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Nondegenerate two-mode squeezing and quantum-nondemolition measurements
using three-level atoms in a cavity
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We consider two modes of the electromagnetic field interacting via a three-level atom in a ladder

configuration. We calculate the squeezing spectra of the sum and difference of the two output beams.
The usefulness of this system as a quantum-nondemolition-measurement scheme is analyzed and a pre-
diction is made using the parameters of a recent experiment by Grangier et al. [Phys. Rev. Lett. 66, 1418
(1991)]. We use a full three-level model in the most general case and in particular the influence of both
the one-photon and the two-photon detunings are investigated.

PACS number(s): 42.50.Lc, 42.50.Dv

I. INTRODUCTION

There have been a number of schemes proposed for
quantum-nondemolition (QND) measurements [1] in op-
tics [2—9]. These have resulted in several experimental
demonstrations by Levenson et al. [10], La Porta et al.
[11], and Grangier et al. [12]. It is the experiment of
Grangier et al. which we wish to analyze in this paper.
Their experiment is based on the coupling of two cavity-
electromagnetic-field modes via a two-photon transition
in a three-level atom in a ladder configuration. The phase
fluctuations of the probe field are correlated with the am-
plitude fluctuations of the signal field via the nonlinear
interaction. An analysis of this system was given by
Grangier et al. [8) in the dispersive limit where spon-
taneous emission from the atoms was neglected. An
analysis which included spontaneous emission from the
atoms was given by Blockley and Walls [9]. They used an
effective two-level atomic model which assumed the inter-
mediate level is highly detuned from the optical frequen-
cies. Thus, only the influence of the two-photon detuning
was considered.

In this paper we treat a full three-level atomic model
which enables us to include the influence of the one-
photon detuning in addition to the two-photon detuning.
For large one-photon detuning we recover the results ob-
tained using the effective two-level-atom model. We use
the criteria given by Holland et al. [13] to evaluate this
scheme as a QND measurement. In particular, we evalu-
ate the QND capability of this scheme for the range of
parameters accessible in the experiment of Grangier
et al. In addition, we calculate the squeezing in the sum
and the difference of the two output beams. We are able
to extend some previous results based on an effective
two-level model of the atomic medium [14].

II. PRINCIPLE OF THE CALCULATION

We wish to describe the interaction of two cavity
modes of the electromagnetic field coupled via a two-
photon transition in an ensemble of three-level atoms in a
ladder configuration as shown in Fig. 1. The atomic tran-
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In these equations, o.
kI are, respectively, the populations

and the coherences, a and a. are the boson operators for
each field mode, A'v; is the energy level of the ith atomic
level, co is the frequency of the mode j of the cavity. g1
and g2 are the coupling constants for the lower and upper
transition, respectively (taken as real). k. is the wave vec-
tor of the mode j, r" is the position of the pth atom, and

ik. r~
a phase term e ' ' takes into account the position of each
individual atom. b. and b. are the boson operators for
the field bath. I . and I - are the atomic bath operators
for each transition (j =1,2). The commutation relations
for the different operators are

[a.,a']=5 (3)

sitions and the field modes are coupled to thermal baths
taken to be in the vacuum state. The Hamiltonian
describing this interaction can be split into four terms:

H =H1+H2+H3+H4+Hb„h, .

H1 is the free part of the Hamiltonian for the atoms as
well as for the field modes, H2 is the atom-field-coupling
part of the Hamiltonian, H3 describes the damping of the
cavity modes by the coupling with the field bath, and H4
the damping of the atoms by spontaneous emission.
Hb„h, is the Hamiltonian for all the different baths. The
rotating-wave approximation is made. We have
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FIG. 1. Scheme of the three-level system.
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Cj(co) is the coupling coefficient between the bath and the
inside modes and is assumed to be constant over a broad-
band of frequencies about each characteristic frequency
Qj. We then have C (co) =»l /2m, where»j is the cavity
decay rate.

