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The Green's-function method is used to study the properties of the spectrum of a three-level system
driven by two resonant monochromatic fields. In the case of strong fields, we find that the correlation
between two transitions is too small to consider. The Green's functions describing the two transitions
consist of five Lorentzian lines rather than seven lines; furthermore, the positions at which sidebands are
peaked depend on both Rabi frequencies, and only when two Rabi frequencies reach certain values can
five Lorentzian lines appear. The heights of the sidebands become larger with increasing Rabi frequen-
cies. The decay rates also affect the spectrum strongly.

PACS number(s): 32.80.—t, 32.50.+d, 42.50.—p

I. INTRODUCTION

In the past ten years, the quantum jumps in a three-
level system have drawn considerable attention. There
have been a number of discussions in the literature con-
cerning the possibility of observing quantum jumps in
atomic systems [1—5]. The systems currently under dis-
cussion involve the double-resonance scheme illustrated
in Fig. 1.

In the V system, two excited states
~
2 ) and

~
3 ) are

connected to a common lower level ~1) via a strong and
weak transition, respectively. Fluorescence photons from
the strong transition are observed. However, an excita-
tion of the weak transition where the electron is tem-
porarily stuck in the metastable level ~2) will cause the
strong transition to be turned off. It is, therefore, possi-
ble to monitor the quantum jumps of the weak transition
via the microscopic signal provided by the fluorescence of
the strong transition. In the language of quantum mea-
surement theory [6], the fluorescence from the strong
transition acts as a pointer from which the microscopic
quantum state of the atom may be determined. A similar
effect may be observed for an atom in the A and I.
configurations shown in Figs. 1{b)and 1{c).

Since the weak-transition linewidth may be exception-
ally narrow, the effect just described is of great interest,
and has a wide application in both experiment and theory
[7].

In this paper, we concentrate on the resonance fluores-
cence spectrum and its related behaviors. A more accu-
rate calculation is made using Green's functions. Some
results are then obtained to compare with the conclusion
drawn by the former authors. In Sec. II, the Hamiltoni-
an for V system is considered and discussed; this Hamil-
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FIG. 1. Schematic diagrams of three-level systems driven by

two laser fields. (a) V system. (b) A system. (c) L system.
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tonian is then used to derive the double-time Green's
functions which describe two transitions 1 ~2 and 1~3.
In Sec. III, according to the conclusion in Sec. II, A and
L systems will be investigated. We calculate all numeri-
cal results in Sec. IV. In Sec. V, some concluding re-
marks are given.

G ",2 (a) ) = « R,2, R 2, »,
G"„(~)=&&R„,R„&& .

(7)

(8)

G12(co) and G;3(co) describe the transition 1~2 and
1~3, respectively.

Using Eqs. (2)—(4) and (7), we derive the following
equations of motion:

(co co1
——

—,
' y1)G12(co)= & 2R '12 &

—2ig1 « R 12b1,R21 »

II. FORMULATION FOR V SYSTEM

We consider resonance fluorescence from a three-level
system in a V configuration as shown in Fig. 1(a) where
the energy levels for the ground state and the two excited
states are denoted by ~1&, ~2&, and ~3& and the corre-
sponding energies by Q&, Qz and Q&, respectively, with

Q] 4 Qp (Q3 The atom is resonantly driven by two laser
fields whose energy modes co& and co& are initially popu-
lated and the electromagnetic field, these being initially
unpopulated. The we write the Hamiltonian for such a
system as [8,9]

where

(9)

+1g1« R23b1, R21 »

+
2 y12G 12 (~} (10)

g; (k) g1(k)g2(k)

+ ig2 « R 32 2 ~ R 21 &&

+-,'y„«R„,R„»,
~2 2 y2)«R13&R21 » 21g2«R 13b2~R21 &&

H =Ho+H„+H;„,
3

Ho= g Q;R;;+co1b1b1+m2b2b2

+ig1(b1R 12
—b, R 21 }+ig2(b 2R13 —b 2R 31 ),

H„= gckPk2Pk2
k, A,

H;„= pig, (k)(R 12P1,2
—Pk2R2, )

k, A,

+ gig2(k)(R12PJ2. —Pk2R
k, A,

(2)

