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Two-channel cavity QED: Stokes plus anti-Stokes emission with a classical pump field
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We consider a two-channel A-type three-level atom interacting simultaneously with two quantized
cavity fields and a classically described cw laser field, all of diferent frequencies. The efFective interac-
tions are of the Raman type, in which the two cavity fields are regarded as Stokes and anti-Stokes modes,
and the classical field acts as the pump mode, so that both the pump-Stokes and the pump-anti-Stokes
transitions are included. We present the analytic solution of the system evolution operator. We also
study the time dependence of the atomic inversion and the statistical properties of the cavity fields. We
show that strongly correlated photons can be generated in our model.

PACS number(s): 42.50.Hz

I. INTRODUCTION

Over the last decade, there has been much work on
light-matter interactions of a single atom in an optical
cavity [1]. Models of a two- or three-level atom interact-
ing with one or two cavity modes in different
configurations were studied extensively. Recently, Ra-
man scattering of an atom with degenerate [2-4] or non-
degenerate [5] levels in a cavity has attracted consider-
able interest. In a recent paper by Puri, Wang, and Eber-
ly [6], a nondegenerate model of an atom interacting
simultaneously in two channels with three quantized cav-
ity fields was introduced. The interaction is essentially
Raman type, in which both the pump-Stokes channel and
the pump —anti-Stokes channel are included. A11 three
mode frequencies, pump, Stokes, and anti-Stokes, are
different. Since all the fields are dynamical variables,
their model provides nontrivial features of multiwave
mixing, including pump depletion, in the context of cavi-
ty QED. The system's dressed eigenstates are three-mode
tangled states.

In this paper, we consider the same nondegenerate sys-
tem but with the pump field replaced by a classically de-
scribed laser field of constant amplitude, while the Stokes
and the anti-Stokes cavity modes are kept quantized.
The role of the pump field is significantly different in the
original fully quantized model [6];here it is not necessari-
ly a cavity mode and does not evolve dynamically. In
other words, our system is a classically driven atom in a
two-mode cavity [7]. We will focus on the transient
quantum dynamics of the system on a sufficiently short
time scale that cavity damping is negligible.

This paper is organized as follows. In Sec. II we intro-
duce the model Hamiltonian. By identifying the constant
of motion, we find the effective interaction Hamiltonian.
In Sec. III the system evolution operator is derived. The
main purpose of this paper is to determine the dynamics
of the atom and the statistical properties of the cavity
fields. We consider a simple initial condition, in which
the atom and the cavity fields all start in their ground
states. The time dependence of the atomic inversion and

various features of the photon states are discussed in Sec.
IV. Finally, Sec. V provides a summary of our results.

II. THE MODEL HAMILTONIAN
AND CONSTANT OF MOTION

The atomic energy levels and the radiative interactions
of our model are shown in Fig. 1. We assume that the de-

tuning 6 is sufficiently large that we can adiabatically
eliminate the top level [6]. This approximation leads to a
two-level atom that contains levels 1 and 3 only. The
Hamiltonian describing this system, in the usual
rotating-wave approximation, is given by

H =E3)S,+cosas~s+ ~ A ~ A ~ A

+(ge as'+s)e aA )S+

+(ge as+rie a„)S (2.1)

i2 &

)3&

FIG. 1. The Raman interactions of a three-level atom in-
teracting with the driven and the cavity fields simultaneously.
We assume i) to be large enough to eliminate the level ~2).

where we have taken %=1 for convenience. The symbols

a;,a; (i =S, A) represent the field operators for the
Stokes and the anti-Stokes modes. The S's are the coher-
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ence operators for the atom, satisfying angular rnomen-
tum (not Pauli matrix) commutation relations among
themselves. The parameters g and g, which are propor-
tional to the amplitude of the pump field, characterize
the coupling strengths for the two transitions shown in
Fig. 1. Both are assumed real. The energy difference of
the atomic levels 3 and 1 is denoted E3&. The laser field
frequency co~ and the cavity mode frequencies cps and co„
are supposed to satisfy the resonance conditions for Ra-
man transitions:

cop cos —co ~ cop —E3~ (2.2)

In order to eliminate the explicit time dependence of
the Hamiltonian, we transform to a rotating frame of
reference via the unitary operator,

T(t) =exp[ itot—, t(asas+a„a„) ] .