We shall take a and b to be in the frame rotating at
the frequency Q. of the corresponding driving field

(j =1,2). We define the input fields by (see Ref. [15] for
more details)
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where b (co) is the value of b, (co) at t =to.
We define atomic operators for the whole atomic sys-

tem:

and

S11+S22+S33 (14)
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together with the other three obvious equations for the

conjugate variables. We have defined the scaled atom-
laser detunings

bz, = [(vz —v, )
—0, ]/(y, /2),

~32 [( 3 v2} +2)/[(1 1+Y2)/2)

and similar obvious definitions for S21, S32, and S31.
We can now write down the Heisenberg equations of

motion for the whole set of operators, in the frames rotat-
ing at Qi and Qz. We obtain (j =1,2 corresponding to
the two field modes)

daj = —»,.(1+i@,)a +g, S,j+, +2»ja~",. —
dt

and iI'i. =(ai. —Q. )/» are the scaled empty-cavity detun-

lngs.
The deterministic mean values of the atomic variables

in the steady state can be found by setting the time

derivatives to zero and neglecting the noise terms. This

involves solving the eight coupled linear equations for the

atomic variables. This enables us to obtain a relation be-

tween the mean values of the input- and internal-field

operators. We have, for j = 1,2,
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we have analogous relations for the output operators in
terms of the internal operators

Using the boundary condition for the input-output for-
malism [15]for j =1,2,

These phases are important when we deal with a specific
output quadrature.

ExPressing (S,z ) and (Sz3) in terms of (S» ), using
Eqs. (11) and (12) without the noise terms and the time
derivatives, and inserting these quantities back in Eq.
(13), we obtain (for the mean value)
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is the two-photon detuning corrected by the Stark shifts
of, respectively, the ground and the upper level [16]
(which are of order of magnitude -yz for the type of pa-
rameters we are considering here, but cancel each other if
gi(ai)=gz(az)). So if we neglect the Stark shifts, we
recover the same equation we obtained with the effective
two-level-atom model of our previous publication [14].

Provided that the fluctuations are small enough corn-
pared to the deterministic mean values, we can linearize
each variable about its mean value:
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Let us define a scaled atomic noise for the system BJ."
~ —ik. r~=I/~N g„-iP~"e ', for j =1,2. We can now write

the equations of motion for the fIuctuation operators.
We have

5a = —a, (1 i+4, )5a. +g~5S~J+, ++2aj5aj",d
dt

d 5S„=yi5$22+g, ((S2, )5a, + (ai )5S2, +H. c. )dt

+"i/yi/N(S21BI +B'i" Siz),

and

5S) ) +5S22 +5S33 0 (25)

Note that the atomic operators themselves occur in the
noise terms. This is of relevance when we calculate the
noise-correlation matrix using the operator multiplica-
tion rules.

Using the following method due to Gheri [17], we are
now able to calculate all the fields and atoms correlations.
A similar method in the frequency domain is presented in
Ref. [18]. We can write the whole linearized system [(24)
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and (25)] in terms of matrices for the Ito diff'erential ele-
ments:

dv(t)= Av(t)dt +dB(t),
where v is the vector given by
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0 0 0 0

0 O O Ot
CV
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O
Cr)

O O ~ 0 0

0 0 0 0 0 0 0

d B(t) is the noise vector and we have

(dB(t}dBr(t')) =Gdt5(t t'),— (28)

with G given by Eq. (29).
We are interested in the correlations of the various

field operators, so we need to work out the following
product:

(v(t+r)v (t))

Q O O O
Cr}

0 0t
CV

O 0

0 0 0 0 0 0 L40 0 0 0

(30}

A=+A, ;P;, (31)

We can write A as the sum of the projectors onto each of
its eigenveciors: 0 0 0 0 0 ~ 0

tV

where P, is the projector onto the eigenvector of eigenval-
ue A,;. We then have

PjGPk
Co= lim (v(t)v (t)) = —gt~~ jk j k

(32)

We can now express the correlations in the stationary re-
gime ( t ~ oo ) in a simple form:

0 0 0 0 tvt
I

O
CV

I

(v(t+r)v (t)) =e"'C06(r)+Coe " '6( —r), (33) 0 0 640 0 0 0 0 0 0 0
where 6(7.) =0 for r(0, 6(r) =1 for r) 0, and 6(0)=—,'.
This correlation matrix contains all the information we
need to compute squeezing spectra or any correlation
coeScient.

