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Adiabatic and nonathabatic Berry phases for two-level atoms
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A formalism for calculating Berry phases for nonadiabatic systems containing an additional adiabatic
time dependence is developed. This is then applied to a two-level atom in a strong resonant polarized
laser, where the laser polarization provides the adiabatic parameter. It is found that, when the laser po-
larization is kept constant, judicious polarization choices allow one to eliminate either the rotating-wave
or non-rotating-wave part of the interaction. Furthermore, the adiabatic Berry phasor obtained when

the laser polarization is varied is found to be complex. This can be compared to the case of purely adia-
batic time-reversal even systems, which can only have real Berry phasors.

PACS number(s) 42 50 —p, 03.65.—w

I. INTRODUCTION

The Berry phase for periodic systems was originally
discussed in the adiabatic context [1]. This was soon ex-
tended to nonadiabatic motion [2] and in fact nonperiod-
ic motion [3]. The purpose of this paper is to analyze the
effect of superimposing an adiabatic variation onto an al-
ready nonadiabatically periodic motion. That is, we will
look at a system containing an underlying nonadiabatic
evolution with period tN modified by some adiabatically
varying parameters with period t~ much larger than t~.
We find that the Berry phase splits into adiabatic and
nonadiabatic parts.

A parallel analysis has been done by Ellinas, Barnett,
and Dupertuis, [4], who used the split in total Berry
phase between the purely adiabatic phase and the phase
that persists from the nonadiabatic evolution that one
gets when the parameters are kept constant.

We also discuss an interesting two-level atomic system,
which results when an atomic s —+p

&
transition, split

from the other p states by, say, a magnetic field, is irradi-
ated by a strong polarized laser. When the laser polariza-
tion (the external parameter) is kept constant, the Berry
phases can be experimentally investigated by noting that
the difference in overall phases is just the splitting of the
Mollow triplet, and is simply related to the frequency of
the Rabi oscillation [5,6].

Particularly interesting results are gained when the
laser is restricted to have circular polarization. With
right-circular polarization the non-rotating-wave cou-
pling is identically zero and so we see only the rotating-
wave part. More importantly, however, when left-
circular polarization is used, the usually dominant
rotating-wave interaction vanishes and so we can see the
usually negligible non-rotating-wave coupling.

II. AN EXACTLY SOLVABLK MODEL

We wish to be able to analyze systems that have an un-
derlying nonadiabatic periodicity but which also depend
on parameters that are varied adiabatically. The normal
adiabatic theorem cannot be used as the Hamiltonian
contains a nonadiabatic time dependence, and so we need

a modified ansatz. To motivate the ansatz that we will
propose, in this section we discuss a simple exactly solv-
able model, the semiclassical two-level atom in a circular-
ly polarized radiation field. This system clearly displays
the fact that the Berry phase for a system with combined
adiabatic and nonadiabatic time dependencies can be nat-
urally split into its adiabatic and nonadiabatic com-
ponents. Furthermore, it points to a method for writing
the generalized adiabatic ansatz in such a way that this
split is transparent for all systems.

The semiclassical two-level atom in a circularly polar-
ized radiation field has Hamiltonian

co /2
E8{f} Elder

—i6(t} —ia)tke e
(2.1)

This contains two time dependencies. The first, embo-
died in the factors exp(+icot ), is nonadiabatic and arises
from the sinusoidal time dependence of the semiclassical
radiation field. The second, contained in the factors
exp[+ie(t)], describes the adiabatic variation of an
external parameter. For convenience, we have chosen
the laser to be exactly resonant with the atomic transi-
tion.

As the system has two sources of time dependence it
also has two natural periods. The nonadiabatic period
t~=2~lco is fixed by the frequency of the atomic transi-
tion, while the adiabatic period t~ may be chosen almost
at will. The "almost" proviso is because we must choose
t~ to be much larger than tz for the parameter variation
to be adiabatic. Of course, we want the entire Hamiltoni-
an (2.1) to be periodic, and not merely some of its com-
ponents. Hence we need the two periods to be com-
mensurable: t„=Nttt for some integer N. As the adia-
batic period is much larger than the nonadiabatic one, X
must be large.