The new Harniltonian is defined by

H'= Tt(t)HT(t) iTt(t)—
dt

(2.3)

(2.4)

and it is easy to show that H' takes the time-independent
form:

C=(a„a„—asas+S, ) . (2.6)

We see that this operator C commutes with H' and
therefore is a constant of motion. This implies an impor-
tant fact —that the photon number difference between
the Stokes mode and the anti-Stokes mode can only
change by one unit. In fact, if the system begins with the
vacuum cavity field and the atomic ground state, the
Fock states

~ ns, n „)that are allowed to be generated are
confined to ~n, n ) and ~n + l, n ) where n =0, 1,2, . . . .
Therefore the Stokes and the anti-Stokes photons are
strongly correlated. We will discuss the dynamics of the
photon generation in a later section.

The effective interaction Hamiltonian now reads

H'=E»C+(gas+pa„)S++(gas+pa& )S, (2.5)

where the operator C is defined by

exp( —iH, st) =cr „cos[(A A )'~ t]

+o „cos[(A A t)'~'t]

sin[( A A )' t]—iA

—iA
csin[(AAt)'~ t]

(AAt)'~ 4'&3 (3.2)

It describes two oscillators coupled together through a
two-photon interaction. The eigenvalue problem can be
solved analytically by decoupling the oscillators through
a linear transformation. It is a well-known procedure.
To avoid complication here, we will focus on the case
where g=g. It means the Stokes channel and the anti-
Stokes channel have the same coupling strength. We sug-
gest that it is a good approximation even if in the actual
situation gArt, provided that the cavity-atom interaction
time is not too long [8]. Now let us write the field opera-
tors as

1 . 1
s (ps xs) A (pA ixA )

2 2
(3.4)

using the mornenturn and position representation. Then
Eq. (3.3) takes a very simple form

A A=/(p +x ) (3.5)

where we have used the transformations

ps+psp+= (3.6)

xs+~a
(3.7)

where we have defined the operators A =(gas+pa„)
and o;J =

~i ) ( j~. It is not obvious how to obtain the ex-
plicit dynamics from U(t) because of the presence of
operators such as cos[( A tA)' t] appearing in (3.2). The
way to solve this problem is to work out the eigenvalues
and eigenvectors of the operator ( A A )

'

The operator A A is given by

A'A =(q'a„'a„+g'asas+ gqasa„'+gq „s+g') .

(3.3)

H, tt
= (gas+ fata „)S++(gas+ rta „)S (2.7) The p+ and x+ satisfy the following commutation rela-

tions:

[p+,p ]= [x+,x ]= [p+,x ] =[p,x+ ]=0, (3.8)
III. TIME EVOLUTION OPERATOR

The dynamics of the system is described by the time
evolution operator U(t), which is written as

U(t) = T(t)exp( —iE3& Ct)exp( —iH, &t) T (0)

=exp[ it (E»S,—+cosasas+co„a„a„)]

(3.9)

AtA~p+, x ) =g'(p~++x' )~p+, x ) (3.10)

[x+,p+]=[x-,p-]=~ .

Hence (+) are two independent degrees of freedom.
Equation (3.5) contains only the kinetic energy associ-

ated with the (+) coordinate and the potential energy as-
sociated with the (

—
) coordinate. The eigenvalues are

therefore continuously distributed on the positive number
line and the eigenvectors can be denoted by ~p+, x ):

X exp( iH, &t) . —

Equation (2.7) allows us to express exp( iH, ftt) as—
(3.1)

where ~p+, x ) are the simultaneous eigenstates of p+
and x . The projection of ~p+, x ) onto the
Stokes —anti-Stokes Fock states

~
n, m ) is quite simple,
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(n, m lp+, x ) =N„ f dx+H
Further calculation [9] shows that p„(r) and q„(r) may
be written in more compact forms,

X++X
XH„

2
p„(r)= iFi(n +1;n +—,'; —r /8},( —1)"n!r"

2"2n t
(4.10)

—(~+ +X ) IPXe + e++ (3.11)

whe«N, =('ir2" 'n'. m!) ' and H„(x) is the nth
Hermite polynomial.

IV. DYNAMICS

1/2
1 }n+in!Pn+ 1

q„(r)=i
2"(2n + 1)! 2

iFi(n +1;n +—'„r /8—)
4(n +1)(2n +3)

For later purposes, we would like to define the dimen-
sionless time

(4.1)
X,Fi(n+2;n+ —'„' —7 /8) (4.11)

and the operators

a~ —aS Af=
a@+aA

g

(4.2)

(4.3)

Notice that g is just the operator A besides a propor-
tionality constant.