0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

III. TWO-MODE SQUEEZING
O 0 0 O 0 0 0

In this section, we would like to see the e8ect of a finite
detuning with the intermediate level (b,z, } on the squeez-
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X(cr r} Qaout(i)e
—ia+$aoutt(&}cia (34)

is defined for t ~ 00 by

V(a, co)= J e '"'(X(a, t+r)X(a, t))dr . (35)

ing of the difference of the two output fields, and compare
the results with the results obtained in a previous publica-
tion [14] using efFective two-level atoms. For this
effective two-level model, the one-photon detunings were
assumed to be very large. Here we shall find out how
large h2, has to be for the effective two-level model to be
valid.

The squeezing spectrum for the quadrature component

V(cz co}—J e
—ivor[(aoutt(&)aoutt)e2ia

+ (a out(&)a out )e
—2ia

+ ( a outt( )a out )

+ (a out(&)a out/ ) ]d (36)

We now have to relate these correlations involving the
output field operators to the correlation matrix [Eq. (33)]
for the internal-field operators. This can be done relative-
ly easily using the input-output formalism [15]. For
coherent inputs, we have (for j=1,2}:

(aou t(r}aou ) =2ic (at(r)a )J J J J

and (37)

From now on, in order to simplify the notation, we shall
omit the 5 in front of the operators. And since we are in-
terested in the stationary regime, the time t is irrelevant
and will be omitted.

The expanded expression for the squeezing spectrum is
the following:

(a'"'(r)a'"') =2x [e(~)(a (r)a )+e( r)(a—aj(r))] .

Here we are interested in the best squeezing of the sum
or the difference of the two output fields. It is therefore
more convenient to define a new v vector whose four first
elements are
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and make the corresponding transformations on the A matrix and the 6 matrix. This new set of variables enables us
now to compute the squeezing spectra using Eqs. (36) and (37) and the new Co correlation matrix. The squeezing of the
quadrature at angle a is given by

V(a, co)=1+(ic,+@2)([(A icoI) 'G—( A +icoI) '+( A+icoI) 'G( A icoI} —'];+&;
—e ' [2COA [(A ) +co I] '];+&;+t—e ' [(A +co I) '2ACO];;), (39)

where i =1 for the sum, and i =3 for the difference. I is the identity matrix. The best squeezing spectrum is then ex-
pressed by

Vs(co)=1+(ict+ic2)([( A icoI) 'G( A—+icoI) '+( A+icoI) 'G( A icoI) '—];~t;

(40)

IV. RESULTS

We first consider the parameters corresponding to the
practical case of a sodium atom to find out whether the
effective two-1eve1 atom discussed in a previous publica-
tion [14] is still valid. We have plotted in Fig. 2 the best
difference squeezing spectrum obtained with the effective
two-level model and the spectrum given by the present
analysis with the two one-photon atom-cavity couplings
g1 and g2 of equal magnitude giving the same two-photon
coupling g =g1g2/6». This is the situation correspond-
ing to the levels 3s1/2-3p3/2 3d5/2 of the sodium atom

@J"'=4J—Im[gj.Si~+, /(ic. (a. ) )] (41}

are taken equal to 0.6. It turns out that, for the
configuration with identical one-photon atom-cavity cou-

used in Grangier's QND experiment [12]. The third
spectrum shows what happens when the one-photon cou-
pling for the upper transition is weaker (which is the case
in most situations), the two-photon coupling remaining
the same by decreasing the one-photon detuning L2, . For
all these three plots the total normalized phase shifts
defined (for j= 1,2) by
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FIG. 2. Comparison of the best squeezing of the difference
for the full three-level atom and for the effective two-level mod-
el. For all of these plots we have K] K2 =7 X 10 and
N=SX10'. The total normalized detunings 4'„, (for j =1,2)
are equal to 0.6. The solid line corresponds to the result given
by the effective two-level model for a two-photon coupling of
g =50 with a two-photon detuning h3& of 100(y, /2) and equal
intensities for both fields corresponding to (a, ) =

