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optical bistability in a multiple-quantum-well structure with Fabry-Perot
and distributed-feedback resonators
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The system we analyze has the structure of a planar optical waveguide containing a multiple quantum
well, with the planes of the wells parallel to the direction of propagation. We consider the two different
configurations of a Fabry-Perot cavity and distributed-feedback device. The optical nonlinearities are
described by means of the first-principles theory developed by Haug, Koch, Schmitt-Rink, and co-
workers, generalized to include the finite width of the wells. The dynamics of the system is described by
the equations that govern the evolution of the two counterpropagating fields, coupled with the carrier-
density equation, and accompanied by the appropriate boundary conditions. The steady-state behavior
is analyzed as a function of the control parameters of the system for the case of a
GaAs/A1& Ga, As/A1As structure. The system develops bistability even when the input field is in reso-
nance with the excitonic peak, but the phenomenon becomes more pronounced in the detuned
configuration. The hysteresis cycles obtained in the case of distributed-feedback device turn out to be
competitive with those displayed by the Fabry-Perot system.

PACS number(s): 42.65.Pc, 78.65.—s, 42.79.Ta

I. INTRODUCTION

The phenomenon of optical bistability (OB) and its
relevance to the fields of optical information processing
and optical computing are by now well known [1—3].
The most classic configuration for this phenomenon is
that of a nonlinear medium placed in a resonant Fabry-
Perot cavity and driven by a stationary coherent field in-
jected into the cavity.

It is customary to distinguish two extreme cases that
are usually designated with the names of absorptiue bista-
bility and dispersive (or refractive) bistability, respectively.
In the absorptive case the input field is exactly resonant
with the absorption line of the medium and refractive
effects are absent; the bistable behavior arises from the in-
tensity dependence of the absorption coefficient, which
produces the saturation of the material. On the other
hand, in the dispersive case the medium is transparent
(i.e., no absorption), and bistability arises from the inten-
sity dependence of the refractive index, which produces
the shift of a cavity frequency toward resonance with the
input field. Dispersive OB is preferable because it is more
easily controllable, for it does not require saturation (a
nonlinear refractive index of the Kerr-medium type; i.e.,
n =no+n2I is enough), and because of the absence of

heating problems. Unfortunately, the presence of some
level of absorption is unavoidable and this circumstance
limits and degrades the performance of the system. Para-
digmatic is the two-level model of OB [2,4] which in-
cludes both absorptive and dispersive effects; it shows
that absorptive OB produces larger hysteresis cycles for
the transmitted power as a function of the incident
power, but dispersive OB requires smaller values of the
input power to make the system switch from the lower to
the upper branch of the cycle.

In recent years a great interest has emerged about opti-
cal nonlinear effects in semiconductor materials, in par-
ticular in structures including multiple quantum wells
(MQW) [3,5 —7]. Among the most important characteris-
tics of such materials one can mention the very strong
nonlinearity when the operating frequency is near an ex-
citonic resonance, that is, the resonance of the elec-
tromagnetic field with an electron-hole bound state due
to the Coulomb interaction; the corresponding frequency
appears just below the band gap (on the order of 10 meV).
This strong nonlinearity, in MQW structures, also per-
sists at room temperature, while in bulk materials it can
be observed only at a very low temperature [5,7,8]. This
property makes MQW structures very attractive for the
application to nonlinear photonic and/or electro-optic
devices.
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Experimental evidence of bistable behavior in FP reso-
nators, in which a MQW is inserted, was reported several

years ago [3] and was the subject of several papers, for in-

stance, [3,7,9,10—12]; recent very interesting experimen-
tal results in a refiection configuration are given in [13].
Much work on bistable effects in distributed-feedback
structures has been recently reported [14—18].

The presence of the excitonic resonance makes MQW
systems somewhat similar to the case of two-level atoms;
as a matter of fact, the dynamical equations for OB in

MQW systems become equivalent to the two-level model,
when the excitonic contribution to the dielectric constant
is factorized into a term which depends on the frequency
and a term which depends on the carrier density N, and
the N-dependent factor is assumed linear [19]. The small-
ness of the saturation intensity for the excitonic peak sug-
gests the feasibility of absorptive OB for this system;
however, the continuum band-to-band transitions also
contribute to the dielectric constant and enhance the ab-
sorption of the material. Also dispersive bistability is
feasible by detuning the input frequency to the low-

frequency side of the excitonic peak; the residual absorp-
tion, however, may degrade the bistable behavior or even
destroy it.

The investigation of this problem has been carried out
using simplified models which assume a cubic nonlineari-

ty [12] or a saturable nonlinearity [10]. In order to iden-

tify the optimal conditions to achieve bistability in MQW
structures we prefer to base our analysis on a model
which ensures an adequate description of the optical non-
linearity in these systems. This sophisticated model,
which has been elaborated by Haug, Koch, Schmitt-
Rink, and co-workers [20—25], starts from a first-

principles microscopic description and allows for the
evaluation of the contribution he to the dielectric con-
stant, which arises from both excitonic and band-to-band
transitions, as a function of frequency, of the carrier den-

sity and of the parameters of the material. In this paper
we use an extension of this model, which includes the
effect of finite well thickness.

