,p]b, „—bf )

at

(20)
1~1; 1 =2'*,
o+ =cb ~cP*; (cP') =cP',
& =bc~Pc; (Pc ) = —Pc,
o, =2b b —1~2P*P; (2P*P) = —1 .

(26a)

(26b)

(26c)

(26d)

= —t Trg(hbbfHp pHhbhf )—(21} Then, using Eq. (11) and keeping point (ii) in mind, we
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obtain

(I)„, = f d p W(, ',p, p*)2pp*=2W (, '),
a+i Q a' —a

t t)a'
+co W)

(27a)

(e, )„.= f d'pW(, ',p, p') p*=w;(, '),
c}

+ig
BlX

Wo+ig(a+a*)Wz=0 .
CX

(28c)

+ —g — ( W, + Wi ) =0, (28a)
l a
2 Ba* t)a

aW', , a a+i Q a' —a
at t)a' t)a

—co W)

+Eg
t)a' Wo ig (a+a—*)W2 =0, (28b)

t)a

(27b)

(o ),« = —f d p W(a, a",p, p')pc= W, (a,a'),
(27c)

(o, )„,m= —f d p W(a, a,p, p ) = —W2(a, a ) .

(27d)

Thus, the set of coefficient functions gives the phase-
space representation of the ejfectiue theory for the radia-
tion 6eld.

Finally, we derive the set of the generalized Fokker-
Planck equations for these functions. Substitution of ex-
pression (25) into Eq. (24) leads to an identity, which
gives rise to

Wo. , aa+iQ a —a Wo
t)t Ba

aW, a+iQ a* —a W2Bt Ba

+2ig(a+a')( W, —Wt )=0 . (28d)

This set of equations determines the effective phase-space
dynamics of the radiation field. Up to the linear com-
binations, it reproduces correctly that derived from the
Wigner matrix formalism.

We have studied the phase-space quantum theory of a
coupled boson-fermion system. We have constructed the
WDF on the extended phase space and applied it to the
kinetic theory of the Dicke model with a two-level atom.

Recently, the optical models with two-level atoms have
been revisited in the context of supersymmetry [13]. In
the present approach, the atom and radiation field vari-
ables are treated on a completely equal footing with each
other. Therefore, we expect that this approach enables us
to discuss such a symmetry geometrically on the phase
space.
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