We now turn to calculating the cyclic initial states and
Berry phases for the system. To this, we could directly
solve the time-dependent Schrodinger equation; however,
it turns out that an indirect approach is more illuminat-
ing. This method is based on the fact that the Hamiltoni-
an (2.1) is the semiclassical limit of the joint electron-
photon Hamiltonian
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H. =—{T,+cga'a+v(e ' {"o+a+e' '"tr a'),
2

(2.2}

where the o's are the usual Pauli matrices.
The connections between the two Hamiltonians is

made by considering the joint initial state N(0)

=P(0){3{~z &, where {I}(0)is an electronic state and ~z & is a
photon coherent state:

/z&= g e '" —/n&.
&n!

(2.3}

Then the evolutions of P(0) under HJ and H coincide in
the asymptotic limit: v~0 and ~z~~a{2 with k=v~z~
kept constant [7].

The reason we want to infer the evolution under H
from that under HJ is that the joint Hamiltonian is a nor-
mal adiabatic Hamiltonian, its only tine dependence aris-
ing from the parameter 8(t). Therefore we can use the
normal adiabatic theorem on H . To generate the evolu-
tion of the atomic component of the system we use the re-
duced density operator method. First we evaluate the
joint electron-photon density operator

p, =I@(t)&«(t)l (2.4}

for the initial state 4(0}. This is easily done by decom-
posing the initial state in an eigenbasis of H (0) and using
the adiabatic theorem.

One then traces out the unwanted photon degrees of
freedom to get the atomic reduced density operator p(t)
Now, in general a reduced density operator need not de-
scribe a pure state. However, in this case we find that it
does and so we can write

p(t) =
l g(t) & & g(t) I, (2.5)

giving the electronic evolution. Note that this procedure
cannot determine the phase of the electronic state. It is
for this reason that we write g(t) in Eq. (2.5) instead of
P(t); a given choice of g(t) need only equal the true evolv-
ing state P(t) modulo a multiplicative phase. However,
this does not cause any problems due to the geometric na-
ture of the Berry phase. As the Berry phase only depends
on the shadow of the evolution on the projective Hilbert
space, and P(t) and g(t) case the same shadow, both vec-
tors must generate the same Berry phase.

For the system under study, the application of this al-
gorithm is straightforward and so we will only quote the
results. Let the initial electronic state be

tion does not interest us here, as it only affects the
dynamical phase and not the Berry phase. Hence it is
convenient to take the Hamiltonian to be traceless. It is
then easy to see that we do indeed recover the Hamiltoni-
an (2.1).

Note that the independence of the Berry phase on ener-
gy normalization helps to motivate the splitting of the
overall phase into geometric and dynamic components.
We would indeed expect that any change in energy nor-
malization should only affect the dynamical part of the
phase. This fact is a simple corollary of the normal
justification for this splitting, as the Berry phase only de-
pends on the path followed by the system in projective
Hilbert space, it is truly a geometric phase.

We now need to find the cyclic initial states and Berry
phases. For convenience we drive e in such a way that
8(0}=0and 8(t„)=2m. Thus as cot„=2%m, we have
that

1
g(t„)= —,'e "(a~+a )

ikt~ 1
+ 'e "(a+ —a ) (2.8)

As P(t} and g(t) only difFer by a multiplicative phase,
!(}(0) can be a cyclic initial state if and only if
g(t„)=exp(ia)g(0) Hen. ce, using the fact that the two
exponentials in Eq. (2.8) will not be equal in general, we
can see that the cyclic initial states are simply

%1
/~=&1 j2

1
(2.9)

To calculate the Berry phases corresponding to these
two initial states, we invoke the concept of a single-
valued vector [8]. This is a state P(t}, equal to the evolv-
ing state P(t} to within a multiplicative phase, such that
P(t„)=f(0). For then the cyclic initial state P(0) can be
shown to have Berry phase

y=i t t t . (2.10)
0

This equation generalizes the adiabatic result of Berry,
with the position of the single-valued eigenvectors being
taken by the single-valued vectors.