The system we analyze has the structure of a planar
optical waveguide containing a MQW in the core region
[Fig. 1(a)], with the planes of the wells parallel to the
direction of propagation. We consider the two different
configurations of Fabry-Perot cavity [FP, Fig. 1(b)] and
distributed feedback device [DFB, Fig. 1(c)]. In the FP
case the feedback is provided by the mirrors at the
endfacets of the sample; in the DFB case the feedback is
produced by the grating built in the structure in the lon-
gitudinal direction. In both cases we study the behavior
of the transmitted power as a function of the input power
at steady state; due to the strong nonlinear absorption
and refraction effects near the excitonic resonance, the
adopted model accounts for the wave propagation inside
the resonator.

Examples of numerical computations will be reported
by varying some significant parameters of the devices,
such as mirror reQectivity, grating features, cavity length,
and detuning of the optical signal with respect to the un-
perturbed cavity resonance. For uniformity all the re-
sults will refer to a GaAs/Al, „Ga As/A1As structure.
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FIG. 1. (a) Schematic waveguide cross section; (b) longitudi-

nal representation of the FP resonator; (c) longitudinal repre-
sentation of the DFB device.

For the sake of simplicity we do not consider the grating
in the carrier density produced by the standing wave
structure of the field, assuming that the grating is washed
out by diffusion. In the evaluation of the optical response
we consider a simplified band structure including only
one conduction and one valence subband, and according-
ly we account for the electron —heavy-hole exciton only.

In Sec. II we review the model for optical nonlineari-
ties in MQW structures, formulated by Haug, Koch,
Schmitt-Rink, and co-workers, and its generalization to
the case of wells with a finite width [26]. The absorption
coefficient and the refractive index are calculated as a
function of frequency and carrier density. Section III
discusses the coupled dynamical equations for the coun-
terpropagating field and for the carrier density, the ap-
propriate boundary conditions for the fields in the FP
and DFB cases, and the techniques to solve numerically
the equations at steady state. The numerical results are
described in Sec. IV, while Sec. V illustrates and discusses
the main conclusions of our work.
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II. QW OPTICAL RESPONSE

The nonlinear dielectric response in MQW structures
is due to a combination of many-body effects such as the
Coulomb interaction between carriers and the exclusion
principle [5,8,20,22,23]; the most important aspects of the
many-body behavior, at room temperature, are represent-
ed by the renormalization of the band gap and the screen-
ing of the Coulomb interaction at increasing carrier den-
sity. As a consequence the optical nonlinearity is directly
related to the carrier density generated by the optical ab-
sorption.

In the present paper the optical nonlinearity is evalu-
ated by means of a model which accounts for only one
conduction and one valence subbands, but includes
correctly the effects of the finite well thickness [26]. Un-
der the preceding conditions the contribution he to the
dielectric constant e, due to the interaction of the elec-
tromagnetic field at the angular frequency co with the car-

rier density per unit area X in a well of thickness d, is
given by

b,e(co, N) =—gp„yh
2

k

with V being the volume under analysis (= Ad, with A
reference area), k the particle wave vector parallel to the
QW layer, ph the dipole matrix element between conduc-
tion and valence band at a given wave vector k [27] and
for TE polarization. The microscopic polarization yl,
satisfies the equation [24]

1
Xh =Xh I+ & Vs, e h(lk —k'l)Xh

Pl

where gI, is the corresponding quantity without Coulomb
interaction which, adopting a spectral representation
[24], can be written as

[ I —f, (E, ) fh (Eh )
—](fico E,„) i y—

h [ I—f, (fico E —Eh )
—f——

h (Eh )]
(fico E,„) +yh—

v, h(q)=v»(q) f I e & '(z„z»)l@,(z, )l'l@h(zh)l'

Xe ' " dz, dzz . (3)

In the preceding equation N, and Nz are the electron and
hole normalized wave functions in the potential well. In
the limit case when the well thickness d —+0 and the po-
tential well height ~~ the preceding expression reduces
to the more familiar 2D potential V»(q)=e /2qAe„.
In the above expression multiple image effects have been
neglected and the static dielectric constant e(z„zh) has
been approximated by its well value e when both coordi-

In the preceding equation f, and fh are, respectively, the
Fermi distributions of electrons (e) and holes (h ), with
E,(k) and Eh(k) being the corresponding energies and
E the unperturbed bidimensional band gap. The quanti-
ty E,„(k ) =E,(k )+Eh(k )+Eg denotes the energy
difference between the conduction- and the valence-band
states at the same k and included the band-gap renormal-
ization bE (Eg =Es+bE ) [23]; yh is a dynamical
damping approximated by the fo1lo wing expression
[24,28]:

2j pyh(~)= (g „—Ac@)/k~ T1+e
with yo properly chosen. Finally V, , h (q )
= V, h (q )/e, (q, co) is the screened Coulomb potential; for
e, a static, single-plasmon pole approximation was adopt-
ed [23]. V, h(q) is the Fourier transformed Coulomb po-
tential, which takes the form [29]

nates z, and z& lie inside the well, by the barrier value
when both coordinates z, and z& lie out of the we11, and

by an appropriately weighted value in the other cases.
The band-gap renormalization owing to the electron-hole
plasma is computed as [23]

bEg=/ [—'(V...-. V.-.)+ i(V., » h Vh h)-
q

( V. ..-.f.q+ V, , h hf», )], .

where the quantities V. .. and V, & & are analogous to
V, , z and, in the same way, V, , and Vz z are analogous
to V, h,

' for example, V, , is defined as Eq. (3) by replac-
ing 4& by 4, and zz by z,'; note that in our model AEg is
d dependent through the Coulomb potential.

