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This paper presents a correspondence between the annihilation @ and creation 6* operators and two
independent complex variables a and 8, which makes possible the definition of positive nondiagonal
quasiprobabilities for any Cahill-Glauber s order. A generalized version of the Cahill and Glauber s-
ordered displacement operator displacing the annihilation and creation operators by a and f is defined.
Corresponding to this nondiagonal displacement, a nondiagonal ordering operator is introduced so that
a map of s-ordered operators into ¢ numbers @ —a, @ — 8 can be defined. The Drummond-Gardiner
projector and the Cahill-Glauber diagonal ordering operator are obtained as particular cases. In order
to use the nondiagonal correspondence in the determination of quantum expectation values of observ-
ables, several families of quasiprobabilities are defined, generalizing Drummond-Gardiner (normal order
and nondiagonal) positive-P-function and Cahill-Glauber (s-order and diagonal) quasiprobabilities. It is
demonstrated that these nondiagonal quasiprobabilities exist as well-behaved functions where at least
one is non-negative, for any state and any order. The time evolution of these quasiprobabilities is dis-
cussed both in the Schrodinger and in the Heisenberg pictures. In the Heisenberg picture, a method for
obtaining c-number stochastic differential equations (SDE’s) directly from operator equations using the
s-order nondiagonal correspondence is described. The main difference between this method and the
Langevin approach is that in the latter a diagonal correspondence is used, leading eventually to wrong
results. The use of these SDE’s to solve quantum optical problems is discussed, and an application to the
nonlinearly damped degenerate parametric oscillator is made. In order to obtain the SDE, various (ine-

1 APRIL 1992

quivalent) truncation schemes are necessary.

PACS number(s): 42.50.Dv, 03.65.Ca

I. INTRODUCTION

Similarities and differences between classical and quan-
tum theories are particularly clear in the framework of
the so-called quasiprobabilities (QP’s) [1]. In order to use
the QP’s to perform quantum averages, an operator-
ordering choice is necessary because the quantum observ-
ables are noncommuting linear operators [2]. The search
for a formalism in which the state of a quantum system is
expressed in terms of functions having the properties of a
probability density started with the introduction of three
functions: the Wigner function [3] for symmetrical com-
binations of @ and ﬁT, which was further studied by Moy-
al [4]; the P function of Glauber [5,6] and Sudarshan [7]
for normal order, based on the absorptive nature of pho-
todetectors; and the Q function, for antinormal order [8].
These formalisms were unified by Cahill and Glauber
[9,10], who defined an s-parameterized order for the an-
nihilation and creation operators, such that normal, sym-
metric, and antinormal orders were obtained for s =1, 0,
and — 1, respectively. Other orders, such as the standard
and antistandard ones, could be defined expressing the
Cahill-Glauber formalism in terms of momentum and po-
sition, instead of annihilation and creation operators
[9,10]. A more general formalism was developed by
Agarwal and Wolf [11-13], who used filter functions in
terms of which all the previous ordering schemes could
be expressed from a unified point of view.

However, the initial objective of stochastic description
of quantum systems could not be implemented successful-
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ly using these QP’s because of problems such as negative
values or nonexistence for some orders [6,10,14,15]. In
antibunching [16,17] and optical bistability [18-21], the
state of the field cannot be described as a Glauber-
Sudarshan positive density. An important development
was the introduction of the positive P function by Drum-
mond and Gardiner [22]. This function was demonstrat-
ed to exist as a positive well-behaved function for any
state and has been often used in quantum optics (see, e.g.,
Refs. [1,22-31)]). Unfortunately, it is defined in a space
having twice as many dimensions as the spaces associated
with the Cahill-Glauber QP’s [9,10], and this introduces a
new difficulty: There is no simple interpretation of the
two extra dimensions. Furthermore, the dimensions of
the attractors are doubled, so that additional instabilities
are expected for nonlinear dynamical systems [23].
Spikes and nonconjugacy were found in studies of quanti-
zation of chaotic systems using the positive P function
[24-30], but the reason for the failure of the numerical
simulations was not clear. Wolinsky and Carmichael
found that subtle problems are expected if the positive P
function is nonzero only in a bounded manifold of phase
space [31]. Another problem, of practical nature, is that
the transformation from the density-operator master
equation to the c-number QP partial differential equation
is a lengthy calculation [32], so that a more economical
method is desirable. In classical physics the Langevin
equation is derived first, and from the diffusion and drift
terms, the Fokker-Planck equation is obtained. Howev-
er, this is not possible in general (in quantum physics) for

5104 ©1992 The American Physical Society



45 s-ORDER NONDIAGONAL QUASIPROBABILITIES

other orders for the normal one, because the positive-P-
function equation of motion is a Fokker-Planck one,
whenever the Glauber-Sudarshan P function satisfies a
pseudo or true Fokker-Planck equation [22]. In the in-
vestigation of the problems found in the simulations with
the positive P function, it was clear that in some cases the
Wigner function was a better choice [28], but it could be
used in simulations only for a limited range of parameter
values [29] where the diffusion was non-negative. The
use of symmetric order in the other situations needed an
extension of the ideas of Drummond and Gardiner [22].

