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Rate-equation analysis of deterministic chaos in a laser with a saturable absorber
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The dynamics of a single-mode laser containing a saturable absorber in its cavity is investigated by
means of the linear stability analysis of the rate equations of a recently proposed model. It is found that
a single degree of freedom, which characterizes the saturation effect in the absorptive medium, well pre-
dicts whether the laser oscillation becomes chaotic or not.

PACS number(s): 42.50.Lc, 42.55.Lt

I. INTRODUCTION II. RATE-EQUATION MODEL

The laser is a useful test bench for nonlinear dynamics.
Instabilities and chaos have been observed in types of
single- and multi-mode laser systems by adjusting the
laser-control parameters [1]. Infrared gas lasers are espe-
cially promising systems to realize one-to-one correspon-
dence between experiment and theory because of their
simple energy-level structure and well-known parameters.

Recently deterministic chaos was observed in passive
Q-switching (PQS) pulsation by use of a CO2 or N20 laser
with a gaseous saturable absorber in its cavity [2—6]. The
two-level model [7] and the four-level model [8,9] for the
laser system were not successful in reproducing chaotic
PQS, while the three-level —two-level model (the 3-2 mod-
el) proposed by Tachikawa et al. [10]has given successful
interpretations of the observed behaviors of the unstable
laser oscillation. In the 3-2 model, the vibrational relaxa-
tion from the lower laser level is considered to be an
essential process to describe the laser dynamics. The nu-
merical calculations well reproduce the observed chaotic
PQS pulse shapes, its period-doubling route, and the
periodic windows with detailed fidelity [2,4—6, 11].

In the rate-equation analysis of the 3-2 model, charac-
teristics of the PQS dynamics have been clarified by
several theoretical approaches. DeTomasi et al. [5] in-
vestigated the structure of the strange attractor in the
phase space, and classified the PQS instabilities depend-
ing on their behavior around the fixed points. By study-
ing the bifurcation behavior, Lefranc, Hennequin, and
Dangoisse [12] clarified that the chaotic PQS pulsation is
a typical example of the Shil nikov-type instability, as is
observed in the Belousov-Zhabotinskii reactions [13].

In this paper, the physical process to cause chaos in the
laser system is clarified by calculating the rates of diver-
gence of the distance between two neighboring trajec-
tories in the phase space. We introduce a parameter p
which indicates the occurrence of chaos. Compared with
the Lyapunov exponent [14], p has an explicit formula
with laser parameters, which gives us a direct under-
standing of the physical process to cause the instability.
It is revealed that the saturable absorber plays a key role
to make the orbit unstable.
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FIG. 1. Schematic representation of the three-level —two-
level model for a laser with a saturable absorber. The laser
medium is represented by three vibrational levels, and the ab-
sorber medium by two rotation-vibration levels.

Figure 1 shows a schematic diagram of the 3-2 model
for a CO2 or N20 laser with a saturable absorber (LSA)
[10]. In this model, the laser medium is represented by
three vibrational levels: the upper laser level (0,0,1), the
lower laser level (1,0,0) or (0,2,0), and the ground level
(0,0,0), where the numbers in parentheses represent vibra-
tional quantum numbers of CO2 normal modes. Indivi-
dual rotational levels are not specified in the gain medium
since the rotational relaxation is fast enough, and gives
no appreciable effect to the laser dynamics. The vibra-
tional relaxation processes are introduced among the
three levels whose rates are denoted by R,p, R,2, and
R pp ~ Continuous excitation is supplied mainly from the
ground level to the upper laser level at the rate P. The
absorber medium is represented simply by two rotation-
vibration levels in resonance with the laser radiation. It
is assumed that the populations in those levels approach
the thermal equilibrium values at an equal relaxation rate
r.

The laser system is described by four nonlinearly cou-
pled rate equations for the photon density I, the popula-
tion densities in the upper and lower laser levels M& and

M2, and the population density difference between the
absorber levels N. The equations are written as follows
for the properly normalized variables [10]:
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where

B=B,N'I, /L,
b =B,/(Bsfg) . (6)

The cavity loss rate is denoted by k. The coemcients 8
and B, are the cross sections multiplied by the light
speed for the induced emission in the gain medium and
the absorption in the saturable absorber, respectively.
The thermal equilibrium value of the population density
difference in the absorber is denoted by X*. L and l, are
the cavity length and the length of the absorption cell, re-
spectively. fs is the fraction of CO2 or N20 molecules in
the rotational level from which the laser transition
occurs.

III. CHAOS IN PASSIVE Q-SWITCHING PULSATION

100

The rate equations are numerically integrated by
means of the fourth-order Runge-Kutta method. Figure
2 shows a phase diagram for the pumping rate P and the
saturation parameter 2b/r. The saturation parameter is
proportional to the absorption cross section divided by
the relaxation rate. Detailed structure of the parameter
regions for regular pulsation, period doublings, and chaos
is clearly seen in the phase diagram. As the saturation
parameter becomes larger, the area for chaos gradually
contracts and the width of the periodic window increases.