The choice of the well thickness plays a very important
role; on one hand too small values of d give rise to a van-
ishing contribution of the MQW effect both due to the
spreading of the wave functions in the barriers and to the
decreasing value of the overlap integral with the electric
field of the guided mode; on the other hand, by increasing
d the effect of the we11 becomes less and less effective as
regards the excitonic interaction. As a consequence an
optimum value of d can be expected; for GaAs-based
structures and with respect to the absorption and refrac-
tive index variation, such an optimum corresponds ap-
proximately to d = 50 A [26].

Equation (2) is solved by approximating the sum with
an integral and by solving the resulting integral equation.
The numerical technique expands the unknown function
in terms of Chebichev polynomials and solves the corre-
sponding set of linear algebraic equations for the expan-
sion coefficients. For a GaAs/Al, „Ga„As QW struc-
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where Eg2D is the 2D band gap and E„ the 2D exciton
binding energy. In particular, in Fig. 2(a), the exciton
resonance peak and its bleaching at increasing carrier
density are well evident.
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ture, using the numerical values for the material parame-
ters given in Ref. [24], the absorption [related to Im(be) ]
and the refractive index [related to Re(he)] spectra are
shown, respectively, in Figs. 2(a) and 2(b), for several
values of carrier density N (multiplied by the square of
the 2D exciton Bohr radius ao). The abscissa b, is defined
as

III. MODEL FOR THK NONLINEAR INTERACTION

CF ~ ~CF+ =+[h(z) —a; ]CF+KCt)e
Bz v Bt

(4a)

A. Model equations

The nonlinearity in the field-carrier interaction and the
effect of a possible grating, in the DFB case, will be intro-
duced perturbatively through coupled-mode theory [30],
but considering only a single transverse mode (in our case
the TEo) of the optical waveguide whose cross section is
shown in Fig. 1(a). In practical situations, this assump-
tion is rather satisfactory since the coupling to other
modes is very small and, moreover, we can suppose that
the waveguide has been designed to work in monomodal
conditions. In the framework of the coupled-mode ap-
proach, if CF(z, t ) and Ct)(z, t ) denote the slowly varying
(in the z direction and in time) amplitudes of the forward
and backward traveling waves, respectively (normalized
so that their squared moduli correspond to the traveling
power per unit guide width), the following equations hold
[3,14,30] (for a sketch of derivation see the Appendix):

C
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-4.
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-2.

7
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0.0 2 ~

BC))

az

BCs = —[h(z) —a;]Ct)+E'Ct;e' ~',
vg Bt

(4b)

where v is the mode group velocity, a; is the mode at-
tenuation due to the material intrinsic losses (excluding
the interaction with the carriers); the self-coupling
coefficient h (z), which accounts for the optical field cou-
pling to the electrons and holes represented by he [see
Eq. (1)],is given by

f AeIE, I'dx
h= ™d

(5)f eIE, I'dx
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where m represents the number of wells of thickness d
and Eo describes the mode field distribution. Note that
the function h (z) includes a spatial averaging over the re-
gion inside and outside the wells.

The coupling coefticient K between forward and back-
ward waves due to a possible grating, characterized by a
dielectric constant variation he with respect to the
reference waveguide (see the Appendix), is obtained as

f ne,'&'IE, I'dx
K= (6)

2vg f eIE, I'dx

3.30
-4.

I I I I I I I I I

0.0

FIG. 2. Absorption (a) and refractive index (b) spectra for a
GaAs/Al& Ga As QW for several values of carrier density
(multiplied by the square of the two-dimensional exciton Bohr
radius ao ) (1) Nao =0 (2) Ngo =0.01 (3) Ng() =0.05 (4)
Nao =0.1, (5}Na0 =0.2, (6}Na o =0.5, {7}¹o= 1.0.

where AE'g is the spatial harmonic which satisfies in the
best way the Bragg condition 2po=2np/A=pps with po
being the mode propagation constant, A and ps being, re-
spectively, the period of the grating and the correspond-
ing propagation constant; p is an integer number which
defines the spatial harmonic of interest. In the denomi-
nators of Eqs. (5) and (6) the integral represents the
stored electric energy in the modal field distribution; in
the numerators the integrals are extended to the x range
where Ae and b,e' ' are different from zero (that is, re-
spectively, one well and the grating region, if any; we as-
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sume, for simplicity, that all the wells are equivalent from
the point of view of the interaction). The quantity
bP=2Po —pPs denotes the detuning between the operat-
ing propagation constant and the one corresponding to
the Bragg condition.

In the case of a conventional FP resonator E=O; so
Eqs. (4) hold for both the FP and DFB structures, but
clearly they must be associated with different boundary
conditions (see following subsections). Equations (4)
must be coupled to the evolution equation for N(z, t ), on
which b,e and, consequently, h depend. So we introduce
the rate equation for the carriers in a well [19]:
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f 2

(7)

where R(N)=AN+BN accounts for the recombina-
tions. The confinement factor q reads

f eIz, /'dx
(g)

6' Ep 8x

and it is the measure of the amount of electrical power in
a well with respect to the total mode power. The second
term on the right-hand side of Eq. (7) accounts for optical
carrier generation; more rigorously the carrier diffusion
effects along z should be included and also the spatial
grating due to the beat of forward and backward waves;
for simplicity it has been assumed that diffusion compen-
sates such a grating, since the diffusion length is larger
than the grating period.

