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Multiphoton dissociation of a diatomic molecule including the effects of the continuum
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The dissociation of a diatomic molecule via the electromagnetic excitation of its vibrations is analyzed

by a direct solution of the Schrodinger equation in the energy representation of the uncoupled molecule
fully including the effects of the continuum. Using a Morse potential, all dipole matrix elements are ob-
tained analytically. We give exact results for the bound-continuum matrix elements and semiclassical re-

sults for the continuum-continuum matrix elements corrected for the diverging density of states near the
dissociation energy. We compute dissociation probabilities and the form of the excited wave packets in

the bound and the unbound subspaces of the uncoupled molecule. The influence of a smooth switch-on
and switch-off of the electromagnetic field is also analyzed. Our results are compared with and interpret-
ed by the help of a simple Poincare map ("Morse map") derived in earlier work.

PACS number(s): 33.80.Rv, 03.65.Sq

I. INTRODUCTION

The multiphoton excitation or dissociation of mole-
cules continues to be a field of great current interest both
from the point of view of applications and also as a sub-
ject of fundamental research [1—7]. One theoretical as-
pect which has received much attention is the fact that in
a classical description the systems considered are chaotic;
i.e., the dynamics of the actual quantum systems are in-
stances of "quantum chaos" (for a review, see [8]). A
characteristic difficulty in the theoretical treatment of the
quantized systems arises from the fact that the phase
space is noncompact and the energy spectrum has a con-
tinuous component. In a preceding paper [7], henceforth
referred to as I, we have analyzed in some detail quantum
effects on the multiphoton excitation of the vibrations in
a Morse potential by reducing, in a certain approxima-
tion, the classical dynamics and associated Schrodinger
equation to a classical map ("Morse map" [4]) and its
quantized version, respectively. The same method has
been used in [9] for hydrogen and in [5] for general non-
linear oscillators including the Morse oscillator. In the
description used in I, the inhuence of the continuous part
of the molecular spectrum on the bound states, caused by
the deexcitation from the continuum to the bound states,
is taken into account only during a finite time T after the
excitation into the continuum, where T is given by the
characteristic period of vibration of the remaining bound
part of the wave packet.

While the resulting description of the multiphoton-
absorption process in terms of a quantum map is attrac-
tively simple, it is, of course, only an approximation, and
it is therefore desirable to perform more detailed and nu-

merically exact calculations controlling the results of the
more simple but approximate approach. The value of the
latter then, of course, does not disappear, but consists in
providing simple qualitative and quantitative physical in-

sights which allow us to interpret the results of the more
exact but physically less transparent numerical calcula-
tions.

It is the purpose of the present paper to present a
direct numerical solution of the Schrodinger equation of
a harmonically driven Morse oscillator in the energy rep-
resentation of the Morse Hamiltonian. Specifically, we
wish to analyze the following experimentally realizable
situation: Diatomic molecules are first preexcited in a
well-defined vibrational state. Subsequently, they interact
with a strong monochromatic field of an infrared laser.
Afterward the occupation probability of their vibrational
levels and their dissociation probability is analyzed.

In the theoretical analysis we aim to include fully the
effects of the continuum on the bound subspace, taking
into account all continuum-bound and continuum-
continuum transitions via their exact and semiclassically
approximated matrix elements, respectively. To our
knowledge such a calculation has not been performed be-
fore for the Morse oscillator. Some preliminary results of
this approach were used in I [dashed lines in Figs. 4(b),
5(b), and 6(b) of I] in order to check the reliability of the
description based on the quantized Morse map.

For a one-dimensional model of hydrogen in a periodic
external electromagnetic field, a calculation similar to the
one we shall present here for the Morse oscillator, also
taking continuum-continuum transitions into account,
has been given by Susskind and Jensen [10]. In addition,
these authors compared the use of different gauges (the

p A coupling versus the d E coupling) and different rep-
resentations (hydrogenic versus Sturmian basis func-
tions).

Our work will be restricted to the p. A gauge arising
naturally from the minimal coupling Hamiltonian of the
electromagnetic field and to the use of molecular (i.e.,
Morse) basis functions. The Hamiltonian of our problem
is given by

[P —eA(r)]
2M

V(r)=D(1 —e )

where D is the dissociation energy, r0 the nuclear dis-
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tance at equilibrium, a ' the range of the molecular po-
tential, M the reduced mass, and e the effective charge in-
teracting with the external field. The vector potential
A (r} of the externally applied electric field of amplitude
F and frequency coo is

p(X, K}=N(K)z'"e ' U(iK+ ,' ——1/fi, 1+2iK,z), (2.8)

where U(a, b, z) is one of Kummer's functions in the no-
tation of [12] and N(K) is a normalization constant,
which we choose as real. Because of the existence of the
Kummer transformation

