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We consider here the problem of quantum noise in light produced by an optical parametric oscillator
operating below threshold inside a single-sided cavity. By employing the correct boundary conditions on
quantum fields at the output mirror, a procedure that is valid for arbitrary mirror transmission, we
derive exact expressions for quantum-noise reduction for arbitrary pump phase and output-mirror cou-
pling. We find that for a given output-mirror power reflectance R, squeezing of quantum noise in the in-
tracavity field increases to a final fractional value equal to R /(1+R) as the pump intensity is increased
and the oscillation threshold is approached. The output field, on the other hand, exhibits perfect squeez-
ing of noise in one quadrature of its central Fourier component at threshold regardless of the output-
mirror coupling. The present approach, which is based on boundary conditions, is quite general and
applicable to any matter-field interaction problem inside a cavity.

PACS number(s): 42.50.Lc, 42.50.Dv, 42.65.Ky

I. INTRODUCTION

During the past decade, the usefulness of a degenerate
parametric oscillator in producing squeezed states [1] has
been demonstrated. However, Milburn and Walls [2]
showed that the maximum intracavity squeezing obtained
from such an oscillator is 50%, not nearly enough to offer
any great advantage in the proposed uses of squeezed
light. Consequently, the role of the degenerate paramet-
ric oscillator as a useful squeezing device would have
been deemed minimal were it not for the work of Yurke
[3], who discovered that the squeezing in the output field
is not the same as the squeezing of the intracavity field.
Indeed, the noise reduction outside the cavity may actu-
ally be much larger than that inside the cavity. This has
led to further studies by Collett, Gardiner, and Savage
[4], and also by Carmichael [5], who discussed the con-
nection between intracavity quantum fluctuations and the
measured squeezing at an outside detector. More recent-
ly, one of the authors and co-workers [6] have considered
the relationship between single-quasimode squeezing of
the intracavity field and spectral squeezing of the input
and output fields in a manner that emphasizes the physi-
cal nature of the relationship.

Although the formalism used in that work is fairly gen-
eral in scope, the authors nevertheless applied it only to
cavities with nearly perfectly reflecting output mirrors,
thereby minimizing the coupling of the cavity to the out-
side. Gardiner and Savage [4] also started out with a
general formalism, but then quickly specialized to the
case of a nearly perfect cavity when computing the expli-
cit expressions for squeezing. The present work seeks to
offer further insight into the subject of squeezing by ex-
amining its dependence on the output-mirror transmis-
sion. The output mirror acts as a boundary between in-
tracavity and extracavity fields. As mentioned before, in
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the good-cavity limit, there can exist a great variation in
the degree of squeezing on either side of this boundary.
However, this inside-outside dichotomy must diminish
—and indeed disappear—as the mirror transmission
rises to unity. In this limit, the mirror effectively disap-
pears. A proper treatment of this inside-outside connec-
tion problem in cavities with arbitrary output coupling is
the subject of the present paper, in which for definiteness
we have treated the case of a degenerate parametric oscil-
lator below threshold.

The problem dealt with here is not merely an intellec-
tual exercise for an important class of devices, the semi-
conductor diode lasers [7], for which the output coupling
can be quite large. One can imagine the production of
squeezing by doping the diode with a nonlinear material.

It is also worth emphasizing that the approach of
boundary conditions employed in this paper is perfectly
general and applicable to any matter-field interaction in-
side a cavity. In fact, this approach has already been
used by one of us to address the intrinsic linewidth of a
laser [8] for arbitrary output-mirror transmission both
above and below threshold.

Of pivotal importance to cavity quantum optics is the
concept of quasimodes [9]. If there is indeed to be any
output from a cavity, the finite transmittivity of the out-
put mirror results in the quasimodes acquiring a finite
linewidth. For high-Q cavities, this linewidth may be
quite small compared to the frequency separation of suc-
cessive quasimodes, allowing one to consider a quasimode
as a single mode with a finite linewidth. However, as it is
our goal to consider arbitrary mirror transmissions, this
single-mode treatment is not sufficient since the linewidth
of each quasimode is no longer negligible when the mir-
ror transmittivity becomes large. An effort to quantize
the intracavity field independently of the outside field as
is commonly done for a good cavity is entirely incorrect
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in this same limit for which the distinction between the
two fields is completely obliterated.