Equations (4) and (7) have been written including the
dynamical aspects; however, in the remainder of this pa-
per only static solutions will be discussed and therefore
the derivatives with respect to time will be dropped.

The material characteristics depend on co and
through Eq. (1); by means of Eq. (7), without time deriva-
tive, the carrier density can be related to the "local opti-
cal power" Pt = ICF I

+ ICOSI . So it can be of interest to
analyze the dependence of the carrier density N, the ab-
sorption coeScient a, and the refractive index difference
hn as a function of PI. The waveguide parameters that
appear in our model are only the number of wells m and
the confinement factor q. The numerical values adopted
for those parameters are m =6 and ri =0.0177 (which can
be considered typical for a refractive indexprofile as in

Fig. 15, with six wells of thickness d =50 A). In addi-
tion, in the subsequent analysis and calculations, we use
the following numerical values for the bulk material pa-
rameters: A =0.2X10 s ' and 8=5X10 cm s
for the recombination term of Eq. (7), and a; =2.5 cm
for the intrinsic attenuation.

In Figs. 3, 4, and 5 the quantities a, hn, and Nap are
shown, respectively, as a function of PI {in mW!pm) for
6= —3, —2, —1, and —0.7. The last choice corre-
sponds to the exciton absorption peak [see Fig. 2(a)]. The
inserts in Figs. 3 and 4 give the same diagrams but in an
expanded logarithmic abscissa scale, to put in evidence
some particular behavior for very low power levels.

0.0
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a I
I I s ~

~ 0 2. 6.
s I i I

10.

FIG. 3. Absorption coefficient a as a function of the local
power PI (in mW/pm) for (1) 6= —3, (2) 5= —2, (3) 6= —1,
(4) 5= —0.7. The insert is the same diagram with logarithmic
abscissa scale.
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FIG. 4. Refractive index difference hn as a function of the
local power PI (in mW/pm) for (1) 5= —3, (2) d, = —2, (3)
5= —1, (4) 5,= —0.7. The insert is the same diagram with log-
arithmic abscissa scale.

Clearly the absorption (Fig. 3) is very high near the exci-
tonic peak and saturates at increasing PI. At 6= —1 an
inversion occurs, showing a small region of absorption in-
creasing with power as a consequence of the band-gap re-
normalization.

A similar behavior can be observed as regards An in
Fig. 4. However a still relevant change of hn with PI is
achieved for 6 values well below the excitonic resonance,
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~I CF(0) =S~,c;+S„C~(0),
2i poLCtt(L)=e ' Si,c~(L),

C„=S|iC;+Ski Ce(0),

C, =S21CF(L ),

(9)

lem under consideration the boundary conditions can be
expressed by the scattering parameters S,- of the two mir-
rors, supposed symmetrical; S»=S22 are the mirror
reflection coelcients at their two facets; S&2 =S2& are the
mirror transmission coefBcients. With the previous as-
sumptions one can write [3]

0.0
0. 0 2. 6. 8. 10.

where the absorption is very small. This fact allows to
exploit the optical response of QW structures for refrac-
tive optical bistability.

B. FP case

The usual FP resonator corresponds to no distributed
coupling between Cz and Ce, i.e., E=O in Eq. (4), and
the resonant characteristics are connected to the multiple
reflections between the mirrors [Fig. 1(b)]. For the prob-

FIG. 5. Normalized density of carriers Nao as a function of
the 1oca1 power Pi (in mW/pm) for (1) 6= —3, (2) 6= —2, (3)
5= —1, (4) 5= —0.7.

where C;, C„, and C, are, respectively, the incident,
reflected, and transmitted amplitudes outside the resona-
tor, and po is the propagation constant of the input field,
which has angular frequency co.

For the problem under examination, in the stationary
case, a partially analytical solution can be carried out,
which can substantially reduce the computer time for a
complete evaluation of the device performance. In fact,
with E=O and didt=0, Eqs. (4) can be formally in-

tegrated as follows:

Cz(z)=C+(0) exp —a;z+ f h(g)dg
(10)

Cz(z)=C&(0) exp +a;z —f h(g d)g
0

where, clearly, the complete solution requires the deter-
mination of the function N(z) on which h(z) depends.
Taking into account Eqs. (10) and the boundary condi-
tions (9), it is rather easy to obtain the following relations
between the transmitted power IC, I and the incident
( I C; I ) and reflected ( I C„ I ) powers, respectively:

I c, l'=
I c, l'

Is&&I exp —2f (a+a;)dz
j

1 —S|&exp —2L( iPQ+a—, )+2f h(z)dz
2

IC„I = IC, I ~ exp 2f (a+a;)dz I+(Sz|—S» ) exp —2L( iPO+a;)—+2f h(z)dz
21

2
(12)

where a= —Re(h ) and L is the resonator length [see Fig. 1(b)]. Because the longitudinal modes of the cavity with
equal mirrors are de6ned by the condition