(tt2 ) =337.4.
The dashed line is the spectrum given by the present full three-
level analysis for parameters corresponding to the sodium atom
used in the experiment of Grangier et ttl. [12]. We have yt
=6.13X10,y2=5. 03X10 gi =g2=10, 63i=100(y2/2), and
b,»= —g, g2/g = —652.5(y, /2). The dash-dotted line is the
spectrum for the same two-photon coupling in the more com-
mon case where the one-photon coupling for the upper transi-
tion is &10 times weaker (go=10 /&10), the one-photon de-
tuning 6» = —(652.5/&10)(y2/2) also &10 times smaller and
the relaxation rate 10 times smaller (y2= 5.03 X 10 ).
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FIG. 3. Difference between the best squeezing value at zero
frequency obtained with the three-level analysis and the one ob-
tained with the effective two-level model for the same two-
photon coupling (g =50) and two-photon detuning 43$
=100(yz/2) in terms of the logarithm of the normalized one-
photon dettt»ng lh»l/(yt/2). So lh»l g«s from 10'(y, /2) to
10 (y l /2). The parameters are Kl =K2= 7 X 10 N =5 X 10
y, =6.13X 10, y2=5. 03X10, and (at)=(az) =337.4. In
order to keep the two-photon coupling constant, we have

gt =g2=v'gl&»l.

pling, the amount of squeezing is still acceptable (to 0.25
of the vacuum noise at zero frequency compared to al-
most perfect squeezing predicted by the effective two-
level model), but when the coupling for the upper transi-
tion is weaker and A2& therefore smaller in order to com-
pensate, the worsening of the squeezing is quite dramatic
(to only 0.7 of the vacuum noise at zero frequency) and
the effective two-level model is clearly no longer valid.

We then look at the behavior of the best squeezing at
zero frequency in terms of the one-photon detuning 62, ,
the two-photon coupling g remaining constant. The one-
photon atom-cavity couplings have therefore to be varied
(g, =g2 ="i/glb2i l ) in order to compensate for the varia-

tion of 52, . We have plotted in Fig. 3 the difference be-
tween the best squeezing at zero frequency of the twd-
mode difference obtained with the full three-level analysis
and the value given by the effective two-level model. It
can be seen that, for a two-photon detuning 6» of
100(y2/2), the effective two-level model is valid with an
accuracy of a few percent only for a one-photon detuning
b, zi larger than 10 (yi/2). These quite large detunings
require one-photon atom-cavity couplings that are some-
what hard to achieve experimentally, ' typical one-photon
detunings are in practice of the order of 10 (y, /2), which
still gives quite acceptable results.

U. QND MEASUREMENTS

The three coeScients defined further on are of this type.
But in order to simplify the notation, we just write them

1&pq & I'

&p'&&q'&
'

The first coeScient tells us how accurately we can
determine the signal input by measuring the probe out-
put. This is quantified by the correlation coefBcient C,
defined by

l
&x'"r'"'& l'C)=

&Xin & &
pout )

(44)

where X'" is the noise part (&X'"& =0) of the quadrature
of the signal we want to measure, and Y'"' the noise part
of the quadrature of the probe we read. We have
0~ Ci ~ 1. For a perfect QND-measurement scheme

C, =1.
The second coefBcient is a measure of how nondestruc-

tive the measurement scheme is. This is quantified by the
correlation coeScient C2 defined by

l & XinX out ) l

2

Cq=
&Xin &{Xout )

(45)

We have 0 ~ Cz ~ 1. If the measurement is perfectly non-
destructive, C2 = 1.

