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Synchronization, attractor fission, and attractor fusion in a globally coupled laser system
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A globally coupled class-8 laser array with incoherent feedback is proposed for exploring the complex
dynamics of dynamical systems with the highest connectivity. This feedback shows a fundamental
characteristic, information lag, and results in the general features of synchronization, attractor fission,
and attractor fusion processes. The common characteristics shared by different clusters in the segrega-
tion process are found. The effect of multiple different time delays on synchronization is also investigat-
ed.

PACS number(s): 42.60.Da, 42.50.Fx, 42.50.Lc, 42.60.Fc

Complex dynamics in high-dimensional nonlinear sys-
tems is a current issue of interest in various physical sys-
tems. The fundamental issue is how self-organization can
be established from the interacting elements. For a wel1-
organized biological system, e.g., the brain, connectivity
among elements is high [1]. This is our basic motivation
for studying the complex dynamics of high-connectivity
systems. The highest connectivity occurs in global cou-
pling (GC), in which every element is coupled with every
other element. Needless to say, delays are inevitable in
such a system but delay in coupled-element systems is
still an open subject.

In the meantime, recent progress in limit-cycle oscilla-
tors [2] and GC dynamical systems, such as coupled map-
ping lattices (GCM) [3], Josephson junction arrays [4],
and multimode lasers [5], have stimulated great interest
in, for example, the understanding of synchronization
and memories of huge capacity based on antiphase states
and clusters. Clusters seem to be a universal feature of
globally coupled systems. An open question is: What
characteristics are shared by diferent clusters? Also, be-
cause of high-speed processing, it is worthwhile to con-
sider the possibility of high connectivity in an all-optical
system.

In modern optics, Ikeda initiated delay-induced com-
plex phenomena and predicted period-doubling bifurca-
tion leading to chaos in a bistable one-element ring cavity
and frustrated instability in a Fabry-Perot resonator [6].
The feedback effect also results in chaos in lasers. Anoth-
er example is charotic behavior in semiconductor lasers
with coherent external feedback [7]. Instabilities and
Shil'nikov chaos have been demonstrated in a CO2 laser
with nonlinear electronic feedback [8]. On the contrary,
for a coupled-element system with multiple different time
delays an intriguing question is: Does synchronization
occur? In this article, we propose a simple scheme, a
laser with GC delayed incoherent feedback (LDIF), as a
promising candidate for answering the above two ques-
tions.

In our model, class-B laser elements are arranged to
form a GC laser array. These elements interact via a
multiport fiber or beam splitter by means of incoherent
feedback. A11-optical incoherent feedback employing po-

larization rotation [9] is also applicable to linearly polar-
ized lasers. The incoherent coupling is introduced so as
to be able to neglect the phase dynamics and coherent
feedback, and the incoherent feedback beam directly
modulates the population inversion only with delay, i.e.,
information lag. Therefore the dynamics are described by
the coupled difference-differential equations,

dnk(t)

dt
=w —nk(t) 1+sk(t)

N

+~ + (t —Tk J)N.

dsl, (t)
dt

=K [ [nk(t) —1]sk (t)+ek nk(t) ],
k =1,2, . . . ,N, (2)

where t has been rescaled with the population lifetime ~,
K—=v/~, and ~ is the photon lifetime. The terms w, nk,
sk, and ek are, respectively, the normalized pump power,
population-inversion density, photon density, and the
spontaneous-emission coefficient of the kth laser element.
y indicates the coupling strength, Tk J =(Lk i Ic)lr in
which Lk is the optical path of feedback from elements j
to k, c is the velocity of light, and N is the total number
of laser elements in the array [10].

First, let us assume the simplest case, Tk - = T for all k
and j. The steady states itk and sk of Eqs. (1) and (2) are
determined by

w —1k=1, sk=
1+y

(3)

assuming etc «1 (e„=e for all k). There are other
steady states with one or several sk =0, which are unsta-
ble. The linear stability analysis (LSA) is performed by
assuming x =x+5x and 5x =5xe ' (x =nk or sk) in Eqs.
(1) and (2) with (3). The characteristic equation follows

g2+ g+ E(W 1) i2lm/N A.T+ K(W . ) 0 (4)—
1+7 ' 1+@
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FIG. 1. Stability diagram where stability boundaries are for
the quotes "—"line, T =0.03, K = 1000; "—~—"line,
T =0.05, E = 1000; and "—OO—"line, T =0.03, K =800. In
the unstable regime, a typical attractor fission and fusion pro-
cess is shown with y=0.21, a=1.2X10, where S is the syn-
chronized state, 2 is the two-cluster state, 3 is the three-cluster
state. The numbers in parentheses are the probabilities of two
different elements being within the same cluster.