1 F sincop .
COO

(1.2) U(a, b, z}=z' U(1+a b,—2 b,—z), (2.9)

Scaling all variables according to x =r —ro,
p =P /v'2DM, and t =Qor, with Qo= av'2D /M, and in-
troducing the two dimensionless parameters g =eF/2Da
and co=coo/Qp the Hamiltonian is cast into the form (2.10)

the function (('t(X, K) is then also real, and all linearly in-
dependent solutions are covered by taking K~O. Nor-
malizing the continuum wave functions by

f dX f (X,K)ttt(X, K )=5(K K ),
( } [p —(g/ ) t] + 1(

2 2
(1.3) we have to fix [13,14]

Our aim is the solution of the Schrodinger equation &K sinh(2n K) 1 1NK= I ———+lK
2

(2.11)

iRQ(x, t)=H x, — g(x, t),
l X

(1.4) Let us expand the wave function in the molecular basis

where R is dimensionless, in our present units, and stands
for Aa/v'2DM.

In Sec. II we shall formulate the Schrodinger equation
in the molecular basis and provide analytical expressions
for all required matrix elements. In Sec. III we present
and discuss our results.

II. REPRESENTATION IN THE MOLECULAR BASIS

A. Molecular basis

Vmax

p(x, t)= g a„(t)(()„(x)+f dKa(K, t)(()(X,K),
v=p 0

(2.12)

a„(t)=i)(,(t)e

~(K t)e
—'(E(tt)/A)t

(2.13)

Furthermore, we introduce the gauge transformation

where v,„=[R ' —
—,
' ] is the integer part of R ' —

—,', and
introduce the interaction picture

The molecular basis is defined by the eigenfunctions of
the Hamiltonian of the free molecule,

a(t) = b (t)exp — t — sin2cot
lg

4~ 2N
(2.14)

H() = — +—(1—e ")8 1

2g2 2
(2.1) where a stands for a„a(K) and b for b„b(K). The

Schrodinger equation then takes the form

The discrete part of the spectrum of

Hatt)„= E,ttt, (2.2)

Vmax

iA'b„= g V„„(t}b„+f dK V„(K,t)b(K),
0 0

(2.15)
is given by the eigenvalues

E„=—,
' —

—,
' [—t)l( v+ —,

'
) +1], 0 & v & 1/A' ——' (2.3)

Vmax

iA'b(K)= g V„'(K,t)b„+f dK' V(K, K', t)b(K'),
0 0

2P,v!

I (2P +v+1) z "e '~2L "(z)

with the normalized eigenfunctions [11]
' 1/2

(2.4)

with

V,b(t) = ——(sincot)p, be (2.16)

with

P =1/))1—(v+ —,'),
z=2e /4 .

L '"'(z) is the generalized Laguerre polynomial [12].
The continuous part of the spectrum of

(2.5)

Pab l &gb Xab

x,b
=f dx P;(x)x(()b(x)

(2.17)

Here the indices a, b stand for v, p or K K for the discrete
and continuous parts of the spectrum, respectively,
co,b =(E, Eb )/))1, and—

HOP(K) =E(K)P(K)

consists of all energies

(2.6)
are the dipole matrix elements.

B. Matrix elements in the discrete subspace

E(K)=Pi K /2+

with —oo & K & + oo, E (K) +
—,', and the functions

(2.7) The discrete matrix elements

x „=f dx P'(XIX(()„(x), (2.18)
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for vip, have been calculated in [15]as

+ +, V'P.P„p)r(2P„+v+1}x„=2(—1)"+"+'
p2 p—2 v!r(2p +v+ 1 }

X —X (2.19)

p(I, t) = g p(I, co )e

with

p (I,co ) = i—(1 I)—I
2 —I

m/2

find [see Eqs. (2.14) and (2.15) of I]

(2.23)

We note that the matrix elements for v=p are not
needed here as co„~ v =0. (2.24)

co (I)=m (1 I) .—

Here I in the interval 0 I & 1 is the action variable
C. Matrix elements between discrete

and continuous subspace I= „gpdx,1
(2.25)

The discrete-continuous matrix elements

x,(a) =f dx (!)„*(x)xp(x,a) (2.20)
of the bound motion. The following semiclassical expres-
sion for the matrix element p„„is derived in [16]:

are evaluated in Appendix A as

1)v+1
x„(~)= Ir(-,' —1/&+ «) I

X +2v!P„I (2P„+v+ 1)v sinh2m'K

~ Ir(p. +i~+&) I'
x g

o A!r(1+2P„+A,)
(2.21)

Using an identity proven in Appendix B, the finite sum
in (2.21) can be evaluated, and we obtain the final expres-
sion

, }.+i Ir(-,' —lyx+lK)I
x„(a.) =

77 p+a
2P~ sinh2n. a

' 1/2

X
v!r(2p, +v+ 1)

p„+ „=p(I„,~ (I„)),
where, in the present application,

I„=A'(v+ —,
'

) = 1 fiP„, —

co (I )=m [1—iri(v+ —,')] .