Instead of giving the extension of the nondiagonal for-
malism to the symmetric order only, in this paper we
present a formalism which is valid for all the Cahill-
Glauber s orders [9,10]. In Sec. II the nondiagonal s-
ordered displacement operator is introduced. The action
of this operator is shown to be a displacement of the an-
nihilation and creation operators by complex quantities a
and S, respectively, which are completely independent
from each other. Acting with this displacement upon the
Cahill-Glauber ordering operator [9] at the origin, an an-
alytic extension of the ordering operator is obtained.
This can be used to define a nondiagonal correspondence
between operators and ¢ numbers of a four-dimensional
phase space, instead of the diagonal correspondence ob-
tained by Cahill and Glauber [9] in a two-dimensional
phase space. We define a distribution function, which we
will call the s-order nondiagonal quasiprobability, in this
extended phase space. This function can be used together
with the operator to c-number correspondence in order to
evaluate quantum expectation values of s-ordered quanti-
ties. In Sec. III quasiprobabilities are used to describe
the time evolution of quantum systems. We show how to
transform from the density operator equation to the s-
order QP equation. A method for finding stochastic
differential equations directly from operator equations
similar to the phenomenological Langevin method is de-
scribed. Three examples of use of this method are
presented: a harmonic oscillator, a parametric oscillator,
and a nonlinearly damped parametric oscillator. We
show in these examples that this is a much easier method
of deriving the c-number equations than the previous
method. Some limitations of the quasiprobability ap-
proach are discussed. Finally, a summary of the main re-
sults is presented in Sec. IV.

II. NONDIAGONAL FORMALISM

The formalism described in this paper is appropriate
for systems with one degree of freedom. For these sys-
tems we define the annihilation @ and creation @' opera-
tors satisfying the commutation relation

[a,af]=1. 2.1)

The symmetrical and antisymmetrical linear combina-
tions of these operators are proportional to the position
and momentum operators of mechanical systems or to
the in-phase and in-quadrature components of the elec-
tric field.
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A. s-ordered power-series expansions

Glauber’s displacement operator [6] has been general-
ized by Cahill and Glauber to a form in which the order
is defined by a complex parameter s [9]. Here the nondi-
agonal form for the s-ordered displacement operator is
defined by

ﬁ(g,n,s)=exp(§af—n6+%s§n) (2.2a)
=exp(£a") exp(—na) exp[L(s —1)én] (2.2b)
=exp(—n@)exp(&a’) exp[L(s +1)En], (2.2c)

where the s-ordered nondiagonal displacement operator
has been written in different orders: symmetric [Eq.
(2.2a)], normal [Eq. (2.2b)], and antinormal [Eq. (2.2¢)].
This operator acts displacing the annihilation and
creation operators

D Ya,B,s)aD(a,B,s)=0+a ,

2.3)
D Va,B,s)a'Da,ps)=a"+8,

where the displacements are independent of the parame-
ter s. The displacement operator can be expanded in a
Taylor series

tynym
ﬁ(g,n,s)=§n%§"(—mm , (2.4)
where the s-ordered products are
n+m
{(a*)"am}s=mﬁ(g,n,s> R
For s =1 we obtain the normal order, s =0 gives the
symmetrical order, and s = —1 gives the antinormal or-
der. For example,
(a'ay,=a'a+L(1—s)
=L(1+s)ia'a+L(1—s)aa’ (s order),  (2.6a)
{a'a},=a'a (normal order) , (2.6b)
(@'a},=1(@'a+aa") (summetric order) , (2.60)
{6*6]_,=66t (antinormal order) . (2.6d)

As another example, the Hamiltonian for the harmonic
oscillator can be written in any s order as
Ao =40l {ﬁTﬁ}s-f-%s). Under certain conditions [9],
operator functions F (6,6*) can be expanded in terms of
the s-ordered displacement operators; i.e., they can be
written in s-ordered form.

B. Ordering operator
Let us define the ordering operator T(a,B,s),
PaB)=- [d%est D& E%s) , @.7)

where d26=d Re(£)d Im(£). Using Eq. (2.3), we can
rewrite the ordering operator as
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T(a,B,5)=D(a,B8,0)T(0,0,5)D ~(a,B,0)
ata

D~ Ya,B,0),

(2.8a)

s+1

_ 2
=D(a,B,0) il B

(2.8b)

where we have written explicitly the diagonal ordering
operator [9]. Using the nondiagonal displacement opera-
tor identifies [Eq. (2.3) into Eq. (2.8b)], the operator
T(a, B,s) can alternatively be written in the form

@f-pra—a
_ 2 s+1
T(a,B,s) T 150 (2.9a)
=2 exp|@'—pra—a)in |21 ” (2.9b)
1—s s—1
2 +1 |
— s .
- 1—S§ s—1 |ayﬁyn><a,ﬂyn| ’ (2.90)
where |n ) is a number state and
la,B,n)=D(a,8,0)|n) ,
(2.10)

(a,B,n|=(n|D Ya,B,0) .