For our problem, a suitable single-valued vector is

~e e
—ie(t) —i at

a+
{)(+(t)=&1i2 (2.11)

P(0)= (2.6)

Then we can take g(t) to be

e
—ie{t)e —itot[(a ~a )e ikt+(a —

a )eikt]
—t

2 (a++a }e '"'—(a+ —a )e' '

(2.7)
There is one slight subtlety. As we only know the

evolving state up to an overall multiplicative phase, it fol-
lows that we only know the Hamiltonian up to an overall
(time-dependent) energy normalization. This normaliza-

giving, using the fact that 8(t„)—8(0)=22r, the Berry
phases y+ = (N+ 1) 2r

We now attempt to split the Berry phase into its adia-
batic and nonadiabatic constituents. To do this, imagine
that we allowed the system to evolve without varying e.
Then any Berry phase that is generated must be purely
nonadiabatic. By an analogous derivation to that
presented above, we find that the nonadiabatic Berry
phase is just I +=Km. This arises as a sum of N terms of
m, one for each nonadiabatic period t~ that goes into the
single adiabatic period T„.
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Hence the adiabatic part of the Berry phase is just
X'+=+. This conclusion can be strengthened by noting
that we could have considered the normal adiabatic Ber-
ry phases for then joint Hamiltonian H as in Andreev,
Klimov, and Lerner [9]. In this case the cyclic initial
states are just the instantaneous eigenvectors of Hi. (0),

i]}+„(0)+&I/2~+,n —I &+&I/21 —,n & (2.12)

III. THE MODIFIED ADIABATIC ANSATZ

The approach we use here is based on that of Breuer,
Deitz, and Holthaus [10], which is based on the
identification of the purely nonadiabatic problem with an
equivalent time-independent one. This time-independent
treatment uses an expanded Hilbert space, embedding the
periodic time dependence into the Hilbert space structure
and was first discussed by Shirley [11],being applied to
the calculation of Berry phases by Moore [12].

To motivate this approach, consider the time-
dependent Schrodinger equation satisfied by a given t-
periodic and nonadiabatic Hamiltonian H(t):

[H(t) —iB, ]P(t)=0 . (3.1)

This can be written as Kg=0, where K is called the Flo-
quet Hamiltonian. Later we will superimpose an adiabat-
ic variation onto H (t) and so onto K.

To find the Berry phase for this Hamiltonian we need
the single-valued vectors. As before, these are vectors
P(t) following the evolution of the cyclic initial state P(0)
modulo a multiplicative phase, that satisfy the boundary
condition P(t ) =i)(i(0). The simplest such vectors are sim-
ply given by

and have Berry phases y+ „=m., exactly the adiabatic
contribution I +.

To recapitulate, the Berry phases can be exactly com-
puted for the simple model considered here. Further-
more, by analyzing the purely adiabatic Hamiltonian H.
and the purely nonadiabatic Hamiltonian that arises
when 8 in H is not varied, this Berry phase can be split
into its adiabatic and nonadiabatic constituents.

Note that this approach is be no means the most
elegant way of treating the problem under study. The
reason we use it is twofold. First it shows us exactly
where the adiabatic theorem is used in the derivation: as
the joint electron-photon Hamiltonian s time dependence
is purely adiabatic, we can solve for its evolution using
the normal adiabatic theorem. To deduce the corre-
sponding electronic evolution we then use the reduced
density operator.

Second, and perhaps more importantly, there is a
direct analogy to this procedure for the general case. Us-
ing Floquet theory, we can reduce a periodic system to an
equivalent time-independent form. This form corre-
sponds to the joint Hamiltonian above. We can then su-
perimpose the adiabatic time variation using the normal
adiabatic theorem. Projecting back to the original Hil-
bert space then gives us a precise statement of the adia-
batic theorem for the case of a Hamiltonian with a preex-
isting nonadiabatic periodicity. This is the approach that
we will take in Sec. III.

g(t) =e r'~'p(t), (3.2)

where y is the overall corresponding to p(0).
Now let us see how the Floquet Hamiltonian E acts on