(2.26)

(2.27)

p,„=p (I„+I„),—co
1 I +I„

(2.28)

From (2.27) we then obtain

v+p 1
p = —i 1 —fi +-

VP 2 2

Here I is the Bohr-Sommerfeld-quantized action vari-
able. In the following we shall use a more symmetrical
version of (2.26), namely,

x lr(P. + i~+v+ 1)I'

D. Matrix elements in semiclassical approximation

(2.22) R(v+p)+1
4—R(v+ @+1)

Ppv Pvp~Pvv

'(v —p)/2

v)p
(2.29)

The matrix elements p(K, K ) in the continuous sub-
space are tedious to evaluate, even though it seems likely
that analytical expressions may be obtained. Even so, the
final expressions are likely not to be simple, and it is
therefore of interest to obtain manageable closed-form ex-
pressions in an accurate approximation designed for
highly excited states. This is the semiclassical approxi-
mation. Matrix elements of dynamical variables in the
semiclassical approximation can be obtained from the
Fourier transform by a standard method described, e.g.,
in [16]. We first consider the discrete subspace where the
approximation can be controlled by a comparison with
the results of Sec. II A. Then we shall apply the method
to obtain the continuum-continuum matrix elements in
the semiclassical approximation.

1. Bound supspace

The classical motion of the free molecule is described
best in action angle variables I,e (see, e.g., I, Secs. II B
and IIC). For the motion of the momentum, we then

The derivation of the semiclassical matrix elements in

[16] is based on the explicit assumption that the depen-
dence on the quantum number v is weak. This will be
satisfied if the semiclassical expression for the coarse-
grained (over an action scale -A'} density of states

—1aII,(I, )

Pv &
BI

1

fi(1 I„)—(2.30)

varies weakly with I„Here Ho(I) =I —. ,'I is the molec-—
ular Hamiltonian as a function of the action variable. We
see that p diverges at the dissociation border I„~1;i.e.,
the assumption for the validity of (2.26) or (2.28) breaks
down, and we have to expect deviations between the
semiclassical results (2.29) and the exact results (2.17) and
(2.19) if either I or I„approaches the dissociation bor-
der.

The divergence of the average density of states at the
dissociation border leads to the vanishing of the normali-
zation factor of the wave function (2.4) proportional to
the inverse square root ofp,
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—1 i2 Qp (2.31)
Ipl

and the corresponding vanishing of the matrix element
—1/2 —1/2X vp t ~vpPvp Pv Pp (2.32}

as can be seen in (2.19). Indeed, this is not correctly
reproduced by our expression (2.29}, which vanishes—(p„'+p„'). In order to correct for this defect, we
shall multiply our semiclassical approximant by the fac-
tor

2p 2p

(p '+p ') p +p
(2.33)

The same correction shall also be applied to
continuum-continuum matrix elements determined
below, to which the same reasoning applies, with the only
difference that the average density of states in the present
argument is there replaced by the true density of states.
After multiplication with the factor (2.33), our semiclassi-
cal result for the bound-bound matrix elements becomes

W1
1 ~

v S

Ã
vr v v

v
v

v v
W v

J(

v
'I 1

N
v

v
v

x'

v

102

I I I II I I F~l
I I

1.0
I

1.50.5

FIG. 1. Discrete-discrete matrix elements ~p~=~p„„~ and
discrete-continuum matrix elements ~p~=(p„(s}~ as a function
of I =A(p+

2 ) (I & 1) and I= 1+fee (I & 1) for v= 50 (leftmost

peak), v=80 (middle peak), and v=99. For I & 1 the exact re-
sults (crosses) and the semiclassical results (dots) are given, but
they are hardly distinguishable. For I &1 the curves for
v= 80,99 practically coincide.

1 —A'(P„+P„)/2
1+fi(P„+P„)l2

(2.34)
2. Continuous subspace

Ppv=Pvp~P~=0 ~

and x„„=t~„„p„„.
Clearly, the semiclassical expression (2.34) is of a much

simpler form than the exact expression (2.19). In Fig. 1

we present a semilogarithmic plot of the absolute value of
the matrix element p„„as a function of ~ for three
different values of v ( v =99=v,„80,50), choosing
A'=0. 01. The exact result (2.17) and (2.19) is shown by
crosses, and the semiclassical result (2.34) is shown by
dots. It can be seen that the exact and semiclassical re-
sults are hardly distinguishable; i.e., the agreement is very
good. The semiclassical approximation for the matrix
elements (after inclusion of our correction for the diverg-
ing average density of states) indeed works.