where I =0, 1,2, ...,N —1. Similar to Ref. [11],the linear
stability is determined by 1=0 only as that of the (0,0)
mode of Ref. [11]. With an increase in w, the system can
show a self-sustained relaxation oscillation coRo via Hopf
bifurcation at w =w,„2. We solve [12] Eq. (4) with 1 =0
to determine the stable regime, Re(A, ) (0 for all!(,. As
shown in Fig. 1, there are two thresholds, the m,„2 of the
lower branch and the w, h 3 of the upper branch. For
l8 & w fh 2 or w & w, h 3 only damping oscillation can be
found. Unstable motion arises when w, h 2 &w &wth 3,
which has been numerically confirmed. This stability di-
agram is universally valid and independent of N.

Let us consider the dynamics in unstable regimes,
which depend on the system size N. The state change for
N =5 is depicted in Fig. 1 for T =0.03 and y =0.21. A
series of output wave forms and corresponding phase-
space trajectories (nk, sk) for different w in an unstable re-
gime are shown in Fig. 2. As soon as u exceeds m, h 2, the
damping oscillation is replaced by a self-sustained oscilla-
tion whose frequency coincides with the analytical re-
sults. This self-pulsation is induced by delay. Because of
the feedback loop, the damping oscillation is continuous-
ly memorized and fed back to the system. This acts as a
successive-pulse modulation on the system. If the delay
is not too long, then the laser will be driven by this modu-
lation to produce a modulated output. This output is
again fed back to the system and the return beam per-
turbs the population inversion further. If such a
positive-feedback modulation balances with the damping
force of the relaxation oscillation, the system evolves it-
self to a state of sustained relaxation oscillation, as shown
in Fig. 2(a) and 2(a'). When w is increased, quasiperiodic
relaxation oscillations appear through increased pertur-
bation around coR&. This is the physical mechanism of
self-pulsation in this system, which is totally different
from those of Refs. [6—8]. When y is increased, the
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FIG. 2. Time series (a)-(d) and (nk, sk) projection of phase
space (a')-(d') for different m assuming y=0.21, T=0.03,
K=1000, a=1.2X10 . (a) and (a'), w =1.3; (b) and (b'),
w =2.7; (c) and (c'), w =2.9; and (d) and (d'), w =4.0.

modulation depth will be increased due to the increase in
feedback light intensity. This results in a lower w, h 2 for
a larger y, as shown in Fig. 1. Also, larger E andT result
in lower w, h 2.

The self-sustained oscillations near the boundary w, h 2
are synchronized as shown in Fig. 2(a). Many random in-
itial values were used to test the synchronization and it
was found that this synchronization state corresponds to
the creation of a single attractor in the phase space. Let
us provide a physical interpretation for synchronization.
Suppose there are small inhomogeneous (k-dependent)
deviations from hk and sk. From Eq. (1) the site depen-
dence of nk is negligible if the feedback photon number
(y/N)g~+=, s~ is small. Therefore, all nk are perturbed in
the same fashion by this number, i.e., GC, and all sk are
synchronized through Eq. (2). [See Figs. 2(a) and 2(b).]
When N is increased, feedback intensity (y /N)g+ &s~ in-
creases and the perturbation becomes strong, exceeding
the LSA regime. At this moment, the initial small inho-
mogeneity in nk is enlarged by the strong perturbation
based on Eq. (1). As a consequence, the population dy-
namics become site dependent and synchronization fails.
We also simulated the case of unequal pumping. Even in
this case, if the coupling strength is larger than the
pumping fluctuation or one-site nonlinearity, the system
exhibits synchronization or quasisynchronization.

As soon as synchronization disappears, segregation of
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motion takes place among laser elements as shown in
Figs. 2(c) and 2(d). Attractor Pssion, which means the
self-induced breakup of a global attractor (synchronized
motion), is used to describe this process. A similar
phenomenon has been referred to as cluster forming in
GCM [2]. Avoiding excessive complexity, we investigate
the segregation process in our system with N =5. It is
found that as w increases, the elements separate one by
one from the synchronization state and form clusters
(segregation). Because of linear feedback, increasing uI

means increasing only the depth of modulation as men-
tioned before. This drives the system to a quasiperiodic
or even chaotic orbit. It is found in the present parame-
ter regime that before the onset of the segregation pro-
cess, a quasiperiodic orbit is created in the synchroniza-
tion state [see Fig. 2(b)]. Then one of the elements (e.g.,
k =5} separates from this synchronized state, as shown in
Fig. 2(c).