Suppose the system begins with the atom in its ground
state and the vacuum cavity field,

l%'(0)) =lo,o„;1) . (4.4)

The state vector at time ~ may be written in the form

l%(r)) = g [p„(r)ln, n;1)+q„(r)in+1,n;3)] (4.5)
n=0

where the abbreviation
l n, m; j ) denotes the state vector

of n photons in the Stokes mode, m photons in the anti-
Stokes mode, and the atomic level j is occupied. The
time-dependent coefficients p„(r) and q„(r) are defined by

p„(r)=(n, nlcos[(gtg)'/ r]lo, o) (4.6)

sin[(g g}' r]
q, (r)= i&n+1 nlg

(g tg) i/2 (4.7)

p„(r)= f dx f dp+ cos[Q(p+ +x )/2 r]

x & n, nip+, x ) &p+, x lo, o&

Using the results given in (3.10}and (3.11), they have the
following integral representations:

where ]F] is the con6uent hypergeometric function.

A. Atomic inversion

The atomic inversion w (r) is determined by

w (r ) = (+(r}l&, I +(r) &,

and it is easy to verify that

(4.12)

w (r)= —(o,olcos[2(gtg)'/ r] lo, o) . (4.13)

Since the eigenvalues of g~g are continuous, the inversion
has a simple integral representation,

w(r)= 2f —ds se ' cos(+2sr) .

The numerical result is plotted in Fig. 2(a). Unexpect-
edly, the inversion has no oscillation at all and it quickly
approaches the constant value zero. This is in contrast to
the similar system with a one-channel transition [3],
which would contain vacuum Rabi oscillations. In Fig.
2(b), we also plot the inversion when the initial field is not
vacuum but the

l 10, 10) state instead. Similarly, we see
that the inversion becomes steady and the oscillations are
just transient. These results demonstrate the different be-
havior due to the two-channel nature of our model. The
physical mechanism for the two-channel atomic dynam-
ics needs to be studied further; the phase difference be-
tween the Stokes and the anti-Stokes fields as well as the
coherence of the atomic variables should be crucial.

and

q„(r)= i (n + 1)'/—

xf" dx f" dp +
(p2 + 2 )i/2

(4.8)
B. Photon number and Suctuations

The average photon number (N(r) ) is defined by

(N(1-}&= &%(T}lata„+ata le(T) &

=(~(r)lg'g+ f'fl~(r)) --,' . (4.15)

Xsin[ 1/ p+ +x }/2r]
X (n, n + lip+, x & &p+ tx

(4.9)

The first term is trivially a constant because [g,g]=0.
The second term may be evaluated through the commu-
tation relations [g,f]=0 and [g,ft]= —l. It is not
difficult to show that
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exp(+iH, ftt)f exp( i—H, ttt) =f+S r+g(g S —S+g}
l

2g g

sin2(g g}' r sin (g g)'
gS

4g'g
(4.16)

Therefore we can show that

(N( ) ) (0 0I
sin [(g g)' r] +ft sin [(g g)' r]

2g g
sin [(gtg)'~ r]

g
2g g

1 sin [2(g g)' r]
4 2g~g

(4.17)

Using the results given in (3.10) and (3.11), we find that
(N(r))

finally

read

(N(r) ) = ds e ' —sin +—sin
—s2 . 4 sv 2 ~ 2 $%

o s V2 s v'2

+ s sin (V2sr)
"r

2 $2
(4.18)

(N(r))= —.
4

(4.19)

As mentioned before, the photon numbers in the indivi-
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When r is sufficiently large [8], the integral has a simple
limit:

dual modes are approximately the same (at most they
differ by 1), so we have

(aAaA ) =(asas ) =
8

(4.20)

I ) ) I I I I I I I I I I I I ) ) I I I I I I I I I I I I I I I » I I i »

This result is interesting because the photon number in
each cavity mode increases as r, which is a feature of a
fully coherent interaction without relaxation or phase in-
terference. Alternatively, we can regard the increase of
photon number as a consequence of the two-channel na-
ture of the interaction because it does not happen in the
same system with one transition channel.