Ho(I) = 1 I + —,'I~, — (2.35)

for I &1. Defining I =1+fur, we have Ho= —,'+ —,'R ~ .
The unbound motion of the momentum p(I, t) is then ob-
tained as

p(I, t) = J p(I, co)e'"', (2.36)

with

For the unbound motion a pair of canonically conju-
gate variables I, P analogous to the action angle variables
can also be introduced [see I, Eqs. (2.16) and (2.17)] and
the molecular Hamiltonian then reads

N —1p(I, co) = —2mi cosh arccosI —1 +2HO(I)
sinh [m co(I —1)] (2.37)

[cf. (2.19) and (2.20) of I].
Applying the symmetrized version of the semiclassical formula for the matrix element analogous to (2.28), we obtain

the approximation

Np a.+—,a.——=p(I, co), (2.38}

with

I =1+Ac, co=haA, . (2.39)

The normalization factor N is determined from the condition

dc' A, A,p(I co) =p v+ , K —dA, , ——
2' 2' 2

(2.40)

and hence
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dco d A, fQc

2m N 2m

We obtain therefore

(2.41)

K+K
P(K, K ) lA

2

—1
cosh (K K )arccos

+I+(A' /4)(K+K')
sinhvr(K —K') . (2.42)

Correcting for the divergent density of states for ~~0 as in the preceding section by multiplying by the factor
2v'KK'/(K+K'), we obtain finally

p(K, K ) = i%—v'KK cosh (K K )arccos
1

'(/I+Pi (K+K'') /4
sinhn. (K—K') . (2.43)

In Fig. 2 we plot semilogarithmically the absolute
value of ~p(K, K )~ as a function of a' for three different
fixed values of K (K=0.125,50, 100), choosing 5=0.01.

ltd „fi fiy, = —sincot g Z,„e '" y„.
r=p

(2.46)

E. Discretization of the continuum

b„, s=v, 0~ v~ v,„
s=v,„+j, 1 j N,

(2.44)

and, in obvious notation, the matrix elements

Pvj N p

Qb, P„"(K,) COJp

&~kp, (Kk)
7vk

Qb J Akp(K&, Kk )

the Schrodinger equation can be written in the form

(2.45)

In order to solve (2.15) numerically, we have to discre-
tize the continuum. This can be done by introducing
small ~ intervals 6 centered around discrete values of ~J.

which cover the positive ~ axis, j, 1,2, . . . , N, . Here N,
is the number of discretized continuum states used in the
computation. Introducing the amplitudes

r

In this form the Schrodinger equation can now be soived
numerically. The solution will be reliable as long as the
time interval is kept small compared with the maximal
inverse level spacing introduced in the continuum

tRK min(b, ) « 1 (2.47)

0, O~s &v,„
(2.49)

because these values are the smallest possible if oscilla-
tions with the spurious discretization frequencies are still
to be damped out.

and as long as the number N, is sufficiently large to avoid
an escape of the state vector from the finite subspace of
the Hilbert space considered. If longer times are to be
considered, damping terms can be added to (2.46) which
are designed to avoid spurious oscillations with the fre-
quencies A'Kj5 . Equation (2.46) then reads

i Ay, = i fiy, y, ——singlet g Z,„e '" y„. (2.48)
r=p

An obvious choice for the damping rates y, is

III. RESULTS AND DISCUSSION

102 We have solved (2.15) for the parameter values co= 1,
g =0.01, and Pi=0.01, choosing N, =800 discretized in-
tervals 6 of the continuum of equal size 5=0.125 in the
interval 0~~~100. In the following various results of
these computations are presented.

A. Occupation probabilities of the bound molecular states

1.5

FIG. 2. Continuum-continuum matrix elements
Ipl= Ip(K, K )I in semiclassical approximation as a function of
I =1+Ax' for ~=0.125 (leftmost peak), ~=50 (middle double
peak), and ~= 100.

Let us first discuss the occupation probability for the
bound states of the molecule after it experienced 100
periods of the electromagnetic field, starting in a given
bound state with vibrational quantum number vp.