The set {|a,B,n )} forms a basis of the space of states of
the system, and the set {|a,B,n )} is the dual basis. Note
that |a,B,n ) and {a,B,n| are not Hermitean conjugates
of each other. These states are a generalization of the di-
agonal displaced number states [33]. They are complete,

Sla,B,n)a,Bnl=3l|a,Bn){a,B,nl=1, (.11

and satisfy the orthonormality condition
(a,B,ila,B,j ¥ =8; (i,j=1,2,...).

Any state |1/) can be expanded in terms of these states:

(2.12)

lY)=3c,la,Bn) , (2.13)
where
c,={a,Bnl¥) . (2.14)

The state |a,B,n ) is an eigenstate of the nondiagonal in-
versely displaced number operator

f(a,B)=D(a,B,0a 8D ~Y(a,B,0),

(2.15)

corresponding to the eigenvalue n (n =0,1,2,...). Note
that for each couple (a,8) we have a particular operator,
so that Eq. (2.15) defines actually a two-complex-
parameter family of operators. Using this operator, we
can rewrite the nondiagonal ordering operator as

2 f(a,B)

1—s

s+1

P (2.16)

T(a,B,s)=

With this form for the ordering operator, extensions of
the Cahill-Glauber formalism become more transparent.
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Particularly, expansion (2.9¢c) shows that the eigenvalue
A, of the operator T(a,B,s) corresponding to the eigen-
state |a,B,n ) is

2

e

= (2.17)

n
s+1 ]

From Eq. (2.9c) the Drummond-Gardiner projector [22]
is obtained for s = —1,

PlaB,—1)= la ) {B*| ,

(B*la)
which is similar to the Cahill-Glauber relationship
T(a,a*,—1)=|a){al [9]. Having the same eigenvalues
as the Cahill-Glauber operator, the trace of the nondiago-
nal ordering operator is unity as in the diagonal case [9].

(2.18)

C. s-order operator to c-number nondiagonal correspondence

The generalization of the Drummond-Gardiner for-
malism [22] can be done, for s-ordered operators, replac-
ing the complex quantity a*, which is usually associated
with the annihilation operator, by a complex quantity /3,
which is independent of a:

a—a,
(2.19)

aT—»ﬁ .

Using this correspondence, a space with twice as many
dimensions as in the Cahill-Glauber formalism can be
defined, with an associated probability density which is
well behaved for any state and any order. Integrals in the
bidimensional a space are replaced by integrals in the
four-dimensional af8 space. Now we show an important
result: Using the nondiagonal ordering operator, any s-
ordered quantity, given by Eq. (2.5), can be transformed
into a c-number quantity:

Tr{{(@")a™}, (e, B, —s)]=B"a™ . (2.20)

The proof follows:

Tr{{(@")a™}, T (a,B, —s)]
=Tr[{(a")"a"},D(a,B,0)7(0,0,—5)D Y, 5,0)]
=Tr[{(@'+B)"(@ +a)"}, 10,0, —s)]=B"a™ ,

where in the last step we have used the result of Cahill-
Glauber [9], for the particular case a=0.

D. Nondiagonal quasiprobabilities

We will define the nondiagonal quasiprobability
pla,B,s) implicitly using the quantum characteristic
function

X(&7,5)=Tr[pD(&,7,5)] (2.21a)

= _12' fd”a d’Bpla,B,s)es " (2.21b)
T

If there is such a function p(a,f,s), then averages can be
computed with the help of Eq. (2.5):
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an+m

— O _x(&m
aema(— g X &S

=L (a2 a%p(a,p,587a"
m

({@hramy,)= B

=n=0

=(B"a™) .
The proof of the existence of p(a,f,s) is not so simple as
in the Cahill-Glauber case, because Eq. (2.21b) cannot be
inverted. First, note that the relationship between the

characteristic functions for different orders s and ¢, for
n=£*,is [10]

X(§,&%,s)=exp[+(s —0)|EI*Ix(§,£%,0) .