One requires a QND scheme to have better perfor-
mance than the simple beam splitter [19]. The sum

C, +C2 gives a good indication of the ability of the
scheme to perform QND measurements. We have

We shall now evaluate the effectiveness of this system
as a QND-measurement scheme using the criteria
developed in Ref. [13]. The coefficients we want to calcu-
late are all normalized correlations between two particu-
lar quadratures of the different input and output 6elds.
In the general case, let us denote by p (t) and q (t) the two
real quantities (i.e., Hermitian operators) we are interest-
ed in. We want to compute the following quantity:

C (co)

f e ' '&p (~)q +qp (r) &dr

f" e
'

'&p(r~)p&d~~ f" e '""&q(r, )q&dry

(42)
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i
(Xo«pout) i2

C3=
(Xo«)( pout )

(46)

The conditional variance of the signal output, given a
measured value of the probe field, is (for a linearized sys-
tem):

(XDUt~ +DUD) —(XO«)( 1 C ) (47)

For a perfect state-preparation device Vc(X'"'~ F'"')=0,
whereas for the beam splitter Vc(X'«~ F'«) = l.

In order to get C& and C2, we need to work out corre-
lations between the input and output operators. The
boundary condition [Eq. (18)] enables us to do that the
same way as we previously did in Eq. (50}. We only con-
sider the case where the input beams are in a coherent
state.

The correlations we need for C& when field 1 is the sig-
nal and field 2 is the probe are

(ao«( }ain ) —0

(a2"' (r)a'1" ) = —2+iriir28(r)([az(r), a 1 ]),
(ao«t(&)ain) 0

( a 2 ( r )a '1" ) = —2+a'1 ir28( r ) ( [a 2 (r ),a 1 ] )

(48)

C] +C2 = 1 for the simple beam splitter and C& +C2 =2
for a perfect QND-measurement scheme. So quantum
effects are to be found within this interval.

The third coefBcient tells us how good the scheme is as
a state-preparation device. A good indicator for this is
the variance in the signal output, given a measured value
for the probe field. We first define the correlation
coeScient C3 by

VI. RESULTS

We will present here results with parameters that are
all accessible in the experiment of Grangier et al. [12].
In this experiment the signal is the amplitude of the input
field corresponding to the lower transition, and the read
out is done on the phase of the probe beam which corre-
sponds to the upper transition (configuration 1). But we
have also investigated an alternative configuration where
the signal is the amplitude of the field corresponding to
the upper transition, and the probe is the phase of the
field corresponding to the lower transition (configuration
2).

Some ranges of parameters can be found where both
configurations give quite good and similar results (Fig. 4).
For these plots, the total phase shifts 4„t (for j= 1,2) are
taken equal to zero so that the lasers are on resonance
with the nonlinear cavity. For the two graphs presented
in Fig. 4, the one-photon detunings are about ten times as
large as the two-photon detuning, the Rabi frequencies
0, =g, (a )/y, of both fields are equal, but the cavity
decay rate corresponding to the lower transition is four
times as large as the one corresponding to the upper tran-
sition. This asymmetry can be understood by the fact
that the lower transition is noisier because almost all the
population is in the lower level, leading to a relatively
large one-photon absorption for the lower transition.
And we do not want this noise to be stored in too narrow
a cavity. The QND-measurement criterion C, +C2 is in
both cases above 1.8, which means that we have more
than 80/o quantum correlations. The conditional vari-
ance characterizing the state-preparation capabilities of

he correlations we need for C (f

1.0-'
S% %

e%0%%%%00

( a o«(&)a In )J j
~J (r)aj' ) 2&'8(&)( [a t(~), ajt] )

(ao«t( ) Itt)
J J

;"'( )aj'" ) =fi(r) —2'.8(&)([a.(r), t])
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And for Ci we need (for j= 1,2)
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&}(a a, (r) ) ]
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&]

(50)

