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Observation of frequency modulation in second-harmonic generation of ultrashort pulses
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We study both experimentally and theoretically the intensity and frequency profile of the pulse that is
generated by second-harmonic generation with phase mismatch of a pulse with a duration of 50 fs. Ex-
perimentally, we determine the shape and the frequency of the generated pulse by correlating it with a
second fundamental pulse and by measuring the spectra of the generated pulse. Theoretically, we solve
numerically the coupled differential equations that describe the nonlinear interaction. We show that for
ultrashort pulses the effects of phase mismatch, depletion, and group-velocity differences between the
fundamental and the second harmonic strongly influence the intensity profile and the frequency spec-
trum of the second-hamonic pulse. We find that in second-harmonic generation with phase mismatch
the frequency of the generated pulse becomes modulated.

PACS number(s): 42.65.Ky, 42.65.Re

I. INTRODUCTION

Ever since the first observation of second-harmonic
generation (SHG) in 1961 [1], this second-order nonlinear
optical process has been extensively studied. Both im-
provement of the efficiency and understanding of the fun-
damental aspects of the process have been the subject of
many studies [2,3]. For SHG of ultrashort pulses it turns
out to be very difficult to get both a large conversion
efficiency and to avoid distortion of the generated
second-harmonic-pulse shape. It is important to know
how the time profile and the frequency spectrum of the
pulses generated via SHG of ultrashort pulses change if
these pulses are to be applied in spectroscopic studies. It
was shown that for ultrashort pulses the effects of a
group-velocity difference between the fundamental and
the second harmonic become important and that this can
lead to very interesting phenomena in the intensity profile
of the generated second-harmonic pulse [4-6]. A large
group-velocity difference will lead to a lengthening of the
generated second-harmonic pulse [4]. The pulse shape of
the second harmonic will become essentially square if
there is no depletion in the phase-matched SHG process
and the difference in travel time through the nonlinear
crystal is much longer than the pulse duration of the fun-
damental. This was experimentally observed in SHG of
picosecond-long pulses in LiNbO; crystals of different
lengths [5] and in SHG of femtosecond pulses in a long
potassium dihydrogen phosphate (KDP) crystal [6].

If the SHG process takes place with a phase mismatch,
there will be destructive interference effects in the genera-
tion of the second-harmonic-pulse shape. This effect was
studied both analytically [7,8] and, in combination with
depletion, numerically [9,10], and it was found that phase
mismatch in combination with a large difference in group
velocity leads to a two-peak structure for the second-
harmonic-pulse shape. This structure is the result of the
fact that the second-harmonic light generated in the front
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part of the fundamental pulse travels along the funda-
mental pulse and destructively interferes with the
second-harmonic light generated in the rear part, so that
the net energy conversion will be very small. This des-
tructive interference does not occur for light generated in
the rear wing of the fundamental pulse at the beginning
and in the front wing at the end of the nonlinear material.
The final pulse structure will thus mainly consist of two
peaks that are separated by the difference in time that the
fundamental and the second harmonic need to travel
through the crystal.

In a recent study, we observed this two-peak pulse
shape, and we compared the experimental results with
numerical calculations [6]. It was demonstrated that
phase modulation of the fundamental pulse influences the
destructive interference and the pulse shape of the second
harmonic.

When, apart from SHG, third-order nonlinear optical
processes are important, it was shown that the generated
second harmonic acquires a very complicated multipeak
structure [11,12]. This structure is the result of the phase
modulation caused by the third-order processes self-
phase-modulation (SPM) and induced phase modulation
(IPM) coupled with the interference effects in the SHG
process.

In this paper we present experimental results on the
amplitude and frequency structure of the pulse shape that
is generated via SHG of femtosecond pulses in a long
KDP crystal. For KDP the effects of third-order non-
linear optical processes can be neglected [16]. We deter-
mine the intensity profile of the second-harmonic pulse
by correlating it with the fundamental pulse in a second
short KDP crystal. We find experimental evidence that
the frequency of the second-harmonic pulse is modulated.
This frequency modulation is due to the combined effects
of phase mismatch and differences in group velocity in
SHG and is not the result of third-order nonlinear optical
processes. We compare the experimental results with nu-
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merical calculations based on the theory of Ref. [10].