Taking the Fourier transform of the exponential func-
tion, and reexpressing the characteristic function in terms
of the r-order diagonal quasiprobability p'(y,¢) [10], we
obtain

P T T P 2
X(EE"9)=— [d*ad R

(2.22)

(2.23)

Xexp —3—2_—,|5l2—§8"—§*8

+Ey*—E*y | . (2.24)

Now, making a transformation in the variables of in-
tegration,

_at+p* _a—p*
Y 2 6 > , (2.25)
the characteristic function can be written as
* =L 2 2 l _2
X(§,€%,s) ,,zfd ad By ——,
2
a—pB*
X J— —_  F
xp s—t 2 ‘
Xp'(La+B*),1)eP e, (226)
so that the function
2
1 __2 |a=B*
pi(aB,s) 45— P s—t 2 ]
Xp'(La+pB*),t) (2.27)

is a nondiagonal quasiprobability giving the correct
characteristic function. This proves the existence of the
nondiagonal quasiprobability p,(a,f,s) for Re(z) <Re(s).
It is bounded everywhere in the a and B complex planes
if the same condition is valid for the diagonal quasiproba-
bility p'(1(a+p*),t). Equation (2.27) defines a family of
nondiagonal quasiprobabilities for each order s, with the
parameter ¢ designating a particular member of this fami-
ly. The parameter ¢t comes from the diagonal quasiproba-
bility, but we remember that the ordering is defined by s,
not by ¢. In the following a subscript ¢ is used whenever
we are referring to the form given by Eq. (2.27) and we
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will refer to that equation as our definition of the canoni-
cal forms of the nondiagonal quasiprobabilities. If the di-
agonal QP on the right-hand side of Eq. (2.27) is non-
negative and s and ¢ are real numbers with s>¢, then
p:(a,B,s) is a non-negative function. Therefore p,(a,B,s)
is non-negative for ¢t < —1. The Drummond-Gardiner
case is obtained for s =1 (normal order), t = —1 (in terms
of the Q function), with a slightly different normalization.
Only the value of one complex number L(a+p*) is need-
ed to obtain the value of the diagonal QP, whereas only
the knowledge of 1(a—pB*) is needed to obtain the value
of the Gaussian function in Eq. (2.27). According to the
definition, the nondiagonal QP cannot be an analytical
function, because it is a real function whenever s and ¢ are
real. For t =s the Gaussian function becomes a two-
dimensional Dirac 8 function

ps(a,B,s)=md a—pB*)p'(a,s) . (2.28)

In this form we can rewrite the quantum averages [Eq.
(2.22)] as

ty\nym :l 2 ’ *n_.m
({@hramy,) #fd ap'(a,s)a*"a

=(a*"a™) ,

(2.29)

and we see that Cahill-Glauber quasiprobabilities [10] are
a particular case of the nondiagonal ones, so that the
nondiagonal quasiprobabilities can be chosen either hav-
ing the same form as the diagonal ones (if one needs
them) or having other new forms for situations where
problems with the diagonal ones are found. For every or-
der se[—1,1], p,(a,B,s) can be chosen to be non-
negative because the Q function (the diagonal QP for

t =—1) exists for any state and is non-negative. This
demonstrates the existence of the s-order positive
quasiprobabilities for any state for a choice of t =—1 (of

course, they are non-negative and always exist as well for
any t < —1). For other values of ¢, the nondiagonal QP
exists only if the diagonal one for order ¢ does.

There is another relationship between the diagonal QP
for order p and the nondiagonal QP for order s. From
Cahill and Glauber [10], we know that

2
p—t

|a1_,}/lz

p'(?’,t)=;2_—t %fdza'exp

Xp'(a,p) , (2.30)

for Re(p)>Re(z). Replacing ¥ by L(a+B*) and multi-
plying by
2]

2

1 2
4 s—t

s—t

a—p*

exp 3

we obtain



5108
1.2 2 1
pi(@ps) 4 s—tp—tw
2
2 a+p*
X d2 ' _ '
f a’ exp o —t a 2
2
2 |a—pB*
s—t 2
Xp'(a',p) , (2.31)

and the nondiagonal QP for order s is obtained from the
corresponding diagonal QP for order p (when this one ex-
ists) by a smoothing convolution with a Gaussian func-
tion. For the particular case of p =s, we obtain

1|2 |1
plaBs)= 15 | 7
1
X d2 ’ 1 " 2
f a’ exp 5 s—t(|a al
+la'—BI?)
Xp'(a',s) , (2.32)

and the smoothing convolution is between a Gaussian
function and diagonal QP for the same order s. This
equation is another demonstration of the existence of the
nondiagonal QP for a given order s, if the diagonal one
for the same order s exists. For the particular case of
=—1, when the nondiagonal QP is positive
semidefinite, we have the generalization for any order s of
a theorem demonstrated by Drummond and Gardiner for
normal order [22].
The density matrix can be expressed in terms of the or-
dering operator as

p=— [d*adBpla,B,5) (B —s) , 2.33)
T

and from this equation we reobtain the characteristic
function

X(&,E%,5)=Tr[pD(£,£*,5)]
= # [ d%ad*Bp(a,B,s)
X Tr[ T(a,B, —s)D(,6*,5)]

= [dadBplapoe 5, @30
where we have used the correspondence between opera-
tors and ¢ numbers [Eq. (2.20)].