(3)

(4)

where the projective operators R =~m &&n~ obey the
usual commutation relations

[Rmn ~Rpq ] =Rmq&np Rpn&qm

and the closure property

(5)

R ))+Rq~+R ~~
=1 (6)

while b„bz, and b„bz are the photon creation and an-
nihilation operators for the pump fields and satisfy Bose
statistics. The photon creation and annihilation opera-
tors pkz and pkz describe the frequency modes of the elec-
tromagnetic field with wave vector k, frequency ck, and
transverse polarization A, (1,2). Units with A'=1 are used
throughout.

The terms in Eq. (2} describe the free atomic and pump
fields and the resonant interactions between them. Equa-
tions (3) and (4) represent the free electromagnetic field
and its interaction with the electronic states 1, 2, and, 3
respectively. The driven fields are assumed to be strong
while the photon field may be taken as the weakest of the
three. Thus in our calculation, the high-order terms of
Green's functions relevant to the photon field will be ig-
nored.

We shall make use of the Fourier transform of the re-
tarded double-time Green's function defined by [9]

R'„=,'(/m &&m /

—
/n &&n /) . (12)

Equations (9) and (10) tell us that the transition 1~3 can
take effect on transition 1~2 by the coupling coefficient

~12'
Although we have assumed that the transition 2~3 is

forbidden, the function y, 2 gives the indirect coupling be-
tween the states 2 and 3 through the ground level 1. In
fact, this coupling effect is so little that it can be ignored
without influence on the results. If the separation be-
tween levels 2 and 3 is large, i.e., ~co,

—co2)/y, ~
&&1, by cal-

culating the numerical results, we can prove that y, z has
no effects on the spectrum. In order to obtain the expres-
sion for G",2(co), we need to derive all of the equations of
motion, which consists of 14 equations. These equations
form a closed set of equations for G;2(co). Of all of the
equations, seven equations express the contribution from
the transition 1~3. We shall not write out all of the
equations of motion in order to make the paper terse and
only give the numerical results for the case in which all
equations are considered. If we neglect the terms which
contain y, z, then the equations may be simplified greatly,
in this case, we get

A~
(co—co, ——,'y, )G",2(co)= &2R', 2 & 1+

2
(13)

Q~~/4+
(co—co, —0.5y, )(co—co, —0.5y2)

—,
'
y2+ (Q22/2)/(co —

co1
—0.50y2)

A)=
co —co, —y2

—Q22/(co —co, —0.5y2)

(14)

(15)

Q» =2g, Qn, and Q22 =2g2 Q n 2 are Rabi frequen-

where

(1+0.5A, }Q„/2
A~=

[co—~, —y, (1+0.5A, )](co ru, 0 5y, )—. —
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cies, n, =(b,b, ) and n2=(b2b2) are mean photons for
two pump fields, respectively.

In the derivation process of equations of motion, we
have made use of the decoupling approximation such as

« R ]3b 2b2b] ~R 2] && 2n2 && R 13b] &R 2] &&

The Green's function G,2(co) given by Eq. (13) describes
the spectrum of the transition 1~2 with frequency co1.

From Eq. (13) we find that there are one central peak at
co=co1 and two pairs of sidebands with the frequencies
near co1+011 and N1+22

The effect of interference between two pump fields is
included in the frequency shifts, so that the two side-
bands do not peak at the frequencies co,+0» and ~,+022
exactly. It should be noted that the system considered
here has no seven Lorentzian lines as mentioned by [10].
The results will be discussed in detail in Secs. III and IV.