2P,L+2cr&t=2nn, n =0, 1,2, ... ,

where we have set

S,|=IS»le ", S2, =IS2, I

with

a» —a»=+ —or ——, Is»I'+Is»I~=1,

Eqs. (11)and (12) can be rephrased in the form

Is&, I exp —2f (a+a;)dz
Ic I'=Ic, I'

1 —IS»I exp i5 2f —[a;——h(z)]dz
2 (13)
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, Is I' L L
IC I

= IC I s exp 2f (a+a)dz 1 —exp —t'5 —2f [a, —h(z)]dz
Is I' 0

2
(14)

where 6 is the cavity detuning parameter

5=(co, co—)2L /Us

Equations (13) and (14) allow a complete solution to the problem under consideration, provided that N(z ) [and hence
h (z ) ] is known. The equation which determines N(z ) is obtained from the rate equation (7); after elimination of

I CF
and

I Cs I by means of (9) and (10) one obtains

R(N) —
2 exp 2f (a+a;)dz' +IS» I exp —2 f (a+a;)dz' Im =0,2 r. ,

' he(N} (16)

and oi, =vsp, denotes the longitudinal cavity frequency (evaluated by using the bulk value for the refractive index, see
Fig. 15) nearest to the input field frequency co (hence by definition I5I & n. ). It appears immediately that the preceding
Eqs. (13) and (14) are a generalization of the usual input-output relations for a FP resonator when h is not dependent on
z.

which is a nonlinear integral equation for N, depending
parametrically on

I C, I
.

From this partially analytic formulation it appears that
the strategy of solution of the nonlinear system is the fol-
lowing. First of all Eq. (16) is solved numerically in or-
der to obtain N(z} as a function of the transmitted
power. An iterative technique has been used for the in-
tegral equation along z starting from a constant value of
N(z) till the convergence of the solution. As an exain-
ple, in Fig. 6, the distribution of normalized carrier densi-
ty Na0 on the longitudinal coordinate z of the FP device
is reported for several values of the output power. One
sees clearly the strong optical absorption at low power
levels and its saturation as the incident power is in-
creased. Once N(z } is known from the above procedure,
one can compute IC; I

and
I C„I as a function of IC, I

from Eqs. (13) and (14); by inverting the first function one

C. DFB case

In a distributed-feedback device a grating introduces
coupling between the forward and the backward slowly
varying amplitudes CF and Cs [hence IKI+0 in Eqs. (4)];
in the stationary case the longitudinal profiles of the am-
plitudes are described by setting t}/t}t =0 in Eqs. (4):

BCF =+[h(z) —a;]C~+KCse' '
az

BC~ = —[h (z ) —a; ]Cs + K "C~e

(17a)

(17b)

obtains finally the transmission and reflection responses
of the nonlinear resonator as a function of the input
power. Such a strategy is numerically very convenient,
since the first step gives a single valued relation between
N and IC, I; the bistable effects appear only in the final

step.
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where

5= APL =(PP —2Po)L—
is the normalized detuning between the grating and the
mode propagation constants; in this way the definition of
5 corresponds precisely to that of the FP case [Eq. (15)]
provided that co, /vs is replaced by pp /2s. In addition,
because of the absence of mirrors, the internal amplitudes
are related to the incident, reflected, and transmitted am-
plitudes by the boundary conditions

0.0 ( I i I i I & I } I ( I i I & I } I

CF(0)=C, , C~(L ) =C, ,

Cs(0)=C„, Cs(L ) =0, (19)

0.0 20. 40. 60. 80. 100.

Z I,'pm)

FIG. 6. FP device. Longitudinal carrier distribution N(z)ao
for several values of output power P, =IC,

~
in mW/pm: (1)

P, =10, (2) P, =10, (3) P, =10 ', (4) P, =1, (5) P, =10. Pa-
rameter values: L =100pm, IS» I

=0.9, b, = —0.7.

where z =0 and L are the longitudinal coordinates at the
beginning and at the end of the grating. In this case no
simple analytical solution can be found. Therefore we
compute

I C; I
and

I C„ I
as a function of

I C, I by integra-
tion of the differential equations (17) from z=L to 0 us-

ing a standard computer algorithm, because the bound-
ary condition in z =L depends only on C, . Finally, as in
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R(N) — Im [lCF(z)l +le(z)l ]=0,
Avg E'

(20)

obtained from (7) by dropping the derivative.
An example of the forward ( le(z )

~
) and backward

(lC&(z)l ) longitudinal power distributions are shown in

Figs. 7(a) and 7(b) for two values of the output power,
which correspond to dots a and b on curve 3 in Fig. 12,

I I I I
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400.
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— (c)

0 ~ 2

0. 1

0.0
0.0 300. 400.

Z (pm)

FICx. 7. DFB device. (a) and (b) longitudinal distributions for
forward (solid line) and backward (dashed line) power (in
mW/pm) for two values of the output power P„corresponding
to dots (a) and (b) of curve (3) in Fig. 12. (c) longitudinal distri-
bution of density of carriers N(z)ao for two values of the output
power P„corresponding to dots (a) (solid line) and (b) (dashed
line) of the same curve in Fig. 12. Parameter values: L =400
pm, E =150cm ', 5= —3, 5=56.

200.'l 00

the FP case, the transmission and reflection properties of
the DFB device as a function of the input power l C; l

are
obtained by inverting the function lC;l =V(lC, l ).