In Fig. 3 we show the result for vp=55. The solid line
gives the occupation probability as a function of the
molecular energy for sudden switch-on and switch-off of
the field. The dashed line corresponds to a smooth
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P(E)
1

1

P( E)
10

0.30 OAO p 0.50 0.30 OAO E: 0.50

FIG. 3. Occupation probability P (E) of the bound molecular
states as a function of E (0 E ~

2 ) after 100 field periods with

co = 1.0, g =0.01 for the initial state vo= 55 (vertical line). Solid

line, sudden switch-on and switch-of; dashed line, adiabatic
switch-on and switch-off; straight line, mean exponential falloff

predicted by localization theory.

switch-on and switch-off during the first and last ten field

periods. The switch-on function of the field amplitude
which was used has the form sin (irt/20T) and similarly
for the switch-off. It can be seen that the influence of the
smooth switch-on and switch-off is not very large. The
same is true for Figs. 4 and 5. The straight line in Fig. 3

gives the exponential fall-off of the occupation probability
which follows from the theory for dynamical localization
applied to the periodically driven Morse oscillator (see I):

2(E Eo )IRco—
(3.1)P (E)-exp

The localization length lz has been calculated in I us-

ing the Morse map as

l'=1 2mg
4 (fico)

(3.2)

P(E)
10 s

0.30 O.no E 0.50

FIG. 4. Same as Fig. 3 for vo =77.

We note that lz is independent of E and Ep. The slope of
the straight line in Fig. 3 (as well as Figs. 4 and 5) was
determined from (3.2) and can be seen to give a reason-
able description of the overall rate of the exponential fall-
off. The localization theory thus gives a good description
of the occupation probability in the bound subspace for
finite excitation times, despite the presence of the contin-
uum. Superimposed on the average exponential falloff
are oscillations with maxima separated by the photon en-

ergy Ace. This structure is again well explained by the
Morse map of I, which predominantly couples states

FIG. 5. Same as Fig. 3 for v0=99.

separated by the photon energy Ace. The energy of the in-
itial states is given as a vertical line in Fig. 3. It is above
the energy E, of the classical chaos border at about

E, =0.33 and below the Cantorus border for quantum
dissociation at about E&-0.41 (see Fig. 10 of I). The
classical chaos border marks the position of the last
Kolmogorov-Arnold-Moser (KAM) torus. In Fig. 3 it is
seen as the energy where the exponential falloff of the
wave function due to dynamical localization goes over
into an exponential falloff with a different slope due to
quantum tunneling into the classically forbidden domain.
On the right-hand side, the energy axis is terminated at
the dissociation energy E =

—,. Figure 4 gives a similar

plot as Fig. 3 with vp=77. The exponential falloff due to
dynamical localization now occurs over a longer distance
and is again replaced by tunneling below the energy of
the last KAM torus. Finally, in Fig. 5 we have chosen as
initial state the last bound state of the molecule with

vp=99. This state most strongly feels the influence of the
continuum. The exponential decay with the expected lo-
calization length now occurs only at a certain distance
from the dissociation energy, which is easily understood
as a result of the excitation of the high-lying states into
the continuum.

In summary, these results show that adiabatic effects
are small for the states we consider and that the localiza-
tion theory based on the Morse map explains remarkably
well the overall form of the excited wave packets in the
bound subspace.

B.Energy distribution of dissociated states

We now turn to the occupation probability of the con-
tinuum states obtained after 100 field periods, starting
with the same bound states as in Sec. III A. In our dis-
cussion we shall not consider the further modification of
the energy distribution due to ponderomotive effects,
which have been frequently discussed and are well under-
stood [17]. In a comparison with experiment, they
would, of course, have to be taken into account. In Figs.
6, 7, and 8, we show the results obtained for vp=55, 77,
and 99, respectively.

The results for sudden switch-on and switch-off are
shown in Figs. 6(a), 7(a), and 8(a), and those for smooth
switch-on and switch-off during the first and last ten field
periods are shown in Figs. 6(b), 7(b), and 8(b). In Figs.
6(c), 7(c), and 8(c), we present the result for sudden
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1

P(E)
10

(a)

smitch-on and switch-off by damping the continuum as in
(2.48}.

Let us first discuss the effect of the smooth switch-on
and switch-off. As can be seen from Figs. 6(a) and 6(b), it
has a strong quantitative effect on the probability in the
continuum for the lowest-lying one among the initial
states considered in our examples (vo=55). While the
form of the energy distribution is similar (in particular,
the pronounced peak structure spaced by the photon en-

ergy %co and the form of the fall-off towards higher ener-
gies), the overall size of the occupation probability differs

by about an order of magnitude. On the other hand, for
the initial states vo=77, 99, an appreciable influence of
the adiabatic switch-on and switch-off is not present, as
can be seen comparing Figs. 7(a) and 7(b) or Figs. 8(a}
and 8(b).