This paper is organized as follows. In Sec. II the ex-
perimental setup is described. Section III contains a
theoretical description of the SHG process and the
difference-frequency generation process that is used in
the cross correlation of the second-harmonic-pulse shape
with the fundamental. In Sec. IV the method of numeri-
cal evaluation of the equations of the theoretical section
is described. In Sec. V experimental results are present-
ed, and these results are compared with the numerical
calculations.

II. EXPERIMENT

The experimental setup is schematically depicted in
Fig. 1. As a light source for the experiments we used a
high-power femtosecond-type dye-laser system [13]. The
oscillator is a colliding-pulse mode-locked (CPM) laser,
which is amplified in a four-stage dye amplifier. The dye
amplifier consists of four side-pumped bethune-type [14]
dye cells. In the first cell we use as dye kiton red, dis-
solved in a mixture of water (98.5 vol %) and ammonyx
LO (1.5 vol %). In the following three cells we use sul-
forhodamine 640 dye, dissolved in methanol. The dye is
pumped at a repetition rate of 10 Hz by the frequency-
doubled output of a Q-switched injection-seeded
neodymium-doped yttrium aluminum garnet (Nd:YAG)
laser. The amplified spontaneous emission (ASE) is
suppressed by spatial filtering between the cells and a
saturable absorber after the third dye cell. In this way
pulses of about 200 pJ are generated. The amplified
CPM pulses are sent into a folded four-prism compressor,
that compensates for frequency chirp due to the
amplifier. The pulse duration is measured to be 50 fs
with a standard autocorrelation setup. The spectrum of
these pulses is centered around 615 nm, and the width of
the spectrum is 10 nm (260 cm™!).

Part of the amplified CPM pulse (20 uJ) is divided by a
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FIG. 1. Experimental setup used for analyzing the uv-pulse
shapes that are generated via SHG in a 3-cm KDP crystal. VD,
variable delay; F1, short-pass filter, Si 1, Si 2, photodiodes; BD,
beam dump; OMA, optical multichannel analyzer.
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beam splitter into two pulses, one of which is doubled
(type I: 0 +0—e) in a KDP crystal of 3-cm length. The
frequency contents of the generated second harmonic is
measured by a monochromator (SPEX 1870) in combina-
tion with an optical multichannel analyzer (OMA).

The time profile of the generated second-harmonic
pulses is determined in a cross correlation setup, in which
the second-harmonic-pulse shape is correlated with the
second part of the amplified CPM pulse [15]. The shape
of the second harmonic cannot be measured via sum-
frequency generation since nonlinear crystals are general-
ly not transparent at 205 nm. Therefore we generated the
difference frequency of the uv and the fundamental in a
3-mm KDP crystal. In this process a second beam at ap-
proximately 615 nm comes out of the mixing crystal (type
I: e—0—0). In a noncollinear setup this second beam is
angularly displaced and can be measured background
free. By measuring the amount of generated energy at
the difference frequency as a function of the delay be-
tween uv and second fundamental pulse, the cross corre-
lation function of the second-harmonic-pulse shape with
the amplified CPM pulse is determined. The experiments
are computer controlled. A typical experiment consists
of six scans of the variable delay over 1380 um. Each
scan consists of 70 points of delay. At each point of delay
the difference-frequency signal and the input signal of 20
laser shots are stored.

III. THEORY

The description of the second-order nonlinear interac-
tion between three classical electromagnetic fields can be
greatly simplified if a few assumptions are used. In the
first place, only the interaction due to the electrical com-
ponent of the fields is considered. Second, the transverse
variation of the fields is neglected. Under these assump-
tions the electric component &; (i =1,2,3) of the three
fields propagating collinearly along the z axis can be writ-
ten as a product of an electric-field amplitude and a plane
wave

6,(z,t)=E(z,t)explilk;z—w;t)], (1)

with E; the complex amplitude, k; the wave vector, and
o; the central angular frequency of field 6.