P(t). It is easy to see that

Kg(t) =eP(t), (3.3)

~[n] innn

where

e '""'dt,2'
0

(3.5)

the Floquet Hamiltonian can be seen to have matrix ele-
ments

«an lK IPm » =H(& ]+nco5 P t3 . (3.6)

Here a and P represent electronic basis vectors and n and
m are integers. If one applies this process to the semi-
classical Jaynes-Cummings Hamiltonian (2.1), with 8
supposed time independent, we find that E is essentially
just the joint Hamiltonian (2.2), where n and m are inter-
preted as labeling photon-number states.

To see how Breuer, Dietz, and Holthaus proceed, we
note that when an extra adiabatic time dependence is su-
perimposed onto the system, the Floquet Hamiltonian E,
as an operator on R, becomes time dependent. As the
variable t has already been used, I will parametrize this
dependence by r: K =K(R(r) }, where R represents the
adiabatic parameter. Furthermore, as this is a "normal"
adiabatic Hamiltonian, we can apply the normal adiabat-
ic theorem (as modified by Berry, of course).

Hence the initial state P(0}=P(R(0) ) on R will evolve
into

T

P(r) =exp 0 e " P(R(r)), (3.7)

where I „ is the adiabatic Berry phase. Now take the pa-
rameter R around a closed path: R(t„)=R(0}. Then,
choosing the phases of the eigenstates P(R(r)), to be sin-
gle valued, we find that the initial state g(R(0)) is cyclic
in R with adiabatic Berry phase

where e= y—lt. Thus in some sense the single-valued
vectors are eigenvectors of the Floquet Hamiltonian. To
strengthen this conclusion, we note that the set of t-
periodic vectors forms a Hilbert space %' with inner
product[13]

f—(
1

(3.4)
0

The Hilbert space%' absorbs the periodic time depen-
dence of the single-valued vectors g(t) and the Floquet
Hamiltonian K, which is then e8'ectively time indepen-
dent. Hence on R, the single-valued vectors are simply
the eigenvectors of the (time-independent} Floquet Ham-
iltonian K Furth. ermore, the corresponding eigenvalues
are proportional to the overall phases. In the literature,
these eigenvectors and eigenvalues are often called the
quasienergy states and quasienergies, respectively [14].

Note that by writing the periodic Hamiltonian in terms
of its Fourier coem.cients,
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Breuer, Dietz, and Holthaus [10] go further and state
that I „ is the Berry phase for the atomic system. How-
ever, this phase has no nonadiabatic part, in direct con-
tradiction to the results derived earlier in this section.
The reason for this is that the quasienergy e gives the
nonadiabatic overall phase and not merely the dynamical
phase. In other words, the integral of e(R(t}) gives the
sum of the true dynamical phase

J—& y(t) IH(t) I y(t) )«, (3.10)
0

and the nonadiabatic Berry phase

l =i Rt,t, Rt, t t.
0

(3.11)

I „=t' Rv, Rr dr. 38
0

To get back to the problem in the original Hilbert
space &, we just reinstate the t dependence of the single-
valued vectors g(R(r)) and set r=t [10]. For the evolv-
ing state P(t} to be cyclic in & we require that g(R(t), t )
to be single valued; that is that g(R(t„),t„)=g(R(0),0).
Now we know that R(t„)=R(0). Furthermore, for each
R, P(R, tN)=g(R, O). Hence f(0) is a cyclic initial state
if and only if t„=Nt~ so that the adiabatic and nonadia-
batic periods match.

Note that the Floquet approach is effectively the
method we used in solving the quantum optical problem
in Sec. II. There the extended Hilbert space %' has the
physical interpretation of the tensor product of the atom-
ic Hilbert space % and the photon Hilbert space. This
allows one to interpret the Rabi oscillations and Mollow
triplet splitting of quantum optics in terms of atomic Ber-
ry phases [5].