Further calculation of the photon number variance is
rather complicated. In Fig. 3 the numerical results are
shown. We plot the ratio of the normally ordered photon
variance to the mean photon number,

(:(&N; )':)
(N, )

(a; a; a;a; ) —(a;a;)
(i =S, A) . (4.21)

(a,ta, )
Interestingly, the fields first exhibit sub-Poisson statistics
(r; (0) in the time interval from zero to r =9 and become
super-Poissonian (r; )0) eventually. The size of the fluc-

tuation is important. We see in Fig. 3 that (:(bN; ):) is

roughly equal to the mean during an intermediate time
interval (up to v=40) In other .words, the fluctuation of
the photon number increases quite slowly with time, and
the photon number variance has the same order of mag-
nitude as the mean photon number, so the width of the
photon distribution is relatively narrow, like a coherent
field. This is significantly different from thermal field
statistics, although both are super-Poissonian.

In Fig. 4, we present the photon distributions at
different scaled times r. Both the probabilities Ip„I and

Iq„I in (4.5) are plotted. As expected from the results in
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FIG. 2. Time-dependent atomic inversion. The atom is ini-

tially in its ground state. The initial field states are (a) ~0,0) and
(b) ~10, 10). The time scale is dimensionless, incorporating the

pump intensity as defined in (4.1).

FIG. 3. Time evolution of rz and r&, which are the ratios of

the normally ordered variance to the mean photon number for

the Stokes fields and the anti-Stokes field, respectively.
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FIG. 5. Evolution of the cross correlation function of the

Stokes and the anti-Stokes fields.
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FIG. 4. (a) Probability distributions ~p„~ at three different
values of r. ~p„~~ is the probability of finding the photon state to
be in Stokes and anti-Stokes Fock state ~n, n ). (b) Probability
distribution ~q„~2 at the same values of r as (a). ~q„~ is the
probability of finding the photon state to be in Stokes and anti-
Stokes Fock state tn + l, n ).

satisfied by any classical field.
Finally, we demonstrate the strong cross correlation

between the Stokes and the anti-Stokes fields by consider-
ing the quantity Czz which is defined by

(nsn„& —
& ns & & n„)

CSA [&(&,)'&]'"[((&,)'&)'" 4.23

where n; = ( a; a; ) (i =S, A ). This correlation function is
bounded between —1 and +1. If the fields are indepen-
dent of each other, Cz„has a value of zero. Using the re-
sults (4.10) and (4.11), the time dependence of CsA is
plotted in Fig. 5. Evidently, C&„shows a positive corre-
lation and it quickly approaches its maximum value +1,
showing the strong correlation between the two cavity
modes.

V. SUMMARY

the preceding discussion, the distributions have localized
shapes and their center positions are well described by
(4.20).

C. Cross correlation function

One of the most important features in our model is the
production of strongly correlated photons. As already
seen in (4.5), there are two kinds of paired photon states
produced, namely, ~n, n ) and ~In + l, n ). In fact, if we
make a measurement of the atomic state, collapse of the
wave function would force the photon states to have ei-
ther the ~n, n ) type or the )n+1, n ) type. This implies a
one-to-one correspondence between the Stokes and the
anti-Stokes photons.

The pair states
~ n, n ) and

~

n + 1,n ) generally show a
nonclassical correlation between the two modes because
of the following inequality:

&asaA Aas & & asasasas & &
2

(4.22)

which holds for all these pair states (except ~0,0) and
~1,0)), and which indicates the violation of the corre-
sponding Cauchy-Schwartz inequality that must be

In summary, we have found the solution of a model
atom interacting simultaneously with two nondegenerate
quantized cavity fields and a classically described (laser)
field. The cavity frequencies are assumed to satisfy the
resonance conditions for Rarnan transition processes, so
that the cavity fields play the Stokes and anti-Stokes roles
while the classical laser field acts as the pump.

We obtained explicit analytic expressions for the sys-
tem evolution operator. We evaluated the atomic inver-
sion when the atom is specially prepared in the ground
state in the vacuum cavity field. The nature of the time
dependence was found. We also studied the features of
the photon states that are developed. The Stokes and the
anti-Stokes fields exhibit nonclassical correlation. We
found that the mean cavity photon number in each mode
increases with r Our numeric. al results show that the
photon distributions first exhibit sub-Poisson statistics
and then become super-Poissonian, but the distributions
are well localized in the Fock space.
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