The interaction results in an energy transfer between
the fields. Therefore, the field amplitudes are expected to
change while they propagate through the nonlinear ma-
terial. This change in amplitude can be described by
three coupled differential equations. These equations are
derived from Maxwell’s equations and can be simplified
to first-order differential equations if the slowly varying
amplitude approximation is used. This approximation is
valid if the change in amplitude of the fields is significant
only after the fields traveled over a distance much longer
than their wavelength. When the standard equations that
describe the nonlinear interaction are transformed, we
obtain the following set of equations [10]:

d E, = ia)lx(ezt’f)
2n1C

z !
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with E; the complex amplitude of the electric field, z the
distance in the crystal, vf the group velocity of field i, n;
the refractive index of field i, n the transformed time
(n=t—2z/v%), X% the effective second-order susceptibili-
ty, and Ak the phase mismatch. The value of e%f’ is
determined by the directions of polarization of the fields
and the elements of the second-rank tensor y'?.

In the case of SHG the fields E; and E, become indis-
tinguishable so that these two separate fields can be re-
placed by one fundamental field. However, the nonlinear
coupling term that changes this fundamental field be-
comes twice as large because generation of one photon at
@3 now costs two photons of the fundamental field in-
stead of one photon at w; and one photon at w,. The two
coupled equations (2) and (3) now reduce to one equation
for the fundamental field with the coupling term multi-
plied by two.

When the field E; is generated, the phase evolution of
this field is determined by both the interaction and the
phase mismatch. When the field E; loses overlap with
the field E,, due to the difference in group velocity, the
phase evolution of E; is solely determined by the phase
mismatch. In that case the phase difference between E;
and E, accumulates with Akz. Therefore the phase of
the complex amplitude will monotonically increase or de-
crease over the second-harmonic-pulse shape depending
on the sign of Ak. The light generated in the beginning
of the nonlinear material will have the highest accumu-
lated phase difference. An increase or decrease of the
phase of the complex amplitude over the pulse implies a
change of the central frequency

—__Ad
Av SeAL (5)

This change in frequency depends on the value of Ak for
SHG of the central frequency of the fundamental pulse
and the difference in group velocity between the two
pulses and is equal to

Ak

Av=— . (6)
2m(1/v§—1/v%)

The frequency of the light of the second-harmonic-pulse
shape differs from the doubled central frequency of the
fundamental pulse. In the Appendix it is shown that this
shifted frequency is exactly the frequency for which the
SHG process is phase matched.

With a second crystal the amplitude and frequency
structure of the generated pulse can be analyzed. In this
second crystal the difference frequency of the second har-
monic and the fundamental can be generated, and the en-
ergy of this light can be monitored as a function of the
delay between the two pulses and the angle of the second
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crystal. If we assume that the second-harmonic pulse is
not locally depleted in this process and that the
differences in group velocity are negligible in this second
crystal, the third of the three equations can be easily
solved: E;(z)=E;(0)e’®**. If we also assume that the
fundamental pulse (E,) is not significantly amplified and
the solution for E; is substituted in the equation for the
difference frequency (E,), this equation can easily be
solved. If we multiply this solution with its complex con-
jugate we get the following expression for |E, |2, which is
proportional to the intensity

@3(x%)? sin*(1Akz)
4nic*  (LAkz)?

|E(z,m)|*= |E,(0)|? |E;(0,1)|2 .

(7

Due to the sinz(%Akz)/(%Akz )? function, the efficiency
of the difference-frequency generation oscillates as a func-
tion of Ak and thus as a function of the angle of the
second crystal. The sensitivity of the conversion
efficiency for Ak makes it possible to determine the time-
profile of the second-harmonic pulse as a function of the
frequency.