The frequency components embedded in the quasi-
periodic orbit are expected to provide the key to under-
standing segregation. Therefore, we carried out a
power-spectrum (PS) analysis. The PS's which corre-
spond to Fig. 2 are shown in Fig. 3. In the transition pro-
cess from synchronized quasiperiodic motion [Fig. 2(b)]
to the segregated state [Fig. 2(c)], the k =1,2, 4, 3 ele-
ments follow the nature of Fig. 2(b) with an enhanced
quasiperiodicity. To be more specific, the k =1,2, 3,4
elements are synchronized at uI =27.5 (two-cluster state),
while the k =3 element becomes slightly different at
w =27.9, although their spectra are almost the same.
During this process, the k =5 element is segregated. Its
dynamics are determined so as to satisfy the constraint
condition of (QJ Isj. )I,„s„,,„„,s, =N(Io —1)l(1+y),
and the system forms a three-cluster state at w =2.9. It
is noticed that inhomogeneity of (s„)„„s„,,„„,s,

among the clusters occurs. We note that the ratio of the
dominant frequencies of k =5 and the other clusters
maintain f, lf, =

—,
' and such a locking state among clus-

ters exists in a wide w region up to w =3.5. Unlike GCM
[3] there coexist at least N!/N, !N2!.. N.k! orbits in such a
k-cluster state, where Xk is the element number in the
kth cluster. Increasing w results in larger modulation
depth and enhances the GC strength; thus the system
tends to be locked at the least common frequency com-
ponents above coRo of all clusters and therefore the sys-
tem evolves to a three-cluster state with the same funda-
mental frequency f3, as shown in Figs. 2(d) and 3(d) and
3(d').

As w increases further, the inverse process takes place.
This process, attractor fusion, corresponds to the
unification of all the coexisting attractors, and it leads to
a stable state above wth 3 A higher pumping drives the
system to a stable state as shown in Fig. 1. We noted that
the self-pulsation found in the present system is a type of
self-sustained oscillation, and it originates from the relax-
ation oscillation and successive-feedback modulation.
LSA indicates that higher pumping results in a higher
damping rate. If the damping force is strong enough,
feedback-induced modulation is damped out, and no sus-
tained oscillation can be established. In the case of large
T, its characteristic information lag is essential and re-
sults in the blackout of memory of past system evolution.

Next let us consider the effects of multiple diferent
time delays, which are expected in real systems, on
synchronization. Because of different delays, feedback
beams trigger each element differently. The underlying
self-organization mechanisms are quite intricate. We ap-
proach this issue by extensive numerical simulation [13].
For comparison, we first simulate the case of Tk = TI,
for all j. In Fig. 4 the average of different randomly
chosen time delays versus the standard deviation is
shown for w =2 of N =7. Hundreds of data are plotted;
the square, star, and triangle symbols mean the cluster
state, synchronization, and steady state, respectively.
The data can be roughly classified into five regimes. In
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FIG. 3. Corresponding fast-Fourier-transform (FFT) spectra
for Fig. (2). (c') and (d') k =5.

FIG. 4. The average of randomly chosen time delays vs the
standard deviation for ur =2 of X=7, where y=0.21, k =1000,
and @=1.2X 10 . The symbols square, star, and triangle mean

the cluster state, synchronization state, and steady state, respec-

tively.
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regime A, only the steady state appears. It is found that
in regime 8, the system has a great probability of achiev-
ing synchronization, which results from an adequate
firing on time among the feedback beams in the case of
small decays. Synchronization and clustering are mixed
with almost equal probabilities in regime C. Regime D is
mostly occupied by cluster states. In regime E only the
steady state appears. The existence of regimes A and E
indicates the process of attractor fission and fusion and
shows again the fundamental characteristic of incoherent
feedback. For the case of arbitrary Tk, wave forms are
very complicated. It is surprising to note that synchroni-
zation is replaced by a frequency locking among elements
with a fixed phase difference of the order of (0.01 sec)/r
in the case of small average delay. Again the process of
attractor fission and fusion resulting from incoherent
feedback is found.

In summary, a simple scheme for exploring the dynam-
ical systems of high connectivity is proposed. In the GC
case, the clustering process is triggered by the appearance
of a quasiperiodic orbit in which new frequency com-
ponents are embedded. This attractor fission is estab-
lished by delay, which acts fundamentally as information
lag. This simple characteristic is very general, and it is
also the origin of the attractor-fusion process. A
dominant-frequency locking among different clusters is
found; this is a common characteristic shared by different
clusters in the segregation process. Synchronization with
multiple different time delays is found numerically. More
analytical approaches are needed, e.g., to determine the
boundaries of the different regimes in Fig. 4. %'e hope
that this work will stimulate investigation on the effects
induced by multiple time delays in coupled-element sys-
tems.
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