The carrier density N(z ) necessary to compute h (z ) is
determined by solving numerically, with a false position
method [31],the equation

while the longitudinal distributions of the normalized
carrier density for the same output powers are shown in

Fig. 7(c). Contrary to the FP case, the backward field

shows a z dependence similar to that of the forward field.
At low power levels there is a strong absorption and
therefore only a limited portion of the device is useful.
At high power levels, because of the saturation and of the
strong coupling between forward and backward fields, the
whole length is useful and the fields and carrier density
show multiple undulations which become more pro-
nounced as the power is increased.

IV. NUMERICAL RESULTS

A. FP case

Optical transmission and reflection static responses for
the FP resonator represented in Figs. 1(a) and 1(b) and
having a transverse index profile like the one reported in

Fig. 15 have been numerically computed by varying the
most important parameters which influence the device
behavior.

First of all the effect of varying the working frequency,
represented in our model by the parameter 6, has been
investigated. Typical results regarding the transmitted
power P, =

l C, ~
as a function of the incident power

P, =
l C, l

(in mW/pm) are shown in Figs. 8(a)—8(c); loga-
rithmic scales have been used in order to show in a
unique diagram several curves, for a wide range of pa-
rameters, so to allow an easy comparison. The 6 values
chosen are —0.7 (excitonic absorption peak) in Fig. 8(a),
—2 in Fig. 8(b), and —3 in Fig. 8(c). The curves in each
diagram refer to different values of detuning 5 [see Eq.
(15)]; the range of 5 has been chosen in each case so to
present bistability effects. A rough idea of the 5 values
needed to get hysteretic behavior can be obtained by im-

posing that, at the power level corresponding to satura-
tion of absorption (and hence also saturation of the re-
fractive index b, n ), the transmission given by Eq. (13) is a
maximum (resonance condition), i.e.,

5=2J Im[h(z)]dz+2np',
0

where p' is an integer properly chosen as required by the
condition l5l & ir. This expression can be easily evaluated
with the assumption of a constant h(z); as a matter of
fact, as it clearly appears from Fig. 6, at high power lev-
els N(z ) reduces to a constant, owing to the saturation of
the absorption. As a consequence of the large variation
of the refractive index, the value of the index p' that must
be chosen to have ~5~ & mean be of some. units. Note that
the frequency spacing between adjacent cavity modes
m.vs/L, multiplied by A' and divided by E„(see the
definition of b, in Sec. II), amounts to 0.12 for L =100
pm. Therefore, as it appears from Fig. 2(b), the excitonic
resonance covers several modes of the cavity.

Bistable behavior occurs in all the reported cases, due
to the high nonlinearity of the field-carrier interaction in
the QW. However near the excitonic resonance [Fig.
8(a)], the presence of a strong absorption produces a rath
er narrow hysteresis cycle with respect to the input
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log P
10 t

0.0

s s ) & & s & I a a/

0.0 1.0
log P

power, even if the output contrast can be high. For the
other values of 5 [Figs. 8(b) and 8(c)] the cycles are more
symmetrical and bistability can be achieved at lower in-

put power levels (even less than l mW/)Mm; typical value
of input contrast can be 3, while at the output it is always

larger. Very similar cycles can be observed for 5= —2
and —3; the first case, because of the larger refractive in-
dex change, displays wider cycles, but, owing to the still
large absorption, a greater input power is required to
achieve the same level of output power. By working even
further from the exciton peak, the bistable behavior de-
grades as a consequence of the reduced nonlinearity
(smaller change of b,n, as shown in Fig. 4). For the
preceding reasons, the following numerical results will be
presented for 6= —3.

Figures 9(a) and 9(b) show, respectively, the transmis-
sion and reAection characteristics obtained by varying the
mirror reAectivity. As is well known, the hysteretic be-
havior appears only for reQectivities larger than a thresh-
old value, in our case slightly less than 0.8. By increasing
~S» ~, the hysteresis cycle becomes more and more pro-
nounced, but an increasing input level is required to com-
mute the output. Similar considerations apply to the
dependence of reflected power P„=

~ C„~ on the input
power P, [Fig. 9(b)], showing clearly a complementary
character with respect to P, (i.e., high P„when P, is low,

log„P
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FIG. 8. FP device. Transmitted power P, as a function of in-

put power P;, in mW/pm (with logarithmic scales) for L =50
pm, ~S» ~

=0.9, and different values for the parameters b, (i.e.,
working frequency) and 5 (see text). (a) 6= —0.7: (1)
5 = —1.42, (2) 5= —0.94, (3) 5= —0.47; (b) 6= —2: (1)
5= —1.18, (2) 5= —0.24, (3) 5=0.71; (c) 6= —3: (1)
5= —1.65, (2) 5= —1.18, (3) 5= —0.71.
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FIG. 9. FP device. (a) transmitted power P, and (b) reflected
power P, as a function of input power P;, in mW/pm (with log-
arithmic scales) for L =50 pm, 6= —3, 5=1.56 and for several
values of the mirror reflectivity ~S»~: (l) ~S»~ =0.80, (2)
IS„I'=0.85, (3) IS» I'=0.90, (4) IS» I'=0.9S.
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and vice versa).
The efFect of varying the resonator length is shown in

Figs. 10(a) and 10(b). Also in this case there is a required
minimum value of the parameter to achieve bistability (in
our case, approximately L =30 pm). By increasing L, the
cycle becomes more and more pronounced and, with
rather high values of resonator length, a second hys-
teresis cycle appears. This is due to the large refractive
index nonlinearity in the QW structure that, associated
with a large I., allows to exploit more than one longitudi-
nal resonance; by further increasing L the system can
show multiple hysteresis cycles.