Next, we consider Figs. 6(c), 7(c), and 8(c) and discuss
the influence of damping the continuum as described in
(2.48) and (2.49). It can be seen that it changes the ener-

gy distribution in the continuum in a rather strong way,
leading to a much more rapid decay of the occupation
probability toward higher energies. Numerically, this is,
of course, a great advantage, as it allows us, in this case,
to work with a smaller subrange of the continuum near
the dissociation energy. But to what extent is the more
rapid decay in the continuum a physical effect? The
answer depends on which aspect of the continuum one is
interested in. One may ask, e.g. , what is the probability
distribution over the continuum, as in Figs. 6—8. The

1

P( E)
103

(a)

10-'

p(E)
] 3

.~
=I '

:I

P( E)
10 s

0-9 ililtl(liltI(l)lt

0.50 0.55 0.50 E. 0.65

FIG. 7. Same as Fig. 6 for vp= 77.

answer is independent of the phase of the wave function
in the energy representation and correctly given without
damping the continuum. However, one may also ask,
e.g. , what is the effect of the backaction of the continuum

10~ =I

1O-'

1

P( E)
10 s

(a)

P( E)
10

1O-'

»I III'h I I

g

P( E)
103

P( E)
103

(c)

10-'
A & I i I i I

P( E)
103

(c)

0.50 0.55 0.60

FIG. 6. Occupation probability density of the continuum

P(E) as a function of E (0.5 ~E ~0.6) after 100 field periods
for the case of Fig. 3 (vp=55): (a) for sudden switch-on and

switch-off, (b) for smooth switch-on and switch-oft; and (c) for
the damped continuum.

ii I h I ) I s I & I i I h I t I i I

0.50 0.55 0.6P ~ 0.65

FIG. 8. Same as Fig. 6 for vp =99.
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on the component of the wave function in the bound sub-

space shown in Figs. 3—5. The answer to this question
depends on the total wave packet, i.e., also on the phase
of the wave function in the energy representation. %e
shall now argue that in this case the damping of the con-
tinuum is physical and provides the more accurate
description: The discretization of the continuum used for
the wave function in our approach in effect replaces the
continuum by a quasicontinuum of closely spaced
discrete states. Forming this quasicontinuurn, we impli-
citly assume that the amplitudes of all continuum states
within a discretization interval add up to the nondecay-
ing amplitude of the discrete state representing that inter-
val in our approximation. Decaying states then only ap-
pear as a result of destructive interference between
several quasicontinuum states. This assumption is bound
to overestimate the size of the probability amplitudes in
the quasicontinuum, representing the wave packet. A
more physical assumption seems to be that the adding up
of the continuum amplitudes within a discretization in-
terval will already lead to a partially decaying amplitude
because of a partially destructive interference between
closely neighbored continuum states, the decay width be-
ing proportional to the size of the discretization interval.
This idea immediately leads to (2.48) and (2.49).

Following this reasoning, we have recalculated the oc-
cupation probabilities in the bound subspace for the cases
of Figs. 3—5 using the damped continuum. The results
were found not to differ significantly from those in Figs.
3—5, and they are therefore not recorded here.

Finally, we discuss the overall shape of the energy dis-
tribution in the continuum. The most marked feature is
the pronounced peak structure spaced by a photon ener-

gy Aco, showing that it is not a single-photon process
which is responsible for the transition between the bound
subspace and continuum. In the description of I using
the Morse map, the transition between the bound sub-
space and continuum occurs when the highly excited, but
still bound, molecule during its vibration rapidly passes
through the nuclear distance minimum where it very
effectively interacts with the electromagnetic field, taking
up enough energy for its subsequent dissociation. In the
Morse map this is described by a final kick, which the
molecule receives before dissociation. In this description
the energy distribution over the continuum is therefore
determined by the form of the final kick.

According to (4.11) of I, the absolute value of the kick
amplitude KE E. in the energy representation is apprecia-
ble only if E E'=Ace(I ——I'), where E',E are the ener-
gies before and after dissociation and (I —I ) is an in-
teger. It is given by

continuum is therefore not created by the repeated ab-
sorption of single photons, but rather by a single sudden
multiphoton event. The overall falloff of P(E) for large
E in Figs. 6(a), 6(b), 8(a), and 8(b) can be understood from
the asymptotic fall-off of the Bessel function in (3.3) for
I I —I'

I ) (2m g /fm)e . Taking E' =0 and using I to la-

bel the peaks in the continuum, we have
' 21

I&E,oI'-
2 I

(3.4)

which correctly describes the stronger than exponential
falloff seen in Figs. 6-8.