By using the same method of deriving G",2(co), we get
the following expression for G",3(co):

+ lg 2 ( k )(R 23Pkkt Pkk—R 32 )

+]g3(k)(P3pkk pkkR
—

3 )]+ gckpkkpkk,
k, k

(23)

A
l

co

R13

R,2

R12

0

co =0 —0 co =0 —0A A
1 3 17 2 3 27

in (41) is given as follows [10,11]:
3

80 = g Q(R]] 1 +co]b ]b] +co2b2b2
i=1

+ig](b,k] b—]A 1 )+ig2(b2R 23+ b2R 32 )1,
(22)

X[ig](k)(~]Pkk PkA1 )

(2R;, &

G",3(co)= a —
CO2

—0.5@2

B21+
1 —2B2

(1+0.581)Q22/2

[co—
co2 —y2(1+0.58] )](co—

co2
—0.5y2)

(17) C01 n2 01 602 03 02

The physical meaning of each term in Eqs. (22) and (23) is
similar to that in Eq. (1). We define the Fourier trans-
form of the retarded Green's function as

Q]] /4
+

(co—
co2 —0.5y2)(co —

co2
—0.5y])

(18)
G ", ( co ) = ((R , , R , )), G ( co ) = ((R ,R , )) ,

G]2(~) && R]2 R21 ))& G23(~)

(24)

(25)

—,'y, +(Q]]/2)/(co —
co2

—0.5y, )

co co2 —y, ——Q] ] /(co —co2 —0.5y])
(19)

The Green's function G»(co) described by Eq. (17)
represents the transition 1~3. The spectrum structure is
the same as that described by G,2(co).

As a special case, placing Q22=0 in Eq. (13) or Q„=O
in Eq. (17), we can get the results which are identical to
that of Ref. [9] and describe the excitation spectrum of a
two-level atom driven by a strong pump field. Expres-
sions (13) and (17) for the Green's functions G",2(co) and
G",3(co) will be used to calculate numerically the excita-
tion spectrum of the system under consideration.

III. A AND L SYSTEMS

As shown in Fig. 1(b), A and I. systems are different
from the V system. For example, the A system has a
common high level, and the decay rate y3 does not van-

ish, which is added phenomenologically to obtain the
nonvanishing steady-state resonance spectrum. We can,
for the simplification, write the Hamiltonian for A and L
systems together as follows:

8=8,+8,„, (20)

HA
0

0

HA
1—

ir

(21)

where the upper indices A and L refer to A and L sys-
tems, respectively. The detailed expression of each term

Let us, at first, discuss the L system. Making use of the
same procedure and same decoupling approximation as
we did previously, we get all equations of motion for
G]2(co) as follows:

(co co] —0.—5y])G]2(co)= (2R 12 ) —2ig](( R 12b],R 21 ))

+]g2 « R ]3b2lR2] »

(co co, —y—, )((R ]2b],R2] )) =]g] ((R,2b, b„R2, ))

—0.5g2((R23b2b„R2, &)

(26)

—o 5r2«R23b]

(27)

X1+r2
CO F01

2
((R23b2b„R21))

2ig, n, (—(R,3b2, R2, )) 4ig2n2«R23—b, ,R2, )),
(29)

(& &] y2)((R 23b],R 2, )) = —0.5]g] ((R,2b, b„R2, ))

ig2((R 23b2b] &R2] »
—o 5r]«R 12bl R21 »

(30)

(co co, —0.5y2—)((R]3b2R2, )) =]g] ((R23b2b„R21))

]g2 « R 12b 2 b2&R 21 »

(28)
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+2igzn ]«R „bt,R„)&,
(co co—i

—0.5Y, )((R,zbzbz, Rzi ))

(31)

=(2R]z)nz —4ig]nz((R izb„Rz, »

+2igznz((R]zbz, Rz] )) . (32)

In deriving the equations the indirect coupling function

y, 2 has been neglected due to the same reasons as stated
previously.