B. DFB case
%e have also analyzed the static responses in transmis-

sion and reflection for the DFB device represented in Fig.
1(c), with the same material parameters of the FP device.

In Fig. 11 typical curves of transmitted power P, as a
function of input power P,. are shown for three difFerent

values of working frequency, corresponding to 6=—3,—2, and —1. Each curve, in logarithmic scale for the
same reason as for the FP case, is calculated with a
different value of the parameter 5 of Eq. (18) which mea-
sures the detuning between the grating and the input fre-
quency. Precisely, for each 6 the value of 5 is chosen
with the criterion of obtaining the largest size for the bi-
stability hysteresis cycle (i.e., the largest S-shaped curve}.

We can calculate approximately these optimum values
for 5 in the following way. By neglecting the absorption
(Re(h) —a;) and assuming the function h(z) constant
over the full length of the device, Eqs. (17), with the
boundary conditions (19), can be easily integrated, and we
obtain expressions for the transmission ('7}and reflection
(A ) coefficients of the device:

C„2
C;

C,

C;

y2

&I—y'cosh(IK IL«1 —y') —iy»nh(IK IL &I—y'}

(21}

where

1 5
y

~ ~

Im(h)—

It is simple to see that T=O if ~y ~

& 1 and 7 =1 for
' 2 1/2

l=1,2, . . . (22)

r T 2 1/2

where h, is the value of h (N) on saturation of the carrier
density. From this expression we obtain

5,p,
——2(~K~ L +n )' +2L Im(h, ) . (23)

This formula gives a straightforward way to obtain the
best operating values for 5 as a function of the device pa-
rameters E and L, and it is used for the calculation of the
following results.

As one can see from Fig. 11 bistable behavior is possi-
ble in a DFB device only if the input frequency is far

Because Im(h ) diminishes when the density of carriers
increases, as one can see from Fig. 2(b), in order to ensure
the maximum output contrast, there must be low
transmitted power when the carrier density is at its
minimum, and on the contrary high transmitted power
when the carrier density is saturated; so the subsequent
condition [obtained choosing 1=1 in Eq. (22)] must be
fulfilled:

from excitonic resonance; in fact for 5= —3 the hys-
teresis cycle is bigger, and has a very large output con-
trast, but it disappears completely when 5= —1; the size
of the cycle is comparable with those of FP devices, but it
needs a higher input power, often more than 1 mW/pm,
because to achieve bistability a DFB device must be gen-
erally longer and the absorptive efFects are more impar-
tant, as will be shown in the following. In order to ana-
lyze the influence of the other parameters of the device,
we choose in the following the value b, = —3 (as for the
FP case) in which we have the largest S-shaped curves.

In Fig. 12 we show the transmission characteristics of
this system by varying the detuning 5; the range of values
in which one has bistable behavior is approximately 10
around the optimum value 5, ,=52 (with ~K~ =150 cm
and I =400 p,m). In fact, as one can guess from the
preceding discussion, the efFect of the refractive non-
linearity is important only in this range 5, and in particu-
lar for 5&5,P, the transmission of the device is at its
minimum because one has

~ y ~
& 1 on saturation of the

carrier density, and consequently 'T=O from Eq. (21).
The effect of varying the coupling coefficient ~K~ is

shown in Fig. 13(a) for the transmitted power; the bi-
stable behavior appears only if ~K~ is larger than a
threshold value (in this case =60 cm '}, becomes more
pronounced and requires more input power as ~K~ in-
creases, and finally the cycle becomes narrower and
disappears when ~K~ becomes definitely larger than 200
cm . The same behavior is evident also in the depen-
dence of the reflected power P„on the input power, as
shown in Fig. 13(b}. In Figs. 14(a) and 14(b) we show, re-
spectively the transmission and reflection characteristic
obtained by varying the device length; the hysteresis cy-
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FIG. 12. DFB device. Transmitted power P, as a function of
input power P;, in mW/pm {with logarithmic scales) for
b, = —3, L=400 pm, ~K~=150 cm ', and several values of the
detuning 5: (1) 5=50, (2) 5=52, (3) 5=56, (4) 5=62. The dots
(a) and {b}on curve (3) refer to Figs. 7{a)—7{c).
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power P„as a function of input power P;, in mW/pm (with log-

arithmic scales) for ~S» ~'=0.9, b = —3, and for different values

of device length L (in pm) with 5 properly chosen. (1}L =20,
5=1.88; (2) L=50, 5= —1.56; (3) L=100, 5= —3.11; (4)

L =300, 5= —3.05.

3

i
'I

I

I

I
/

/

I
I

I

1

I

I

I
I

I
I

I
I

I » I I l

0.0 1.0
1 og „P.