III. TIME EVOLUTION

In this section we are going to describe two methods of
studying the time development of quantum systems. The
first one is the master-equation method [34—36], resulting
in Fokker-Planck equations which can be transformed
into stochastic differential equations [37]. The other ap-
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proach is the quantum Langevin equations of the input-
output theory [38,39], and we are going to describe a
method that can be used to transform from the operator
to the c-number equations.

A. Operator identities

In the first method, the master equation for the density
operator,
. i .
p=— Z[ﬁ ,P]+relaxation terms ,

is transformed into a partial differential equation for the
quasiprobability,

pla,B,s)=Lp(a,B,s) ,

where L is a differential operator in a and 8. This equa-
tion is obtained using the operator identities

(3.1

(3.2)

ap— a—s;1 % plaBys) (3.3a)
a'p— 3_53215% pla,B,s) , (3.3b)
pi— |a—2T1 gaﬁ p(a,B,5) (3.30)
ﬁaT—* B— s;1 % pla,B,s) , (3.3d)

which can be obtained using the characteristic function
[Eq. (2.21b)]. The proofs are similar to the ones for the
diagonal case, which can be found, e.g., in Ref. [40]. Us-
ing these identities, Eq. (3.1) is tranformed into Eq. (3.2),
which will have in general third- and even higher-order
derivatives (see, e.g., Refs. [4,9-12]). However, for a few
cases the equation for the positive P function [22] is a
Fokker-Planck equation in the phase-space variables (see,
e.g., [22,30-32]). For a large class of problems, this is
not true, but one can try to approximate the problem by
truncating Eq. (3.2), transforming it into a Fokker-Planck
equation. In Refs. [25-29,41], infinite-order derivatives
were present, but they were neglected, based on a
system-size argument, down to the third-order ones, and
only the remaining second-order problem was analyzed;
even with this approximation, only the small-noise limit
was successfully understood, and a better comprehension
of the full-noise second-order derivative situation is still
waiting for a solution. The only possible analysis for
these cases was limited in general to a normal order
analysis (s =1), because the formalism of Drummond and
Gardiner [22] was the only one available. But in the
cases discussed in Refs. [23-30], this formalism was not
successful in the chaotic region, because of problems such
as loss of conjugacy and spikes. Only in one situation
could the authors of Ref. [29] use the Wigner function,
obtaining in this case better results with this function
than with the positive-P-function simulations. But the
simulation was not always possible using the Wigner
function: The diffusion was negative in some cases, and
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in other cases individual trajectories ran into negative-
diffusion regions, invalidating the simulation. With the
present formalism, the choice of symmetric order (be-
tween a number of possible choices) can be done without
the problem of negative diffusion. The reason is that
whenever the equation of motion for p(a,B,s) can be
transformed into or approximated by a Fokker-Planck
type equation, we can use the method of Drummond and
Gardiner [22] to show that the diffusion is positive
semidefinite; i.e., the nondiagonal QP equation of motion
is a Fokker-Planck one, whenever the diagonal QP
satisfies a pseudo or true Fokker-Planck equation [22].
For these cases we will say hereafter that we have a
diffusive problem or a diffusive system.

B. Stochastic differential equations

In this section let us assume that we are dealing with a
diffusive problem. However, instead of using the drift
and diffusion terms of the Fokker Planck equation to
write the stochastic differential equations, we introduce
here 2 method which is closely related to the Langevin
approach. The difference is that we rely on the existence
of the s-order nondiagonal correspondence between
operators and ¢ numbers, given rigorously by Eq. (2.20).
In the usual Langevin approach, the diffusive approxima-
tion for the problem is made. However, a diagonal
correspondence is assumed, not the nondiagonal
correspondence of this paper. The method will be de-
scribed using it in examples.

1. Damped harmonic oscillator

We use the model discussed by Gardiner and Collett
[39] for this system, with the quantum Langevin equa-
tions and quantum Wiener process defined by them. Us-
ing their results, we simplify the calculation of the
diffusion matrix; consequently, it is easier to follow the
steps which make up our method. The Hamiltonian for
the system is

A=8,+A,+A, ,
B,=#wa'a ,

(3.4)
A,=#[d00b@bQ),

A,=infdox@)b@a—-a'b@)].

Here H, is the free oscillator Hamiltonian, o is the fre-
quency, ﬁb is the free bath Hamiltonian, () is the fre-
quency, and b(Q) and 57(Q) are the annihilation and
creation operators, satisfying the commutation relation
(b(Q),b T )]=8(Q—Q'); H; is the interaction between
the heat bath and harmonic oscillator. The range of the
integrations is (— o, o), which is an idealization, as dis-
cussed by Gardiner and Collett [39]. In the Markov ap-
proximation, the quantum Langevin equations of motion
for the harmonic oscillator are

da=—(io+iy)adt+vydB ,

(3.5)
da'=(io—1y)a‘dt +vydB",

5109

where the quantum Wiener process is represented by B
and B T, with Gaussian statistics and zero averages, and
fluctuations given by

[dB(1)*=[dBT(t)]*=0
dB(ndB(=m+ 1t ,
dBY(t)aB()=rdr .