To recapitulate, the procedure discussed above gives us
a rigorous proof that the initial state P(0) =g(R(0),0) is
cyclic in %with overall phase

l I e(R(t))dt+I „ (3.9)

adiabatic variation of some parameter R upon which the
Harniltonian depends. This result can be recast into
several difFerent forms. For example, Eq. (3.7) shows that
the single-valued vector g(t) for the system is just the in-
stantaneous single-valued vector 1((R(t),t ) appropriate to
the Hamiltonian H(R, t) with R taken at time t This al-
lows us to directly use the formalism of Aharonov and
Anandan [2].

Furthermore, we can also derive the generalization of
the decomposition scheme of Moore and Stedman [8].
Here the evolution operator for a nonadiabatic and
period Hamiltonian is written U ( t) =Z ( t)exp(iMt),
where Z is unitary and periodic and I is self-adjoint and
subject to a simple spectral constraint. This decomposi-
tion can be shown to be strongly linked to Floquet theory
[12]. A quick calculation shows that this method can be
extended to the case of a superimposed adiabatic time
variation by putting

Z(R(t} t )eiM(R(t))t (3.13)

IV. EXAMPLE

where Z(R(t), t) and M(R(t)) are the operators corre-
sponding to the instantaneous Hamiltonian H(R, t),
where once again R=R(t).

Evolution-operator decompositions can also be used to
discuss the generalization of Berry phase to nonperiodic
systems. For example Anandan [3] shows that for certain
Hamiltonians (which do not have to be periodic) the evo-
lution operator can be written in the form

U(t) =P exp( i J K d—t )B(t),
0

where the first factor generalizes the dynamical phase
and B (t} is purely geometrical. This approach focuses on
the relationship between the Berry phase and the fiber
bundle structure of the Hilbert space. Hence, when re-
stricted to the case of periodic Hamiltonians, it is com-
plementary to that of Moore and Stedman, which focuses
on the periodic nature of the Hamiltonian.

Hence Breuer, Dietz, and Holthaus are only partially
correct; while they derive the adiabatic part of the Berry
phase, they leave the nonadiabatic part intertwined with
the nongeometrical dynamical phase. We can go a little
further and show that the nonadiabatic phase (3.11}is in
fact the sum of the nonadiabatic Berry phases for each
nonadiabatic period. To do this we break the integration
in Eq. (3.11) into the sum of integrations from (n —1}t~
to ntz for n =1,2, . . . , N. Furthermore, assuming that
N is large and R slowly varying, we can ignore the varia-
tion of R in each of these integrations. This allows us to
replace R(t) by its value at the end of the integration
range of interest, namely R(ntN ). Hence

r."=y ) f(nt ),
n=1

(3.12)

where y is the nonadiabatic Berry phase for the tN-
periodic Hamiltonian H(R(ntN ), t ).

Thus in general we can decompose the Berry phase
into a sum of nonadiabatic phases and a phase due to the

e= &1/2( 1 =i cos 8, i sin 6,0),— (4.1)

then, noting that p, —lx ) i
l y ), the se—miclassical elec-

tronic Hamiltonian is given by

k(le' '+pe ' ')
k(A.e' '+pe' '

(4.2)

We now apply the theory developed above to a model
two-level atom. Consider a two-level atom in a resonant
laser where the atomic transition is between an s state
and a p, state split from the other p states by, say, a
magnetic field. This transition is chosen as the definite
angular momenta of the two states lead to the applicabili-
ty of simple selection rules. Of course the experimental
realization of such a system is dificult due to interference
from the other p states, among other things. This point
will be touched on at the end of Sec. IV A.

The electron-photon interaction has the electric dipole
form e.r, where e is the laser polarization [15]. Thus, if
the laser has polarization vector
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where A, =1+i exp(i6) and p=1 —i exp(i8). We can
identify the rotating-wave coupling constant k and the
non-rotating-wave coupling constant p.