It is easy to find that Eqs. (26) and (31) are the same as

(co —coi —0.5yi }((Rizb ib],Rzi ))

=(2R iz)n] —4]g]n]((R]zb],Rz] »,

Eqs. (28b} and (31}in Ref. [10],but the rest of the equa-
tions are different. This is because a rough approxima-
tion was used to calculate the equations of motion for
((R izb], Rz, », ((R]3bz,Rz, )), and ((Rz3bzb], Rz, » in
that literature, furthermore, many terms were ignored in
simplifying the Green's function to obtain the spectrum
expression. As a result, the conclusion that seven
Lorentzian lines appear in this case may not be the truth.
If we neglect the last terms in Eqs. (27) and (29), the same
result in Ref. [10]will be obtained. It is clear that our re-
sults are more exact than that of reference [10].

Thus in the case of double resonance, the three-level
system only has five Lorentzian lines. We will give the
detailed results in next section.

Solving Eqs. (26)—(32), we get

&2R;, ) f6
G iz(co) = 1+

co —
co]

—0.5y, 1 —2fs

zQiif4+ 4Qzzf5

f3(co coi —0.—5y] )

—,'Qii[co —coi —yi+0. 5yif i+(1—0.5f i }yi j

[~ ~] —(r]—+rz}/2]I~ ~] yz
—Qzz—/[~ ~] o5(—r]+rz}]]+~ ~] ri+o—5rifi

(33)

(34)

(35)

—,'Qzz(1 —2f, )
f4=(1—0.5f i )fz+ 1+

co —co] —0 5(yi+yz) [co—coi —(yi+yz)/2][co —coi —yz
—Qzz/[co —coi 0 5(y—]+.yz)]]

—,'y, Q„Qzz(1 —0.5f, )

fz =(~—~]—ri+o 5yif i }fz—
[~ ~] (r]+—rz)/2]'[~ ~] rz Q—»/[—~ ~] o5(r—]+rz}jj

—,11 —0) )Qq2
fz —co co] 0.5yz

co —co] —0.5('Yi+'Yz) [co—co] —(y]+yz)/2) [co coi yz
—Q—zzl[c—o co] —0.—5(yi+yz)]j

(36)

(37)

(38)

~2
I 2+—,'Qzz/[co —co, —0.5(y, +yz)]

co —co, —yz
—Qzz/[co —coi

—0.5(y, +yz) j

In the absence of the driven field 2, that is in the case in which Qzz =0 and yz=0, Eq. (33) becomes

(39)

&R;, )
G,z(co) =

co col 0 5V1

—,'n'„
1+

(co —co, —0.5y i )(co—coi —y i ) —Qi i

&2R„&
Gz3(co) =

co c02 0.5/2

h6

1 —2
(40)

which is identical to Eq. (36) in Ref. [9].
Using the similar approximation, we obtain the expres-

sion for G z3 (co ) as follows:

h 5 =(co—coz
—yz+0. 5h iyz)

—,
'

Qqq
x 1+

(co—coz —0.5y i )ho

20z2h4+ 4Q)ih
h6=

h3(co —coz —0.5yz)
(41)

—,'yzQzz(1 —0.5h, )+'
(co —coz —0.5y, )ho

(42}
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Q]](1—0.5h, )
h4=(1 —0.5h] )h2+

co 632 0.Sy ~

—,'Q
X 1+

(co —
co2

—0.5y, )ho
(43)

—,'Q]]Q22y~(1 —0.Sh, )
h 3 =(co—

co&
—y2+0. 5y~h ] )ho

(co —co2 —0.5y]) ho

—,'y]+-,'Qi]/(co —~~ —0.5y])

0

Q))2

h p
—co cop

co c02 0.Sy ~

(46)

(47)

—,'Q
h, =co-~,-0.Sy, —

co —
m2

—0.Sy
&

—,Q),Q2 2

(co —
co2

—0.5y]) ho

(44)

(45)

The expression (40) is similar to that of G]z(co) given
by Eq. (33).