(3.6

Here 7 is the excitation of the heat bath. Now we use
Egs. (3.5) and (3.6) to obtain

d@)=—-2iy+io)a’dt+d¥, (3.7)
d@™=—21y—ioe"dt+dF, (3.7b)
d@ata)y=(—ya'a+yn)dt +d¥, 3.7¢)

where dF means fluctuations for the second moments,
and using the identify [9]

min(m,n) — k m n
(@hramy,= ]EO s2‘ k| L
x{@hy—kamky, (3.8)
with ¢t =1, we transform Eq. (3.7¢) into
d{a'a),=(—y{a'a},+ylA+i1—s)Ddt+dF, (3.9)

for the s-order second moment. The assumption that the
process is diffusive (which is not an approximation in the
present example) allows one to write down the equations
of motion for the ¢ numbers associated with the operators
according to Eq. (2.7) as

da=—(Ly+i0)adt + T dW o+ TopdW g

(3.10)

where W;; (i,j =a,p) are unit Wiener processes [37] satis-
fying
dw,;dw,, =

84.8;dt , (3.11)

and I‘ij (i,j =a,p) are quantities to be determined. From
Egs. (3.7) and (3.9), making the operator to c-number
correspondence, we can write

d(@®)=—2ly+io)a’dt+dF,

d(f)=—2ly—iw)Bdt+dF, (3.12)
d(aB)={—yaB+y[A+L(1—s)]}dt+dF,

whereas from Eq. (3.10) we obtain

d(@®)=[—2iy +iw)a?+T2,+T%ldt +dF,

d(B)=[ 2Ly —iw)B?+T3+T%,ldt +dF,  (3.13)

d(ap)=(—yaB+T zlg,)dt +dF .

Comparison of Eq. (3.12) with Eq. (3.13) shows that
[, +T2,=T3+T3,=0,

=y[A+i(1-s5)].

(3.14)
raﬂrﬂa



5110

Therefore the drift vector is determined directly from the
operator to ¢ number correspondence, and the diffusion
matrix is determined, using our method, by Eq. (3.13).
The solution of Eq. (3.14) is not unique, but every solu-
tion will give one and the same diffusion matrix, so that
which solution one is going to use does not matter. For a
bath with zero temperature (7 =0) and normal order
(s =1), the process is completely deterministic (zero
diffusion).

We can thus obtain stochastic differential equations
directly from the input-output equations, assuming that
the process is a diffusive one. The use of Eq. (3.6) by us
was a matter of convenience and is not essential for the
present method. One could instead use the traditional
method of Langevin forces (see, e.g., Ref. [35]), calculat-
ing the correlations between these random forces and us-
ing them to derive the c-number equations from the
Heisenberg-Langevin equations.

If damping by the heat bath is not included, we make
¥ =0 in Egs. (3.5)-(3.7) and (3.9)-(3.14). This gives an
example of the application of this method to transform
directly from a Heisenberg equation to a c-number equa-
tion.

2. Degenerate parametric oscillator

In this subsection we modify the example of the previ-
ous subsection by adding a degenerate resonant paramet-
ric interaction with a classical pump field. In this case it
is convenient to make a transformation to a rotating
frame, eliminating the natural oscillation of the harmonic
oscillator, so that the parametric Hamiltonian to be add-
ed in Eq. (3.4) is

A,=1irG@"—a%, (3.15)
where G includes the coupling constant and the classical
field amplitude. Applying the method described above
[Egs. (3.5)-(3.14)], the c-number equations of motion for
order s will be

da=(—3tya+GB)dt +T,,dW ,+T z[dW s,

(3.16)
with
2, +T2=T}+T},=Gs ,
(3.17)

Comparing with Egs. (3.5) and (3.14), additional terms
due to the parametric coupling appear now in the drift
vector and diffusion matrix in Egs. (3.16) and (3.17). For
the particular case of a heat bath at zero temperature
(7=0) and using normal order (s =1), comparing Eqgs.
(3.16) and (3.17) with Eq. (43) of Ref. [40], it is seen that
the source of phase-dependent quantum noise giving
squeezing in the weak-field limit is the parametriclike
noise. Here, again, if we neglect the interaction with the
heat bath, we have another example of the application of
the method to obtain c-number stochastic differential
equations from the Heisenberg equations.
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C. Use of alternative orders

Smith and Gardiner [30] have demonstrated that the
difficulties in the use of the positive P function [23-30]
could not be attributed to the failure of the numerical
simulation. They argued that the probable cause of the
remaining problems, when better numerical methods are
chosen in the simulation, is the form of the QP for large
absolute values of the arguments. A related problem was
studied by Wolinsky and Carmichael [31] who argued
that the problems with the positive P appeared because
the motion of the system must be restricted to a finite
manifold contained in the real subspace of the a8 phase
space, and this condition was violated in the simulations,
because of the finite step size available in computers. Us-
ing our method, we have obtained a set of equations for
the problem studied in Ref. [30], in the diffusive approxi-
mation, for s order. For a particular order s =§, the
problems with spikes found by Smith and Gardiner have
disappeared [42].