A typical chaotic pulse train is shown in Fig. 3(a). Pa-
rameter values used in the calculation appear in Table I.
It is seen that single-, double-, and triple-peaked pulses
appear in a random order in the chaotic time series.
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FIG. 3. Typical chaotic PQS pulsation numerically calculat-
ed on the three-level-two-level model (a), and chaotic PQS ex-
perimentally observed in a N20 laser (b).

IV. LINEAR STABILITY ANALYSIS

Sensitive dependence of the trajectory on initial condi-
tions results in the chaotic time evolution in a dynamical
system [14]. The distance between two neighboring tra-
jectories increases exponentially with time on the strange
attractor. In this section, we derive a parameter which
characterizes the rate of divergence of the neighboring
trajectories in this I.SA system under several approxima-
tions.

Here the population difference of the absorber N ( t )

Basic features of the calculated pulse train such as the
pulse shape and the pulsing frequency closely coincide
with those of the chaotic PQS experimentally observed in
a CO& and NtO laser [4,6]. For comparison, a chaotic
pulsation observed in a N20 laser with an NH3 absorber
is shown in Fig. 3(b). It was previously confirmed that
the rate-equation analysis also reproduced the charac-
teristic dependence of the PQS behavior on the laser pa-
rameters such as the excitation current and the absorber
pressure [4,6, 10,11].

TABLE I. Parameter values used in the numerical calcula-
tion.
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FIG. 2. Theoretically obtained phase diagram for the pump-
ing rate and the saturation parameter where the regions for reg-
ular and chaotic PQS are depicted. The figures in the phase dia-
gram indicate the number of peaks involved in a single PQS
pulse.

Parameter

P
RIO
R I2

R 20

M
k
B
b
T

Value

77.5 Hz
1.00 kHz

20.0 Hz
380.0 kHz

2000.0 MHz
2.50 MHz
2.50 MHz

500.0
0.50 MHz
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can be eliminated adiabatically. Justification of the adia-
batic elimination was discussed in the previous wor s
[2,10]. Then, Eqs. (1)—(4) are rewritten as follows:

=M) —M2 B—/(1+e /I*) —k,
dt

= —(M, —Mz)e —(R,o+R,2)Mt
dt

+P(M M,——M~),

dM2 I=(M, —M~)e +R 12 R20M2dt

where I=inI. I* =r/(2b), which denotes the saturation
photon density for the absorber.

We introduce stnall deviation 5R = (5I( t), 5M
&

( t),
5M2(t)) from the original trajectory R=(I(t),M, (t),
M2(t)). In the linear approximation, the small deviation
satisfies the following equations:
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The divergence rate of 5R in the direction of an etgenvec-
tor of the coefficient matrix L is defined by the real part
of the corresponding eigenvalue.

The eigenvalues are analytically solved under the fol-
R R, and P are muchlowing approximations. Since 10, 12,
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The eigenvalues of L are solved as
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(13)
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NUMERICAL CALCULATION

Since k+ are always negative, the largest divergence rate
n b . is the derivative of the absorption rate inis given y p. p is e

Eq. (7) with respect to I. Therefore p represen s
strength of the feedback on the photon density caused by
the saturab e a sor er.l b b The mechanism to destabilize the
orbit is now clear. Saturable loss gives a positive ee-

coefficient of a saturable absorber is large for a weak elec-
tric field and small for a strong electric field. This satura-
tion effect makes the orbit unstable.

Figure 4 shows temporal variations of the ph hoton den-
sity part a)] and p [part (b)] calculated with the parame-
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FIG. 4. Temporal variations of the photo
'

yoton density (a), and p
(b) in the case of t e c ao ich h t PQS pulse 'train. Dashed curves
represent numericaically calculated divergence rates.
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rate-equation model. The linear stability analysis of the
rate equations was carried out. It has been found that the
trajectory is destabilized by the saturation effect of the
absorber, leading to chaos. The laser behavior is well
characterized by a single parameter describing the degree
of saturation of the absorber.

Generally, chaos is produced from nonlinear coupling
of several variables, and a physical process responsible
for chaos is not clearly interpreted except some special
cases [16]. It is remarkable that the occurrence of chaos

in the present laser system can be predicted by calculat-
ing the single parameter whose physical meaning is quite
straightforward.

Compared with other systems such as the Lorenz mod-
el [17] and Rossler band [18], the PQS instability is easily
accessible in a real experiment by use of conventional
CO2 and N20 lasers. The PQS instability is a useful mod-
el to investigate fundamental aspects of the low-
dimensional nonlinear system.
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