An approach to cavity quantum optics that adequately
corrects these shortcomings was first considered by Lang,
Scully, and Lamb [10,11] and later by Ujihara [12]. Here
the leaky cavity under consideration is enclosed within a
larger cavity having perfectly reflecting walls. We shall
henceforth call this larger cavity the ‘‘universe,” its
length eventually taken to approach infinity. In this way,
the modes of the larger cavity (modes of the universe) can
be properly and rigorously defined and the various fields
inside and outside the leaky cavity can be considered as
superpositions of these universe modes. In Refs. [10] and
[11], the output mirror of the leaky cavity was represent-
ed by a §-function dielectric bump. Subsequent work in
Ref. [6] replaced the dielectric bump by a true mirror.

This paper shall proceed as follows. Section II will in-
clude a review of the modes of the universe following the
notation of Ref. [6] closely. In Sec. III, the nonlinear
parametric medium will be added to the previously emp-
ty cavity and the Hamiltonian and equation of motion for
the universe mode operators will be derived. The fields
will be separated into their right- and left-traveling pieces
and their respective equations of motion will be found.
In Sec. IV, we shall employ the boundary conditions to
transform these equations to single-round-trip difference
equations in order to reveal the effect of a single round
trip through the cavity. Variances will then be calculated
and the intracavity squeezing determined. In Sec. V, we
shall look at the spectral squeezing of the output field.
The conclusions and outlook of this work will be present-
ed in Sec. VL.

II. REVIEW OF THE UNIVERSE MODES

Our one-dimensional universe is represented by a large,
empty cavity enclosed between two perfectly reflecting
mirrors at positions z=—L and /, as shown in Fig. 1.
Located at z =0 is a mirror of finite transmittivity. The
leaky, physical, single-output-end cavity is between the
mirrors at z=0 and /, while the perfect mirror at z=—L
is merely a mathematical construct that must be taken
away by setting L = o before any physically meaningful
statements can be made. For fields normally incident
from the left, the output mirror at z=0 is described by
real amplitude reflection and transmission coefficients 7
and 7=(1—72)!/2, For fields normally incident from the
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FIG. 1. Leaky cavity bounded by a perfectly reflecting mir-
ror at z =/ and a partially transmitting mirror at z=0. The
auxiliary cavity that along with the leaky cavity constitutes the
universe is bounded by a perfectly reflecting mirror at z=—L
(L — ) and the mirror at z =0.
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right, these become —Fand 7.

Let U, (z) represent the electric-field amplitude at the
frequency Q; =ck. The boundary conditions at the per-
fect mirrors at z=—L and /, namely that the fields must
identically vanish there, dictate the following form for
U k (Z ):

&xsin[k(z+L)] for z<O0

Ui(2)= lesin[k(z-—l)] for z>0. @1

In addition, the boundary conditions at the leaky mirror
at z=0 imply a discrete set of allowed values of k,
separated one from the next by Ak =m/L in the limit
L >>1. They also determine the ratio of M; and ;. By
letting &, alternate between 1 and —1 as k increases, we
may show that [6]

172

P , p=—"0, 2.2)

p2cos®kl +sin’kl

M, =

which is a periodically peaked function of k. In the
good-cavity limit #— 1, the behavior of M? around each
peak may be approximated by the usual Lorentzian form
with half-width at full maximum (1—7)/21.

Different modes {U,} are orthogonal and therefore
rigorously independent. We may therefore quantize the
electric field of radiation in terms of these modes of the
universe:

E(z,t)=E"™"z,t)+E " Xz,t)
172
a,(t)U,(z)+H.c. ,

(2.3)

k
% | €AL

where @, are the universe mode annihilation operators
defining the positive frequency part E*)(z,t) of the field
in the Heisenberg picture and A4 is the cross-sectional
area of the cavity. We can identify intracavity and extra-
cavity fields by considering the regions z >0 and z <0, re-
spectively. Inside the leaky cavity of interest, z >0, it is
the periodically peaked behavior of M, ’s that defines the
cavity quasimode structure, the width of each peak being
determined by the reflectivity 7. Thus, for instance, the
positive frequency component of the intracavity field is
given by

172

7iQ, .
Ma;sin[k(z—1)] .