For the A system, by making use of the same pro-
cedure in Sec. It, we can obtain the expressions for its
Green's function

(2R;, )
co co) 0.5y (

C21+
1 —2C2

(48)

(2R 23 )

co —co,—0.5y,
G" ( )=

1 2+ Q22/[~ ~1 ' (3 ]+y2) l
C, =

~—~]—
y2

—Q2z/[~ —~]—o 5(y]+y2)]

D21+
1 —2D2

—,
' Q»(1+0.5C] ) /[co —co] —y](1+0.5C] ) ]+—,

] Qz2/(co —co] —0. 5y 3)
N N~ 0 Sy~

(49)

(50)

(51)

—,
' Qz2(1+0. 5D] )/[co co& y—z(1+—0.5D] ) ]+—'Q]] /(co —co2 —0.5y )D2=-

co —co2
—0.5(y, +y2)

—,'y ]+-,'Q]]/(co —F2 — y])
D =

co —
co~

—y, —(Q„/2)/(co —
co2

—0.5y, )

(52)

(53)

It is clear that Eqs. (48) and (49) also give five Lorentzi-
an lines, respectively.

IV. SPECTRUM FOR THE VSYSTEM

3
CO)

y]=y]= (54)

p 4 ~2
Imy, =y', =— (55)

With Eqs. (54) and (55), we obtain the numerical result as

First of all, we make use of the Eqs. (9) and (10) and all
equations concerning y&2 to prove that y, 2 has no effect
on the spectrum.

The expression (11) for y, has real and imaginary
parts, the real parts, which give small energy shifts aris-
ing when principal values of the integrals are taken into
account, will be neglected or they may be conveniently
incorporated into the original definitions of co; while the
imaginary parts are

shown in Fig. 2. It is easy to find that the spectrum al-
most does not change with the increase of y&2. This con-
clusion is valid by considering the relative order of mag-
nitude for each term as follows:

The second and third terms in the right-hand side of
Eq. (9) will be proportional to Q„and Q22, respectively,
while y &2 only gives yp, normally we have
Q] ] /yo & 1 Qp2/yo & 1. In fact, the Green's functions
contain the factors (Q»/y, ) or (Q22/y, ) . Meanwhile,
the transition 1~3 peaks at co2, usually ~co2

—co] &&yo],
denote, accordingly ( ~co2

—co] ~
/yo)(Q»/yo)2 && 1.

the terms including y&2 have so little contribution to the
spectrum that they can be ignored.

Now we may use Eqs. (13)—(15) and Eqs. (17)—(19) to
compute the spectrum for the V system. The results are
shown in Figs. 3(a) and 3(b). They describe the spectrum
for 1~2 and 1~3 transitions, respectively. It is clear
that each figure consists of five Lorentzian lines rather
than seven Lorentzian lines. It seems that, according to
stark effect, two pump fields should produce seven lines,
however, since the pump field 1 is resonantly coupling
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FIG. 2. Plot of resonance fluorescence spectrum for transi-
tion 1~2 in the V system with the changes of y»
0) 1 /y) =022/yl = 10.0 (co2 —a)1)/y 1

= 10.0.

with the transition 1~2, the second field does not. The
action of interference between two fields only affects the
frequency shifts of the sidebands, and the second pump
field cannot break the sidebands into two peaks. Figure
3(a) clearly illustrates this feature. Both the pair of inner
sidebands and the pair of outer sidebands, with the in-
crease of the Qz2, which express the strength of the pump
field, change the positions at which the lines peak.
Furthermore it is not until 022 reaches certain value can
all five Lorentzian lines appear, i.e., only when the second
pump field is strong enough, could it excite the inner

sidebands. We show this conclusion in Figs. 4(a) and
4(b). (a) is the critical values in which 0» and Qz2 are
satisfied when all five Lorentzian lines appear. It should
be noted that the relation between 0» and 022 is non-
linear, Qz2 increases in steplike shape when 0» changes.
The height of each step is about equal to 0.5»—half
spectral width. It is an interesting phenomenon. Our
physical explanation is that the strength of the second
pump field breaking the central peak is quantized; when
the spectrum was first separated by the first driven field,
the newly formed spectra would have been of a certain
stability. The stronger the first field, the more diScult
the second field separates the spectra.