These correlations will enable us to derive the correla-
tion in the frequency domain using the correlation matrix
CII and Eq. (33) and compute the coefficient in which we
are interested.
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teria vs noise frequency when th to 1 d-
tunings @„,are equal to zero. In (a) the signal is the lower tran-
sition while the probe is the upper one, while it is the other way
around in (b). For both graphs the solid line is the conditional
variance, the dash-dotted line is the measurement coefficient Cl,
and the dashed line is the signal-degradation coefficient C2. For
both graphs the parameters are N=SX10, &el=4~2=6. 13

6.13X10, ye=5. 03X10 gl =g2
(a, ) =1226, (at) =1522, 6»= —120(y2/2), and

A2] = 1000(y $/2).
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the system goes down to 0.12 in both cases, which is al-
ready a good result. However, it is possible to break the
symmetry by taking parameters that will improve the
performances of one configuration while the perfor-
mances of the other one will be degraded. To achieve
that for configuration 1, we take a strong signal with a
Rabi frequency 20 times larger than for the probe. By
doing that one can reach values of about 1.95 for C& +C2
and a conditional variance of about 0.05, which is not far
from the ideal QND situation.

From an experimental point of view, it may be more
convenient to operate the probe at a nonzero frequency in
order to get away from the experimental noise around
zero frequency, and also to use the probe cavity as an in-
terferometer which will rotate the phase quadrature of
the internal field that contains the information into the
amplitude of the output field which does not require any
homodyne detection. This point is analyzed in detail in
Ref. [20]. The probe beam is detuned outside of the cavi-
ty bandwidth (three times the cavity bandwidth, for ex-
ample) while the signal is maintained on resonance with
its cavity which has a broad bandwidth (about four times
as large as the probe cavity) in order to include the side-
band that will be read by the probe. The sideband of the
output-meter beam that resonates with the cavity will
contain all the information whereas the other sideband
will not get any information. Therefore, it does not
matter any more whether we look at the amplitude
a(~)+a (

—co) or the phasei [a(co)—a ( —co)], the same
information is in both phase and amplitude. We have
presented in Fig. 5 the results in configuration 1 for the
two output quadratures with the same parameters as in
Fig. 4. The maximum correlations occur now at co/~2= 3

and even though they are not as good as in Fig. 4 at zero
frequency, they are definitely better at the sideband-
resonance frequency. At this frequency the correlations
have the same magnitude for both quadratures. In Fig.
5(a) we are looking at the phase of the output of the
probe, therefore nothing happens at zero frequency
(where the output phase corresponds to internal ampli-
tude). In Fig. 5(b) we are now looking at the amplitude of
the output. The correlations are about the same at
co/K2=3 but the probe still picks up a little bit of infor-
mation at zero frequency where the output amplitude
corresponds to the internal phase but is not resonant. If
the probe cavity bandwidth is larger (and the signal cavi-

ty bandwidth is larger as well) the correlation tends to de-
crease at zero frequency because we are then further
away from resonance.

VII. CONCLUSION

We have carried out in this paper a full analysis of the
noise characteristics of a three-level atom in a ladder
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FIG. 5. QND criteria vs noise frequency in configuration 1

when the probe cavity is detuned from the probe by 3 cavity
bandwidths (4„,=3a2). For both graphs, the solid line is the
conditional variance, the dash-dotted line is the measurement
coefficient C&, and the dashed line is the signal-degradation
coefficient C2. In (a) we are looking at the probe phase output
and in (b) at the probe amplitude output. All the parameters are
the same as in Fig. 4.
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configuration interacting with two cavity modes in the
most general case (no assumption for the detunings and
the field strength and no adiabatic elimination). We have
used the input-output formalism of Gardiner and Collett
[15] to get a set of quantum-stochastic differential equa-
tions that allowed us to compute the quantum correla-
tions for this system. We have extended the results of a
previous paper [14], on nondegenerate two-mode squeez-

ing, analyzing the infiuence of a finite detuning with the
intermediate level. We have then investigated the QND
capability of this scheme already used experimentally by
Grangier et al. [12] and we have shown that it can pro-
duce very good QND performances.
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