The results for the largest energies in Figs. 8(a) and
8(b), and to a lesser extent also in Figs. 7(a) and 7(b}, al-

ready show some influence of our numerical energy cutoff
at E = 1, but it should be noted that this artifact of the
computation occurs only in a region where P(E) is al-

ready smaller than 10

where the sum is taken over the bound states. The results
for D(t) for the three initial states v0=55, 77,99 are
shown in Figs. 9(a), 9(b), and 9(c) for sudden switch-on
and switch-off (solid line}, for smooth switch-on and

0.0
D( t)

0.5

0.{)
D{t) . {c)

C. Dissociation probabilities

The dissociation probability of the molecule is defined

by

(3 5)

27Tg
I &E,F. I

= JI I—
Ah)

(3.3)

OD
I

~ g ~

where JI(x) is the Bessel function. Equation (3.3) pre-
dicts energies E =E'+fun(I —I') of the dissociated state
differing by integer multip1es of Ace from the bound-state
energy E' before dislocation. Therefore the pronounced
peak structure of the bound states, visible in Figs. 3—5, is
transferred to the continuum. The peak structure in the

50 t,~ 100

FIG. 9. Dissociation probability D(t) as a function of the
number of field periods t/T for sudden switching (solid line),
smooth switching (dashed line), and using the damped continu-
um (dot-dashed line): (a) vo= S5, (b) vo= 77, and (c) vo= 99.
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switch-off (dashed line), and for the damped continuum
with sudden switch-on and switch-off (dot-dashed line).
Only for vo=55 is there a strong influence of the smooth
switching. In fact, vo=55 becomes nearly stable against
dissociation for smooth switching. In this context it may
be useful to point out the different scales used in Fig. 9(a),
9(b), and 9(c). The near stability of vo=55 is consistent
with the fact that vo=55 was found in I to be below the
quantum chaos border formed by the last quantum-
mechanically inpenetrable Cantorus, and the appreciable
dissociation probability found in I for vo=55 (see Fig. 10
of I), for sudden switch-on and switch-off, was hard to ex-
plain. It can now be seen to owe its existence only to the
high-frequency components contained in the sudden
switching. In Figs. 9(b) and 9(c), the dissociation proba-
bility D (t) at first rises monotonously in time, as expect-
ed, but for t ~ 80T it decreases for short intervals of time
in the cases where the undamped continuum is used.
This is an artifact which is eliminated by the use of the
damped continuum, which, for physical reasons, it is
preferable to use in this case (see the discussion in Sec.
III 8). The use of the undamped quasicontinuum slightly
overestimates the feedback from the continuum to the
bound subspace. D (t) for t =100T is therefore underes-
timated in Figs. 9(b) and 9(c), except for the dot-dashed
curves.

In Fig. 10 the dissociation probability D (E) after 100
field periods is plotted as a function of the initial energy
(diamonds) for sudden switch-on and switch-off and com-
pared with the result obtained in I using the Morse map
(solid line). For energies up to E =0.48, the agreement is
reasonably good, but for energies closer to the dissocia-
tion border, the dissociation probability computed by the
Morse map is too high. This is probably caused by the
increasing difficulty, as the dissociation border is ap-
proached, of the conversion from the molecular time
scale on which the Morse map is based, which is mea-
sured in molecular periods, to the physical time scale,
which is measured in field periods (see I). The influence
of damping the continuum on Fig. 10 is only slight, as
can be seen by the three dots computed for this case.

1.0

OO
"ti

OAO OA5 E: O.5O

FIG. 10. Dissociation probability D after 100 field periods as
a function of the energy E =

—,
' ——'[ —R(vo+ —')+1]~ of the ini-

tial state. The numerical results for sudden switching and un-

damped continuum (diamonds) are compared with the predic-
tion of the Morse map (solid line). The influence of damping the
continuum (dots) is shown for vo=55 77 99.

Inserting the eigenfunctions (2.4) and (2.8) and the substi-
tution (2.5), (Al) is given by the integral

N, N(K)
x„(x)= — &, J,(K),

V

(A2)

with

J (K)=f dzz~+" 'e '(lnz)L' ~'(z)

X U(iK+ ,' y, 2iK—+—l,z),
y=A' ', p=p =y —(v+ —,'),
N„=2~[2Pn!/I (v+2P+ 1)],

(A3)

dJ„(X,K)
J,(K) =Re

and N(K) given by (2.11). Expressing L'p'(z) and
U (i K+ ,' y, 2i K+——1,z ) in terms of Whit taker's functions

M &(z) and M, (z),M;„(z), respectively, by means
of standard relations [12] and using the relation
zOnz =(dz"+ /dx)„o, the integral J„(K) can be written
as
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x=0

J,(x,K) =2
v+ 2P I ( 2iK)—

I'( —,
' —2iK —y )

where I (x,K) is the integral

I(x,K)= f dz z M p(z)M, ,(z) .