IV. NUMERICAL EVALUATION

As described previously, the experiment consists of two
subsequent nonlinear optical processes. For each non-
linear optical process we use a different numerical ap-
proach to simulate the experimental correlation traces.
We integrate the two coupled differential equations
describing the SHG process with a Runge-Kutta method
that has fourth-order accuracy in both time and distance
[9]. In this method the effects of depletion of the fields,
differences in group velocity, and phase mismatch are in-
corporated. The effect of group-velocity dispersion
within the bandwidth of the pulses is not taken into ac-
count. The time profile of the pulses is defined in a grid
of 500 time points, and the pulses that come out of the
crystal are calculated by integrating the equations with
steps of 0.02 mm. As a pulse shape for the fundamental
pulse we used a Gaussian shape with a width of 50 fs.

The second-harmonic-pulse shape that is calculated
with this first program is used as input for a second pro-
gram. In this second program the difference-frequency
mixing with a second fundamental Gaussian pulse of 50
fs is simulated. It is assumed that in this process neither
the amplitude of the second-harmonic pulse nor the am-
plitude of the fundamental pulse changes. Due to the
difference in group velocity between the fundamental and
the second harmonic, the difference-frequency light that
has approximately the fundamental frequency travels to-
gether with the strong fundamental pulse along a part of
the second-harmonic pulse shape. In each time point of
this part of the second harmonic, the amplitude, the local
frequency, and the Ak for difference-frequency generation
are evaluated. With this information the electric field of
the generated difference frequency can be calculated for
each time point, and these fields are summed with the
proper phase. In this way the effects of group-velocity
differences and variation of Ak within the bandwidth of
the second-harmonic pulse are incorporated.
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V. RESULTS AND DISCUSSION

We performed experiments for two different intensities
of the fundamental 615-nm pulse in order to investigate
the effects of depletion. In addition, we used two
different signs of phase mismatch, in order to investigate
the influence of the sign of the phase mismatch on the
frequency spectrum of the generated second harmonic. If
the fundamental pulse is not phase modulated (not
chirped), the intensity profile of the second-harmonic-
pulse shape is not influenced by this sign, because in this
case the destructive interference effects in the SHG pro-
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FIG. 2. Numerically calculated electric-field amplitude (a),
phase (b), and intensity profile (c) of the uv pulse that can be
generated via SHG with phase mismatch of a 615-nm pulse with
a pulse duration of 50 fs in a 3-cm KDP crystal.
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cess only depend on the magnitude of Ak. At the lowest
intensity of 4.5 GW/cm?, Ak=50.7 cm~! and at the
highest intensity of 13.5 GW/cm? Ak=-—50.4 cm™'.
The experimental results are compared with numerical
calculations.

In Figs. 2 and 3 we present calculated electric-field am-
plitude, phase and intensity profiles of the uv pulse that
can be generated in a 3-cm KDP crystal. We present the
real and imaginary part of the amplitude of the electric
field assuming that the central wavelength of the electric
field is equal to 307.5 nm. We see that the phase of the
electric-field amplitude strongly changes over the uv
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FIG. 3. As in Fig. 2, but for a different intensity of the funda-
mental pulse and with a different phase mismatch in the SHG
process.
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pulse as a result of the phase mismatch. In case of a posi-
tive Ak [Fig. 2(b)] we observe a linear increase of the
phase over the pulse, whereas in the case of a negative Ak
we observe a linear decrease [Fig. 3(b)].

The intensity profiles [Figs. 2(c) and 3(c)] clearly show
the effects of depletion. The intense right part of the
pulse is generated by a still undepleted fundamental pulse
in the beginning of the KDP crystal, and the weak left
part of the pulse is generated by a strongly depleted fun-
damental pulse at the end of the crystal. This weak part
comes out of the crystal first. We do not observe an uv-
pulse structure consisting of two peaks separated by the
difference in travel time between uv and fundamental
light through the KDP crystal. This is due to the fact
that the fundamental pulse is very short. In the time
domain we can understand this as follows. For a funda-
mental pulse of 50 fs, the interaction length in the crystal
during which the uv light travels along the fundamental
pulse is that short that the uv light generated in the front
wing has not yet acquired the opposite phase when it
overlaps with the rear wing of the fundamental pulse.
Therefore only a small part of the generated uv light will
be reconverted. We can also understand this
phenomenon in the frequency domain. As a result of the
short pulse duration of the fundamental pulse, the band-
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FIG. 4. (a) Experimental and (b) theoretical spectra of uv
pulses generated via SHG with phase mismatch of a 615-nm
pulse with a pulse duration of 50-fs in a 3-cm KDP crystal for
two intensities and two values of phase mismatch.
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width will be large. Therefore half the shifted frequency
of the uv pulse is still well within the bandwidth of the
fundamental pulse, which implies that the shifted uv fre-
quency can efficiently be generated. If the phase
mismatch or the pulse duration had been larger, the uv
pulse would obtain a two-peak pulse shape.