A. The nonadiabatic Berry phase

First we calculate the nonadiabatic Berry phase, keep-
ing the parameter 6 in the polarization vector e constant.
To do this we calculate the eigenvalues e „and eigenvec-
tors

I
e „)of the Floquet Hamiltonian K. As this cannot

be done exactly for general e we proceed perturbatively.
Now the rotating-wave part of the interaction is usually
dominant. Hence we treat it exactly, taking the non-
rotating-wave coupling to be a perturbation. Putting

@=0into Eq. (4.2) we find that the rotating-wave Floquet
Hamiltonian E"has eigenvalues

e+„=(n —
—,
' )cock IA I (4.3)

and eigenvectors

IE „)=&1/2I —,n )+&1/2
I +,n —1 ) . (4.4)

We note that Ie+„) is indeterminate at A, =O. This is a
consequence of the fact that E" is degenerate at A, =O
and will be dealt with later.

Reinstating tu we find that, due to the degeneracy at
A, =O, we must use degenerate perturbation theory [16].
After considerable labor we find that

(n 1 )~y(g2+b2)1/2 (4.5)

, n +—2)

4 *co2—k2IA, ' * ~ co2 —k'IXI2
I+,n+1)

+ kXp k IXI 1 a)

4I~I *
co2 —k'I)1, I' +— ~ cg'-k'IA, I'

+kobu+
k AI 1 co

4 XI' +
co' —k'IXI2 * ~ co2 —k2IA, I2

I
—,n —2)

I+, n —3), (4.6)

where

k
I p, 1+k

I
A, /co

8~ (1—k I/I /~ )

—1/2

where

+ ik cos8
~' —k'I I'

lk cos 8A,
p

coIA, I2

p 1( 2+b2) —1/4[ [(i22+b2)1/2+F2]1/2

(4.7) ik cos8
co2 —k2IA, I2

ik cose
coIA, I

(4.14)

+b [(g2+ b2)1/2+g] —1/2]

(4.8)

ik cos8 ik cos8X
~' —k'IxI'

(4.15)

p 1( 2+g2) —1/4[ [(a2+g2)1/2+g]1/2

b [(g 2+ b 2)1/2+F2] —1/2
j

ik cos 6 ik cos 6
(4.16)

(4.9)

4' co
(4.10)

(4.11)

Thus we find that the cyclic initial states P+(0) are given

by
27' —p + — '~' x

16(aP—k IXI )
(4.17)

We note that the singularity in A, /IA, I is not a problem.
This is because at 8=m /2, which is where A, /IA, I

is in-
determinate, a+ and p vanish so that the offending
terms do not contribute to m+ or 1 . Furthermore, the
terms in A, cos 6/I A,

I
are well behaved in the limit

e—+m/2.
Finally, applying Eq. (2.10), the nonadiabatic Berry

phases are given by
T

P+(0) =N
Pl+

(4.12)
where X is a constant of order unity.
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This result is interesting in its own right, especially if
we consider the special cases of B=m./2, corresponding
to left-circularly polarized light, and 8=—m/2, corre-
sponding to right-circularly polarized light. For a right-
circularly polarized laser, the non-rotating-wave coupling

p is zero and so we see only the rotating-wave interac-
tion. This is not particularly useful as the rotating-wave
contribution is dominant anyway. Of more interest is the
case of a left-circularly polarized laser, for which the
rotating-wave coupling A, is zero and we see the non-
rotating-wave coupling which is usually hidden.

In theory the non-rotating-wave coupling could be ob-
served by measuring the splitting of the Mollow triplet in
left polarization [15], a quantity that is proportional to
the difference in overall phases of the two electronic cy-
clic initial states [5,6]. In practice the situation is compli-
cated by the presence of magnetic dipole and other terms,
which are likely to be of at least the same order of magni-
tude as the non-rotating-wave term.