It has been argued that the diffusive approximation
gives differences of several orders of magnitude in the
time spent by a parametric oscillator in each of the two
stable steady states above threshold [43-45]. Because the
equation of motion for the s-order quasiprobabilities in-
volve in general higher-order derivatives, the truncation
to second-order derivatives can give wrong results. But
there must be cases where the differences are negligible.
In Ref. [42] several cases are discussed, some of them be-
ing just cases where the positive-P-function simulation
had problems, and good agreement between the normal
and alternative orders is achieved in some situations. In
the diffusive approximation, the s-order stochastic
differential equations are

da={[—1+gX1—s)]a+BA—g?a*)}dt
+ FaadWaa + raBdWa ’

dB={[—1+gX1—s)]B+a(rA—g?B*)}dt (3.18)
+TpgdWpg+Tp,dWeg
where the diffusion is given by
2, +Tig=s(A—ga?),
Thp+T3,=s(A—g?p) , .19

Lol g =(1—5)[1—g*(1—5)+2g%p] .

The quantities used here are defined in Ref. [43]: A is the
fundamental pump strength, and g measures the non-
linear coupling with the heat bath. As observed in Ref.
[45], the equations that they have been using for the
Wigner function in their previous paper [43] had some
terms missing, so that their Wigner-function simulations
gave smaller tunneling times than the positive P function
[45], in disagreement with their previous results giving
much larger tunneling times [43]. From Egs. (3.18) and
(3.19) (for s =0) and Refs. [32,46], one sees that there is
still one term missing in the equations used in Ref. [45],
so that an additional calculation and simulation are need-
ed in order to compare the positive-P- and Wigner-
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function simulation results. For each s except s =1, the
only approximation which we are making is the trunca-
tion of higher-order derivative terms. For symmetric and
normal order, Ref. [42] presents results for simulation of
the stochastic differential equations and the differences
are not so dramatic as stated in Ref. [43].

IV. CONCLUSIONS

The nondiagonal displacement operator and nondiago-
nal ordering operator have been introduced. These
operators allow us to map ordered operators into two c-
number quantities, one for each power of the annihilation
operator and the other (which is independent from the
first one) for each power of the creation operator. We
call this a nondiagonal correspondence, generalizing the
Cahill-Glauber [9,10] map. For normal-ordered opera-
tors, the Drummond-Gardiner projector [22] is
recovered. As in the Drummond-Gardiner case [22] and
contrary to the diagonal case [9,10], the operator to the
c-number map cannot be inverted.

Here families of quasiprobabilities for the s-order
quantum-classical correspondence are introduced for sys-
tems with one degree of freedom. For any order, includ-
ing the normal one, we have demonstrated that they can
be defined in terms of other diagonal quasiprobabilities
and can always be chosen as non-negative functions for
any state. We show that the canonical form of the nondi-
agonal s-order QP has as a particular case the products of
a & function by the diagonal QP for the same order,
whenever this one exists, so that the diagonal quasiproba-
bilities are a particular case of the more general nondiag-
onal ones. We have demonstrated that the nondiagonal
QP can also be expressed as the convolution of a diagonal
quasiprobability with a Gaussian function. The convolu-
tion has also the effect of averaging the irregularities, so
that the nondiagonal QP can always be chosen as a posi-
tive function even when the diagonal QP oscillates be-
tween positive and negative values.

For diffusive problems the diffusion matrix of the
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Fokker-Planck equation for the s-ordered nondiagonal
QP is found to be positive semidefinite, allowing the use
of stochastic differential equations for the ¢ numbers cor-
responding to the quantum operators. A rigorous
method of derivation of stochastic differential equations
directly from the Heisenberg or input-output equations,
without the necessity of deriving first a Fokker-Planck
equation, is described. Using this method, one can write
down the Fokker-Planck equation from the stochastic
differential equations, which is a much easier method for
obtaining the Fokker-Planck equation than the usual one.
Our method is therefore easier to be used than the tradi-
tional methods, so that better approximations can be
found to quantum problems. We have already found ad-
vantages using our method with respect to methods tradi-
tionally used in the literature (compare the results of Ref.
[46] with Refs. [43-45]). In order to obtain the stochas-
tic differential equations, various (inequivalent) trunca-
tion schemes are necessary.

Our results imply that, associated with any one-
dimensional system, there is a four-dimensional space
with a well-defined and non-negative probability density
everywhere, for any state, for any s order. More compli-
cated systems can be mapped into several one-
dimensional systems, through the Schwinger-Jordan map
[47,48], so that this kind of correspondence can be used
to study a large variety of quantum systems.