(A4)

(A5)

APPENDIX A

Here we wish to present the calculation of the matrix
elements

It can be evaluated and the derivative of x taken. Using
the P function defined by

(A6)

x (K)= f dx P„*(x)xg(x,K) . (A 1) we obtain
I

I 1+2; ( n) I( t+iK+—1)I'(v+ I —1)
[g(p+ i K+1)—Q( v+ 1 —1)+Q(i K p 1+ 1 ) ].——

dx I (i K+ ,'+y ), I!(I+2p)t I (iK —p 1+1)——

Further simplification is achieved by using the identities
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(
—1)'r(ii~ —p+1)

( —v), r(v+1 —I)=( —1)'v!, r(lK P I+1)=
(p —i ir )i

Combining the resulting expression for (A7) with (A4), we obtain

J,(«}=2Re
v+ 2P v!r( 1+2iK)r( 2l K)S(v, K)

r( ,' -i—« y—)r( ,'+-i«+y)r(1+i« P—)r(P i—~)
(A9)

with

S(v, K)= g, [g(P+i«+I) f(v—+ 1 —I)+g(iz P—I—+ 1)]lr(P+ I«+ I) I'
I!(1+2P)i

(A10}

Equation (A9) may be simplified using the relations

1 (1+2i«)I ( 2i«—)= le
sinh 2m+

I (1+i' p)l (—p i«)=—

r( ,'+y+-l K)r( y —I&)=
sinn —,

' +y + I«

(Al 1)

I

between the two functions E and 6, defined by

m!I (k —m)Fz=
r(m +z+1)r(k —m —z)

X
I (j +z}I'(j +k —2m —1 —z}

j!r(k+j —2m)

1G(z)=-
z (z + 1+2m —k)

(82)

In the last of these relations, we may use (2.5) to rewrite

sinn( —,'+ y+ i«) = (
—1) +'sinn(P+ I«) .

Equation (A9) is then reduced to

(A12)

J,(«)=2
v+ P v!( —1)'csin~(P+i«)i

ImS(v, ~) .
V m sinh2~v

g(z) —1!t( 1 —z) = ncot~z, —.

which implies

Im[g(P+i «+ I) f(v+ 1 I)+—f(i « —P I + 1)]- —
sinh2n. «.

~

sinn. (p+ i«. )
~

(A14)

(A13)
The imaginary part of (A10) can be evaluated using the
relation

if k is not integer; m will be assumed to be an integer,
m &0. For real z &0 the identity was stated without
proof in (2.4} of Ref. [15]. As we wish to make use of
this identity for complex z in order to evaluate the sum in
(2.21} and are not aware of a published proof, we shall
here supply one. To this end we observe the following.

(i) For m =0 and 1, the identity is easily checked. So
we can assume m & 2 in the following.

(ii) F(z} and G(z) are both analytic functions of z ex-

cept for simple poles and satisfy

lim F(z)=0= lim G(z} .
ized oo uzi~ ~

(83)

(iii) F(z) may have simple poles (if, as we assumed, k is
not integer) at

z =zz= —p, 0&p (m (p integer),
(84)

z =z~=k —2m —1+q, 0(q (m —2 (q integer} .

independent of I.
Hence we arrive at

sinh2n~t (1+2P) "
i r(P+i «+A)~,

lsinn(p+i~)l' x=0 X!r(1+2p+~)

(iv) G(z) has simple poles at

z =z0=0,
z =zo=k —2m —1,

with residues

(85)

(A16)

Combining (A16) with (A13), inserting the result for
J («} in (A2), and using the prefactors (A3) and (2.11),we

obtain the result given in (2.21). The desired matrix ele-
ment is thereby expressed by a finite sum.

Using an identity given in [15],which we shall prove in
Appendix 8, this 6nite sum can, in fact, also be evalu-
ated, and we obtain the closed-form expression given in
(2.23).

ResG (zo }=ResG(zo }=— 1

1+2m —k
(86)

ResF(zo) =ResF(zo) =— 1

1+2m —k '

ResF (z~ ) =ResF(z }=0,

(87)

In order to prove the identity (Bl), it merely remains to
show that

APPENDIX B

Here we wish to prove the identity

F(z)=G(z}, (81)

m )p) 1, m —2~q) 1 . (8&)

The residues of I' at the poles zo and zo are easily evalu-
ated from the definition (82). Only the terms of the sum
for j =0 contribute in both cases. Equation (87) is there-
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by easily established. Let us now evaluate, for p ~ 1,
ResF (z ) = lim xF (x —p )

x~0

Similarly, we evaluate, for q ~ 1,

= lim
x~O

O

xI (x —p+ j)l (j+k —2m +p —1)
j!1(k+j—2m)

ResF(z )= lim xF(x +k —2m —I+q)=0 .
x~O

(B10)

p —1

k —2m +p —
2( I )p( I )p

By y=l
=0.

(B9)

'p —1

j+k —2m +p —2aJ, =o J!(p j)!
As the steps of the calculation are very similar to those
given in (B9), there is no need to record them here. The
identity (B1) is thereby proven for k not an integer. For
k an integer it follows by analytical continuation in k.
The sum defining F(z) in (B2) can be identified with the
sum appearing in (2.21) by identifying m =v, k =2/fi,
z =P„+itr, and j=A, .
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