In Figs. 4 and 5 we present the experimental and
theoretical spectra of the generated uv pulse. We observe
that the spectra are narrow and are shifted with respect
to the second harmonic of the central fundamental wave-
length of 615 nm. For positive Ak the phase increases
over the uv pulse, which implies a shift of 1.35 nm of the
wavelength to a higher value [Eq. (5)]. For negative Ak,
the phase decreases over the uv pulse, which corresponds
to a shift of the wavelength of 1.35 nm to a lower value.
In Fig. 5 we show the same spectra, but the vertical scale
has been expanded by a factor of 100. We observe that
both uv spectra have a stronger tail towards 307.5 nm
than away from 307.5 nm.

The uv spectra are not symmetric, which indicates that
the phase increase is not purely linear over the whole uv-
pulse shape. In case the phase increase had been linear,
the pulse could have been described as a pulse with a
shifted central frequency without phase modulation. The
spectrum of such a pulse is only determined by the ampli-
tude profile and is therefore completely symmetric. In
that case all the time points of the pulse have the same
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FIG. 5. As in Fig. 4 but with the vertical scale expanded by a
factor of 100.
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frequency contents, which implies that the frequency of
the pulse is not modulated. In Figs. 2(b) and 3(b) it can
be seen that the phase dependence on time is not purely
linear but changes from horizontal in the wings to linear
increasing or decreasing in the central part of the pulse.
This implies that going from the outermost parts of the
wings to the beginning of the central part the wavelength
changes from 307.5 to 308.85 nm [Fig. 2(b)] or to 306.15
nm [Fig. 3(b)].

We observe that the spectrum of the uv pulse becomes
broader with increasing intensity of the fundamental
pulse. This is due to the fact that at higher intensities of
the fundamental the depletion effect is stronger, so that
the intense part of the resulting uv pulse covers a smaller
time interval. This leads to a broadening of the spec-
trum.

Both the experimental and the theoretical spectra ex-
hibit rapid oscillations of the amplitude of the frequency
components. These fringes in the spectrum are due to
the very steep wings of the uv pulse. These steep wings
mean that the Fourier transform has sin*(x)/x? func-
tional form. We observe these fringes every 5.5 cm™!,
which corresponds with a time interval of 6 ps. This time
interval is approximately the duration of the uv-pulse
shape. In the experimental spectrum the fringes are less
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well resolved due to the limited resolution of the spectro-
graph and the OMA.

In order to investigate the time profile of the generated
uv pulses, we correlate the pulses with a second funda-
mental pulse in a 3-mm KDP crystal. In Figs. 6 and 7 we
present experimental and calculated cross correlation
traces for four different uv wavelengths for which the
difference-frequency generation in the 3-mm KDP crystal
is phase matched. In all cases the calculated result
represented by the solid line is in good agreement with
the experimental result. We observe that the generated
energy in the difference-frequency generation process is
at its highest value when the phase-matched wavelength
in the 3-mm KDP crystal exactly equals the shifted wave-
length that was generated in the 3-cm KDP crystal. In
Figs. 6(a) and 7(a) we observe that the cross correlation
traces strongly resemble the calculated intensity profiles
of the uv pulses [Figs. 2(c) and 3(c)].