Few other authors have considered the effect of the
non-rotating-wave coupling. For example, Phoenix [17]
shows that the counterrotating term can induce a small
phase-dependent term into the expression for the atomic
inversion, but also notes that one would expect the two-
level approximation to fail before the rotating-wave ap-
proximation. Thus, in some sense, the arguments about
the measurability of non-rotating-wave terms in the two-
level model are academic. We now allow the polarization
parameter to vary, giving an adiabatic Berry phase.

rA =t t „—t „)dt . (4.22}

As the non-rotating-wave coupling has negligible effect
we can take the

~
e „) to be the eigenvectors ~e"„) of the

rotating-wave electron-photon Hamiltonian

H"= —cr, +coa'a+k(A, a "a++A,acr ) . (4.23)

The relevant eigenvectors are then

) =v I/2~ , n )+v 1/2 —~+,n —1 ) . (4.24)an

I "=n./2. We can similarly show that I += —m/2.
Thus we see a complex phasor change. This contrasts,
for example, with the case of a time reversal even adia-
batic Hamiltonian. As elegantly shown by Kivelson and
Rokhsar [18], these systems can only have Berry phases
ofOor m.

This behavior is due to the fact that our chosen polar-
ization path takes the system through a point (A, =O}
where the rotating-wave eigenfunctions of the joint
electron-photon Hamiltonian are degenerate. To see why
this is so we use the fact that the adiabatic part of the
Berry phase for the atomic system is the same as the Ber-
ry phase for the joint electron-photon system itself. As
the only time dependence of this Hamiltonian comes
from the adiabatic variation of B we may use Berry's
original result, expressing the Berry phase as [1]

B. The adiabatic Berry phase

We can also calculate the adiabatic Berry phase given
by

(4.18)

To do this we take only the leading terms in the expan-
sion of Pz(0). For P (0),

I'"r'fP2 dB
n/2

Thus all we need to do is find p
To leading order we have

(4.20)

(4.19)

Now as X/~A,
~

has unit magnitude it is a phase, e
At B=n /2, A,I

~
A,

~ jumps from i to i a—nd so f jumps
from n/2 to —m/2. Thus f (B+2m)=f(B)+n. Also,
using the fact that a and P are both real, we find that
Eq. (48) gives

For completeness we allow A, to vary over an arbitrary
path, not merely the ath A, = 1+i exp [ i B] used above.
We write A, /~A,

~

=e ' as before. Now is A, is never zero
along our chosen path, then, as the path is closed,
f(t ) —f(0)=2m'. . But then the Berry phase from Eq.
(4.22) is simply m~. Of course this result is not due to
time reversal invariance. The Hamiltonian (4.23) is not
time reversal even, as can be seen from the fact that the
eigenvectors are not real. To get a complex phasor the
path must be taken through the degeneracy at A, =O as is
done above. At first sight this causes problems as the de-
generacy means that the adiabatic assumptions should
not be tenable; however the non-rotating-wave contribu-
tion splits the two states restoring its validity. Traveling
through the degeneracy also means that A, /~A,

~
need no

longer be single valued. This is because near the degen-
eracy the magnitude of the coefticients of the basis ele-
ments

~ , n ) and ~—+,n —1) is no longer constant as in
(4.24), so that the coefficient of X/~A,

~
could vanish at the

degeneracy. If this is the case, any jump in A. /~A,
~

at the
degeneracy will not spoil the necessary single valuedness
of the basis. This is exactly what happens in our exam-
ple. At B=m./2 we find that f jumps by rr, generating
the Berry phase m/2.

b 4' (4.21)

Now ~a~ &&~b~ for all B except for a small interval
around B=m/2. Further this small interval does not
contribute to the adiabatic Berry phase in lowest order
and can be ignored, allowing us to take p = 1/&2 from
Eq. (4.8). Hence the adiabatic Berry phase is given by

V. DISCUSSIQN

In this paper we have discussed a modified adiabatic
ansatz for systems with both adiabatic and nonadiabatic
time dependences. We find that, as expected, the Berry
phase for the combined system contains easily discrim-
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inated adiabatic and nonadiabatic components. This con-
trasts with the work of other authors, who are content to
leave the nonadiabatic part of the Berry phase entangled
with the dynamical phase.

Finally, we explicitly calculated both the adiabatic and
nonadiabatic Berry phases for an interesting quantum op-
tical problem; the case of an s ~p, transition irradiated
by a resonant polarized laser. The adiabatic Berry pha-

sor of this system is complex (in the sense of not being an
integral multiple of n) —a property due to its lack of
time-reversal invariance.
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