2. 0

log P
10

log P
10 r

— (b)

0.0

0.0 1.0
1og P

10

0

FIG. 11~ DFB device. Transmitted power P, as a function of
input power P;, in mW/pm (with logarithmic scales) for L =400
turn, ~IKI=150 cm ', and different values for the parameter b,

(i.e., working frequency), with 5 properly chosen (see text); (1}
6= —3, 5=52; (2) 5= —2, 5=53; (3) 6= —1, 5=56.
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FIG. 13. DFB device. (a) transmitted power P, and (b)

reflected power P„as a function of input power P;, in mW/pm
(with logarithmic scales) for 5= —3, L =400 pm, and different

values of the coupling constant ~K~ in cm ', with 5 properly
chosen (see text). (1) )K(=50, 5=48; (2) (K(=100, 5=50; (3)

IKI =150, 5=52; (4) IK[ =200, 5=54.
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FIG. 14. DFB device. (a) transmitted power P, and (b)
reflected power P, as a function of input power P;, in mW/pm
(with logarithmic scales) for b = —3, ~@~=150 cm ', and
different values of the device length L in pm, with 5 properly
chosen (see text). (1) L=200, 5=28; (2) L=300, 5=42; (3)
L =400, 5=54; (4) L =500, 5=66.

V. CONCLUSIONS

cle becomes larger with the increase of the coupling
length, over the threshold value L =200 IMm. As one can
see from Fig. 14(b), for large values of L a second hys-
teresis cycle initiates to appear, due to the presence of the
other peaks of the transmission coefficient V'=I, corre-
sponding to the choice 1=2,3, . . . in Eq. (22). However,
by further increasing L, only the primary cycle survives,
and in a more restricted range of 5, because of the in-
creased absorption.

sically of the dispersive type. As a matter of fact, even
when the input field is near resonance with the excitonic
line the refractive index hn exhibits a noteworthy varia-
tion as a function of the optical power (curves 3 and 4 in

Fig. 4). However, because the absorption is large in these
cases (curves 3 and 4 in Fig. 3) the hysteresis cycles turn
out to be rather narrow and the bistability is not very
pronounced. Much better cycles are obtained when the
input field is substantially detuned from the excitonic
peak, so that absorption is strongly reduced (curves 1 and
2 in Fig. 3). On the other hand, when the detuning from
the excitonic peak becomes too large also the variation of
the refractive index as a function of power is reduced.
Therefore one finds an optimal range of values for the de-
tuning 5 between the input field and the excitonic reso-
nance; the cases shown in Figs. 8(b) and 8(c) lie in this
range.

In this paper we considered both the case of a Fabry-
Perot resonator and the case of a distributed-feedback de-
vice. It is not straightforward to make a general compar-
ison between the two devices. Let us compare, for exam-

ple, curve 2 in Fig 8(c) and curve 1 in Fig. 11; both of
them are obtained for 6= —3. We see that the size of the
cycle is similar in the two cases; the DFB device requires
a larger input power to obtain switching to the high
transmission state, but exhibits a large output contrast.
In practice, it may be easier to obtain a bistable device in
the DFB configuration, because it is not simple to realize
the required high re6ectivity at the endfacets of the sam-

ple in the FP case.
In this article we did not discuss at all the stability of

the stationary solutions. We mentioned in Sec. IVA
that, in the conditions considered here, several cavity
modes lie below the excitonic resonance. It is well known

[2] that in this situation the system may develop instabili-
ties induced by the growth of cavity modes different from
that which contributes to the stationary state. The stabil-
ity analysis of the stationary solutions is planned to be
performed in the future.
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The bistable behavior discussed in this paper arises
from the interaction of the optical 6eld with the excitonic
resonance, which gives rise simultaneously to dispersion
and absorption. Very illuminating for the understanding
of the behavior of the system are the diagrams in Figs. 3
and 4, which show the behavior of the absorption
coefBcient a and of the refractive index hn as a function
of the local power. The examination of these curves leads
to the conclusion that the bistability observed here is ba-

APPENDIX

Following the general approach of Ref. [30], but in-
cluding also a slow time variation in the amplitudes, the
transverse electric and magnetic fields in the waveguide
under analysis are expanded in the complete set of trans-
verse modes E„and H„(n denotes the mode order and t
means transverse to z ):
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with P„being the propagation constants; P„,E„,and H„
all refer to the mean angular frequency co and correspond
to a "reference waveguide" which, in our case, is a planar
waveguide having the cross section of Fig. 1(a) and the
refractive index profile represented in Fig. 15, in the case
of six wells. The effect of the nonlinear interaction and of
a possible grating are introduced in the model as sources
of dielectric polarization. In our case they are related, re-
spectively, to b,e given in Eq. (1) for the nonlinearity in
one well and to be{i' in Eq. (6) for the grating effect [see
Fig. 1 (c)]; these quantities are the permittivity changes
with respect to the "reference waveguide. " By introduc-
ing such sources and the preceding field expansions in the
Maxwell equations and by using the orthonormality rela-
tions for the field distributions, a complete set of coupled

3.0 I I { I { { I { { { { I { I { { I {

00 01 02 03
x(pm)

FIG. 15. Unperturbed refractive index profile for six wells.

equations for the coeScients Cz„and Cz„are obtained;
the procedure is completely similar to the one developed,
for instance, in [30], but in our case including the slow
time variation of the field amplitudes. When only one
transverse mode plays a significant role, as assumed in
the present paper, and the unperturbed dielectric medium
is isotropic and lossless, the equations and coupling
coefficients are those given in Eqs. (4)—(6) of the text.
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