In case the uv pulse does not deplete, the difference-
frequency generation process can be described with Eq.
(7). The efficiency of this process is proportional to
sin’(LAkl)/(1AkI)* with I the interaction length in the
3-mm KDP crystal. When the phase-matched wave-
length is changed in such a way that for the shifted wave-
length Akl ==27, the efficiency becomes equal to zero.
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FIG. 6. Experimental and theoretical cross correlation traces resulting from correlating a uv-pulse shape with a 615-nm pulse with
a pulse duration of 50 fs in a 3-mm KDP crystal. The uv-pulse shape is generated by SHG with Ak =50.7 cm™! of a 615-nm pulse
with a pulse duration of 50 fs and a maximum intensity of 4.5 GW/cm?. The four correlation traces represent four different uv wave-
lengths for which the difference-frequency generation process in the 3-mm crystal is phase matched.
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In that case we observe that the cross correlation trace
consists of two peaks [Fig. 6(b) and 7(b)] which corre-
spond in time with the wings of the uv pulse. These
peaks can be the result of the fact that the frequency con-
tents of the wings is somewhat different from that of the
central part of the uv pulse. However there is one other
important effect that makes the efficiency in the wings
different from zero. As a result of the group-velocity
differences between the uv light and the fundamental
light, the travel time through the 3-mm KDP crystal of
the fundamental pulse will be 600 fs shorter than the
travel time of the uv pulse. Therefore the fundamental
pulse does not necessarily overlap with the uv pulse over
the whole length of the KDP crystal. For instance, if the
fundamental pulse enters the crystal 400 fs after the front
wing of the uv pulse, it will only have significant interac-
tion with the uv pulse in the first 2 mm of the KDP crys-
tal. If the fundamental pulse enters the KDP crystal 400
fs after the rear wing of the uv pulse, then it will only
have significant interaction in the last mm of the KDP
crystal. Therefore the magnitude of the effective Akl will
be smaller than 27 in the wings of the uv pulse, so that
the efficiency of the difference-frequency generation pro-
cess will be different from zero.

When the phase-matched wavelength is changed in
such a wave that Akl ==37 for the central part of the uv
pulse [Figs. 6(c), 6(d), 7(c), and 7(d)] the sinz(%AkI )/
(LAkl )? function has its second maximum. In this case
we observe a significant central part in the cross correla-
tion trace. We also observe again the two peaks in the
wings, and we observe dips in the efficiency of difference-
frequency generation between the peaks and the central
part. The delays of the fundamental pulse for which we
observe a dip in the efficiency are those for which the
effective interaction length is approximately 2 mm, so
that for these delays the effective value of Akl is equal to
+2m. The two peaks can again be the result of the fact
that the effective Akl in the wings will be smaller than 2.

We observe that both in the experimental cross corre-
lation trace and in the numerical simulation the two
peaks are stronger compared to the central part of the
cross correlation in Figs. 6(d) and 7(d) than in Figs. 6(c)
and 7(c). This difference in intensity cannot be explained
from the dependence of the conversion efficiency on Ak
and the interaction length because the sin*(1Akl)/
(+Akl )? function is symmetric in Akl. With the measure-
ment of the spectrum we already found that in case the
SHG process takes place with a phase mismatch, the
spectrum is broadened towards 307.5. nm. Therefore we
explain the difference in intensity of the peaks from the
fact that in Figs. 6(d) and 7(d) the phase-matched wave-
length is much closer to the central wavelength of 307.5
nm than in Figs. 6(c) and 7(c). This implies that the fre-
quency modulation of the uv pulse is such that the wave-
length in the wings of the uv-pulse shape is closer to
307.5 nm than the wavelength of the central part of the
uv-pulse shape. This experimental observation agrees
very well with the calculated phase dependence on time
in the phase profiles of Figs. 2(b) and 3(b).

The difference in the dependence of the phase on time
between the wings and the central part of the pulse can
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be understood in the following way. The time points in
the uv-pulse shape all correspond with distances in the
nonlinear material at which the light was most efficiently
generated. In the central part of the pulse the linear in-
crease (positive Ak) or decrease (negative Ak) of the
phase of the complex electric-field amplitude over the
time profile corresponds with a linear decrease of the dis-
tance at which the uv light was most efficiently generated
by the maximum of the fundamental pulse. In the outer
parts of the wings however, the distance at which the
light was most efficiently generated is for all time points
the same. For the rear wing this distance corresponds
with the beginning of the crystal, and for the front wing
this distance corresponds with the end of the crystal.
Therefore all time points in the outer parts of the wings
have the same accumulated phase of the complex
electric-field amplitude so that in these parts of the time
profile of the second-harmonic pulse this phase does not
increase or decrease.