ACKNOWLEDGMENTS

We thank S. M. Barnett, B. J. Dalton, F. A. de
Oliveira, F. A. P. Pi6lho, and A. Schenzle for useful dis-
cussions, and Cid B. de Araujo for reading the
manuscript. This work was partially supported by CNPq
and Helisom. We would like to thank P. D. Drummond
for sending us a copy of Ref. [45] prior to publication.
Part of this work was completed when the author was
with the Departamento de Fisica, Universidade Federal
do Rio Grande do Norte.

[1] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P.
Wigner, Phys. Rep. 106, 121 (1984).
[2] C. Cohen-Tannoudji, B. Diu, and F. Laloé, Meécanique
Quantique (Herman, Paris, 1977), Vol. L.
[3] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[4]J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1945).
[S] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).
[6] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[7] E. C. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[8] K. Husimi, Proc. Math. Soc. Jpn. 22, 264 (1940).
[9]1 K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857
(1969).
[I0] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882
(1969).
[11] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970).
[12] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2187 (1970).
[13] G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2206 (1970).
[14] B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076
(1967).

[15] B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1097
(1967).

[16] H. J. Carmichael and D. F. Walls, J. Phys. B 9, 1199
(1976).

[17] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. A
18, 201 (1978).

[18] H. M. Gibbs, Optical Bistability: Controlling Light with
Light (Academic, Orlando, FL, 1985).

[19] S. Chatuverdi, P. D. Drummond, and D. F. Walls, J. Phys.
A 10, L187 (1977).

[20] P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt.
Commun. 28, 255 (1979).

[21]P. D. Drummond and D. F. Walls, J. Phys. A 13, 725
(1980).

[22] P. D. Drummond and C. W. Gardiner, J. Phys. A 13,
2353 (1980).

[23] M. Dérfle and A. Schenzle, Z. Phys. B 65, 113 (1986).

[24] J. Satchell and S. Sarkar, J. Phys. A 19, 2737 (1986).

[25] S. Sarkar, J. S. Satchell, and H. J. Carmichael, J. Phys. A



5112 FERNANDO A. M. de OLIVEIRA 45

19, 2751 (1986).

[26] S. Sarkar, J. S. Satchell, and H. J. Carmichael, J. Phys. A
19, 2765 (1986).

[27] S. Sarkar and J. S. Satchell, in Nonlinear Phenomena and
Chaos, edited by S. Sarkar (Hilger, Bristol, 1986).

[28] H. J. Carmichael, in Frontiers in Quantum Optics, edited
by E. R. Pike and S. Sarkar (Hilger, Bristol, 1986).

[29] J. S. Satchell, S. Sarkar, and H. J. Carmichael, in Chaos,
Noise and Fractals, edited by E. R. Pike and L. A. Lugiato
(Hilger, Bristol, 1987).

[30] A. M. Smith and C. W. Gardiner, Phys. Rev. A 39, 3511

(1989).

[31] M. Wolinsky and H. J. Carmichael, Phys. Rev. Lett. 60,
1836 (1989).

[32] 1. K. Mortimer and H. Risken, Phys. Rev. A 44, 617
(1991).

[33] F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V.
BuzZek, Phys. Rev. A 41, 2645 (1990).

[34] W. H. Louisell, Quantum Statistical properties of Radia-
tion (Wiley, New York, 1973).

[35] M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser
Physics (Addison-Wesley, Reading, MA, 1974).

[36] P. Meystre and M. Sargent 111, Elements of Quantum Op-
tics (Springer, Berlin, 1990).

[37] C. W. Gardiner, Handbook of Stochastic Methods for Phys-
ics, Chemistry and Natural Sciences, 2nd ed. (Springer,
Berlin, 1985).

[38] M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386
(1984).

[39] C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761
(1985).

[40] H. Haken, Laser Theory (Springer, Berlin, 1984).

[41] F. A. M. de Oliveira and P. L. Knight, Phys. Rev. A 39,
3417 (1989).

[42] F. A. M. de Oliveira, Phys. Rev. A 45, 3350 (1992).

[43] P. D. Drummond and P. Kinsler, Phys. Rev. A 40, 4813
(1990).

[44] P. Kinsler and P. D. Drummond, Phys. Rev. Lett. 64, 236
(1990).

[45] P. Kinsler and P. D. Drummond, Phys. Rev. A 43, 6194
(1991).

[46] F. A. M. de Oliveira (unpublished).

[47] J. Schwinger, in Quantum Theory of Angular Momentum,
edited by L. C. Biedenharn and H. van Dam (Academic,
New York, 1965).

[48] L. C. Biedenharn and J. D. Louck, in Encyclopedia of
Mathematics and Its Applications, edited by Gian-Carlo
Rota (Addison-Wesley, New York, 1981), Vol. 8.