When placing y, =y2, the spectral structure for transi-
tion 1~3 is similar to that for transition 1~2. It is
necessary that we consider the effect of yz on the spec-
trum. Figures 5(a) and 5(b) tell us that yz has not re-
markable influence on the central peak and the outer
sidebands, but affects the inner sidebands strongly. When

yz decreases, the heights of the inner peaks become larger
and the linewidth becomes narrower. These results state
that the yz and 022 play the leading role in producing the
inner peaks in transition 1~2. From Fig. 5(b) we see
that the central peak grows higher and becomes narrower
with the decrease of yz, while the sidebands have no
changes. This preciously fine spectral line can provide an
important measuring method.

It is clear that there are some differences between the
results in Ref. [11]and ours. They stated that the areas

5.0

2.0.

I 1.0.
Q N

0.0,

0
4.0.

a"

2.0
$0

9 /y

B.O

2.0.

Q
1.0.

0

0.0,

0
~+
C&

Cl

6.0.

4.0.

2.0
10 20 30

0 /y

FIG. 3. Resonance fluorescence spectrum plots for the V sys-
tern. (a) Transition 1~2, 0»/y, =10.0, y2/y, =1.0. {b) Tran-
sition 1 3, 0»/y, =10.0, y2/y& =1.0.

FIG. 4. Critical Rabi frequency plots for the appearance of
five Lorentzian lines. y2 jyl =1.0. (a) Transition 1~2. (b)
Transition 1~3.
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the shape of the spectrum. It is impossible that only one
factor decides the behavior of the spectrum. Figures 3(a),
3(b), 5(a), and 5(b) in our paper show clearly this fact.

The failure in Ref. [11] is due to the approximation of
treating (3.4a) —(3.7b) in which the authors take the as-
sumption that there is no correlation between the initial
field operators and the atomic operators. In fact, the half
Rabi frequency (the interaction energy in Ref. [11])
should be defined as

G.'=~g. ~'&C'. (0)C.((0)), G,'=Ig„"&C,'(0)C,(0)) .

2.0.

s 1.0.
a

0.0,
4

Their definition resulted in the loss of some important
correlating terms between two modes. That is, some
second-order terms were neglected, while in our calcula-
tion, only those terms more than third-order were ig-
nored; therefore, there are some differences between their
results and ours.

Direct calculation shows that the A system and the L
system also contain five components which are symmetric
about the spectral center at the corresponding laser fre-
quencies when the external laser fields are resonant and
monochromatic. This is identical to Ref. [11], and the
similar behaviors described previously in this paper are
found in these two systems, too. Thus it is unnecessary
to go into detail here. However, if we had used the same
approximation in Ref. [10], we could also get the result
that there are seven Lorentzian lines appearing. It proves
that our conclusion is more precise.

FIG. 5. The effect of y2 on the resonance fluorescence spec-
trurn. (a) Transition 1~2. Ql]/yl =10 0. 022/yl =8.0. (b)
Transition 1~3,0„/y', = 10.0, 0,&2/y', =8.0.

of the peaks in the lower-transition spectrum are in the
ratio

I
&„I'/&:

I
&„I':

I
fl „I':

I
&221': & t t I'&& .

And for the upper transition the areas under the peaks
are in the ratio

y 2~2:y ]:yp:y ]:y2/2

On the other hand, the ratios in the lower transition
depend only on the Rabi frequencies, while in the upper
transition the ratios depend only upon the decay rates.
We consider that these results may not be the truth. One
can see that the decay rates determine the width of the

spectrum and the Rabi frequencies affect the heights of
the sidebands on both transitions, thus the decay rates
and the Rabi frequencies play the same leading roles in

V. SUMMARY

In this paper we have derived the Green's functions for
three configurations. Under the assumption that the two
driven fields are strongly resonant with the three-level
atom, each system includes five Lorentzian lines which
are symmetric about the central peak. If one of the fields
is much weaker, the spectra only exhibit three peaks,
which is characteristic of a strongly driven two-level
atom. The critical Rabi frequencies satisfy an interesting
relation. When the decay rate y2 is much smaller than

y&, a very narrow spectral line can be produced. The
Rabi frequency and y2 play an important role in the spec-
trum.
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