The second-harmonic-pulse shapes that we can gen-
erate with a long crystal have special properties that
make them interesting for spectroscopic applications.
The frequency spectrum of these pulses is very narrow
because of the well-defined frequency of the long part of
the pulse in between the wings. The central frequency of
the pulses can be tuned by changing the phase mismatch.
This tuning by changing the phase mismatch for the cen-
tral frequency hardly changes the conversion efficiency
because the frequency spectrum of the fundamental is
very broad. In spite of their narrow frequency spectrum
these pulses have still very steep wings with a rise time
that corresponds with the very short pulse duration of
the fundamental. Therefore in spite of their length, these
pulses still offer a very good time resolution. They may
especially be useful in the time-resolved study of the re-
laxation excitations that take place on a time scale be-
tween the overall duration of the second-harmonic pulse
and the rise time of the wings. These excitations can be
pumped very efficiency because the narrow spectrum of
the pulse will be mostly in the absorption band, and they
can still be studied with a time resolution that is com-
parable with the pulse duration of the fundamental.
Another possible application for these pulses may be in
experiments in which a short switch-on time of the light
is of vital importance.

VI. CONCLUSIONS

When an ultrashort pulse is frequency doubled in a
long dispersive crystal, the resulting pulse will be
stretched and the spectrum of this pulse will be narrow.

If the process takes place with a phase mismatch, the
intensity profile will be influenced by destructive interfer-
ence effects, and the spectrum will shift away from the
second harmonic of the frequency of the fundamental
pulse. The spectrum becomes asymmetric and is
broadened towards the second harmonic of the central
fundamental wavelength. This indicates that the frequen-
cy of the second-harmonic-pulse shape is modulated.

The second-harmonic-pulse shape can be determined
by correlating the pulse with a second part of the funda-
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mental pulse in a short second crystal. From these time-
resolved measurements it follows that the frequencies in
the wings of the second-harmonic-pulse shape are closer
to the second harmonic of the central fundamental fre-
quency than the frequency of the central part of the uv-
pulse shape. The experimental results agree very well
with numerical calculations in which the SHG and the
cross correlation processes are simulated.

Finally, the special properties of the pulses that are
generated via SHG of ultrashort pulses in a long crystal
make them very useful for certain time-resolved spectro-
scopic applications.
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APPENDIX

In this appendix we show that the shifted frequency
that results from the equation for Av [Eq. (6)] is exactly
the frequency for which Ak =0 in SHG. For the group
velocity v# we use the following equation:

pE= ¢
13 »
ni’0+v,-’05n /8v|V=V'~0

(A1)

with v; ; the central frequency of field i. If we substitute
this in Eq. (6) we find for Ak

Ak(2V1'0—>V3’0)= 27TAV 1 og—n +n1 0
vV |v=v1,0
., on —n
3,0 81’ v=vy, 3,0
(A2)
For Ak we use the following equation:
_ 21
Ak(2‘\/1’0—)“/3,0)_2‘\/1,0(”3,0_nlyo)—c_‘ . (A3)
Substitution leads to
2 n
e V3,0M3,0 +AVV3,0§ v, 0+"3,o —2vyn10
én
_AV'VI,O‘S';— v=v1,0_nl’0 =0 . (A4)

If terms in Av? can be neglected, this equation can be
written as



5134 H. J. BAKKER, W. JOOSEN, AND L. D. NOORDAM 45

'21 ('V30+A'V) n30+A'V_6"_1‘
C ’ ’ 8V v=v3,
' (AS)
— vy g+ AY) |y o+ 1av 2 =0.
1,0 Lo 2 81’ Y=vi0

If we define the shifted frequencies v; and v, as

%E(vg,n}—Zvln‘)=O=Ak(2v1—+v3) . (A6)
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