E(t)eav )=
(z,t)=3 codL

k

(2.4)

This field can further be separated into its right- and
left-traveling pieces by writing sin[k(z—1)] as a differ-
ence of two exponentials. This separation is necessary,
since not only are the boundary conditions specifically
dependent on these particular fields, but also the output
of the cavity is related to the transmitted part of the left-
traveling field alone. If e (z,t) and e_(z,t) denote the
envelopes of the right- and left-traveling fields,

—ikgz, —iQqyt

le ,
2.5)

E(z t)=[e, (z,t)e" O +e_(z,1)e

then in terms of slowly varying mode amplitudes A4,
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Qt
o) we have

172
Mk Ake

defined by q;, = Ake -

:tiSQkZ/C F ikl
e ’

ex(, i212 eOAL

(2.6)

in which 8Q, =Q, —Q, is the frequency detuning of the
a; mode from the central universe mode.

This review demonstrates how the electric fields inside
and outside a one-sided empty cavity having an arbitrary
output transmission may be properly constructed. An
extension of these concepts to double-sided cavities is
straightforward. These expressions provide the tools
with which the parametric oscillator may now be exam-
ined for cavities of arbitrary quality.

III. DEGENERATE PARAMETRIC OSCILLATOR

A degenerate parametric oscillator squeezes optical
fields via the second-order nonlinearity ¥'?’. Very simply,
through the nonlinear interaction, each photon of a
pump field of frequency 2, can generate two photons of
frequency €, and conversely two photons of frequency
), can combine into a single photon of frequency 2. It
is the light at frequency (), that is squeezed via this in-
teraction. Although the basis of this nonlinearity is mi-
croscopic and as such a full microscopic matter-field
treatment is called for, we shall be content here with only
an effective-Hamiltonian treatment in which the atomic
system has been eliminated in an approximate way. The
Hamiltonian for such a process may be written as [13,14]

H=1 [e(r)EX(r,t)+pH(r,t)]dr . 3.1)

universe
Assuming only a y'*) nonlinearity, we may expand e(r) as
e(r)=€,+x'PE(r,t). In view of this nonlinearity, the
full Hamiltonian H can be split up into the usual unper-
turbed Hamiltonian H, and an interaction term H' aris-
ing purely from the nonlinearity

_J

172

dA, [l

dt

7,
€ AL

=‘—lSQk Ak +Mk

By operating on Eq. (2.6) by (0/0z+d/cdt) and em-
ploying Eq. (3.6), we may show that

9,190

az car ey(z,t)= fQ(z )E (2! ,0)G (2,2 )dz’

(3.7

where in our slowly varying amplitude approximation the
functions G_.(z,z') are given by the definitions

100y 2/¢ ) F i

G.(z,z')= S Misin[k(z'—1)]e

21ceoAL
(3.8)

“sin[k(z'—1)]E‘ 7 (z',t) .
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H'= (2)f Ecav (Z t)dz

cavity

(3.2)

where it has been assumed for simplicity that the electric
field has no transverse x-y dependence. Note that the in-
tegration in (3.2) is now confined to the nonlinear medi-
um. The electric field E'(z,t) includes both the quan-
tized field (populated by photons in modes centered in
frequency at Q) as well as the pump field, which is as-
sumed to be intense and therefore treatable classically.
One may then write

EcaV(Z’t)_Ecav

quantum

(z,t)+EZY

av (z,1) . (3.3)

Substitution of Eq. (3.3) into Eq. (3.2) generates several
terms, but the particular nonlinear process of interest,
namely the conversion of one pump photon into two sig-
nal photons and vice versa, is described by only one of
these terms. We ignore all other terms as being of no
value here, which amounts to the following replacement
in the integral (3.2):

ECaV (Z t)_>3ECaV

2
pump(z’t )E;?l‘:mtum(z’t) *

Rewriting the pump field as

3 A cav

—2iQ,t
)( VES (2, “+c.c.,

Q( Je (3.4)

splitting E i\ ,m(2,2) into its positive and negative fre-
quency components, and neglecting fast varying terms,

we may reexpress the full Hamiltonian H as

H=Ho+ 27" [ 0(NE V(e ndz' +H.c.
cavity
(3.5)
The “cavity” and “quantum” designations have been

dropped for simplicity. By using this Hamiltonian, we
may write down the equation of motion for the universe
mode annihilation operator @, and hence for its slowly
varying amplitude A4;:

(3.6)

[

Due to the periodic behavior of M, ,f, one may show that
the functions G, (z,z’) consist of infinite sums of Dirac 8§
functions. For the physical situation z,z’ </, only one 8§
function in each sum contributes. So, as shown in detail
in Appendix A, one effectively has

Fikyz

% 8(z—z')e for z,z' <l . (3.9

Gi(z,z =% 260AC

Since the right-hand side of Eq. (3.7) still contains the full
field, it is now divided into its right- and left-traveling
pieces. Recalling that Q(z) contains the generally com-
plex nonlinear susceptibility as well as the z-dependent
part of the pump field, it too is broken up into right- and
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left-traveling pieces. We let
4eygAc

i, .
Q(z)=ge *sin(2kyz+¢) 70,

(3.10)

where 6, is simply related to the phase of ¥ and ¢ is a
phase shift of the pump field resulting either from propa-
gation or from some other phase-shifting element. We
shall have more to say about the importance of the phase
shift ¢ later. Again neglecting fast varying terms, we ar-
rive at the following equation of motion for e (z,?):

(3.11)

As expected, in the simple case of no nonlinear medium,
q =0, these equations reduce to those for a freely propa-
gating field.

The solution of Egs. (3.11) proceeds as follows. Since
these equations couple fields to their adjoints in a linear
fashion, one may rewrite them in an explicitly decoupled
form by constructing appropriate linear combinations of
fields with their adjoints. These linear combinations, the
so-called field quadratures, are the following:

e (z,t)e _i¢i/2+e1(z,t )ei‘ﬁi/2
X (z,t)= T , (3.12a)
—ig /2 ¢ iy /2
e(z,t)e —ell(z,t)e
Yo(z,t)=— 5 = (3.12b)

In terms of the quadratures X, and Y., Egs. (3.11) be-
come

d , 1d
— .
_az_-‘c ——at Xi(z,t)—qu(z,t) N (3 133)
d , 120
L 138 - , 3.13b
3z ¢ ot Yi(Z,t) in(Z,t) ( )

Equations (3.13) may be reformulated more simply in
terms of the retarded times 7. =t —z /c (for the e field)
and 7_=t—(l—z)/c (for the e_ field). The resulting
equations may be solved in terms of simple exponentials,
which causally relate the right-traveling field quadratures
and the left-traveling field quadratures to their values at
the partially transmitting mirror and at the perfect mir-
ror, respectively. One may show in this way that

X, (z,t)=e¥X  (0,t—2z/c),
X_(z,t)=e?*7VX_[1,t—(1—2)/c];
Y, (z,t)=e ¥Y (0,t—z/c),
Y_(z,0)=e 9Dy _[I,t—(I—2z)/c]

(3.14)

indeed satisfy Egs. (3.13).

BARTRAM S. ABBOTT AND SUDHAKAR PRASAD 45

IV. BOUNDARY CONDITIONS AND SQUEEZING
OF THE INTRACAVITY FIELD

Equations (3.14) reveal how the various quadratures
evolve during a single rightward or leftward pass through
the medium. The boundary conditions at the mirrors
couple the left- and right-traveling fields and thereby en-
able us to determine the effect of propagation on either
traveling field through an entire round trip. The 7 phase
shift at the perfect mirror gives rise to a boundary condi-
tion for the fields:

e (l,t)y=—e_(1,1). (4.1a)

This implies, via definitions (3.12), the following matrix
relationship between the field quadratures at the perfect
mirror:

X, ()
Y. (,t)

X_(l,t)
Y_(l,¢)

—cos¢
sing

—sing
—cos¢

. (4.1b)

At the output mirror, the right-traveling wave consists
of the reflected part of the left-traveling wave and the
transmitted vacuum field coming from outside the cavity:

e (0,1)=—7e_(0,t)+7e**(0,t) , (4.2a)

a relation that may be recast in the following form for the
field quadratures:

X, (0,2) —cos¢ —sing | |[X—-(0,)
Y, (0,0)| "7 | sing —cosd | |¥Y_(0,1)
X'2°(0,t)
T | pueco,ry | - (4.2b)

where X' and Y2 are quadratures of the vacuum field

defined via relations (3.12). Using Egs. (3.14) to describe
the effect of the nonlinear medium and Egs. (4.1b) and
(4.2b), the mirrors, one can now propagate the quadra-
tures an entire round trip through the cavity with the re-
sult

X, (0,1) cos’p+sin’pe??  cosgsing(1—e ~29)
Y. 0,0 |7 cospsing(e??'—1) cos’p+sin’pe 27 }
X (0,t—2l/¢c) ~X"j;‘°(0,t)
Xy 0,e—=21/¢) | TE | yvee(o,0) | -

(4.3)

A suitable similarity transformation may now be per-
formed so as to diagonalize the 2 X2 evolution matrix in
the preceding equation. Because of phase-sensitive
amplification, characterized by different reference phases
¢ and ¢_ on the two halves of each round trip, the evo-
lution matrix is not normal. Therefore, this similarity
transformation is not a simple orthogonal rotation matrix
and gives rise to linear combinations of the quadratures
that are not orthogonal on the phasor diagram. Never-
theless, such a transformation is valuable since it deter-
mines those linear combinations of the quadratures that
do not mix from one round trip to the next. As shown in
Appendix B, a whole class of transformation matrices T
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of the following form accomplishes this diagonalization:

y_(e f+e%sing) v _e " %cosd
r= y +e%cosd —y(ef+e %sing) |’ 44
where f is determined through the relationship

sinhf =sin¢ sinhg/ , 4.5)

and the constants y . are so far arbitrary. We wish, how-
ever, to be able to interpret the resulting linear combina-
tions of quadratures as quadratures, albeit relative to
different phase angles, say ¢’, and ¢’_ (with the two not
differing by 7 /2, in general). To do so, we must pick ¥+
so that the sum of the squares of the elements in each row
of T equals unity, i.e.,

yi=(e TV +etW 42 T~ aDsing)"1/2 (4.6)
Under this transformation Eq. (4.3) becomes
XT(=,1) e o | [X%(0,t—21/c)
Y10, ]= 0 e ¥ |¥YT(0,r—21/c)
~)(Zf“’T(O,t)
+1 yreT(0,e) | - (4.7)

Threshold is obtained when the gain X | experiences as
it passes through the medium in time 2/ /c compensates
exactly for the loss at the output mirror. The nominal
threshold condition is then given by

el =1 . (4.8)

Note from this relation that 2f serves as an effective gain
parameter of the parametric medium, which depends not
only on the pump amplitude but also on the pump phase
¢ via Eq. (4.5).

We note from Eq. (4.5) that for ¢=0, for which
¢, =¢_, the effective gain vanishes. This may be seen
directly from Egs. (3.14), from which one may show that
the round-trip amplification of any quadrature of the in-
tracavity field vanishes for ¢ =0—the gain on one half of
the trip is exactly negated by the attenuation on the other
half. On the other hand, for ¢ =7 /2 the effective round-
trip gain is at its largest. This modulation of gain with
the relative phase between two nonlinearly coupled waves
was first demonstrated by Wu and Kimble [15] in
second-harmonic generation within an optical cavity.
For ¢=0, the cavity resonance condition (nodes at the
perfect mirror for both the pump wave and the subhar-
monic signal wave) is incompatible with the fact that the
pump wave must be 7/2 phase shifted relative to the sig-
nal wave that the former generates.

From Eq. (4.7) and the easily determined variance of
any vacuum-field quadrature, one may calculate the
steady-state variance of an arbitrary quadrature of the
rightward-traveling field at z=0. Of most interest is the
quadrature that exhibits minimum noise and thus
governs the maximum squeezing possible in the paramet-
ric oscillator. We construct an arbitrary quadrature
Q. (u,v) of the rightward-traveling field at the output
mirror from a linear combination of X} and Y7 as
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Q. (u,v)=uXT(z=0)+vYL(z=0), (4.9)

where the coefficients u and v are to be constrained by the
relation

u?+v?+2uv cosdd=1, (4.10)

which is the equation of an ellipse in the (u,v) plane.
Here 50 is the difference of phases of the two nonorthog-
onal quadratures X% and Y%, which may be determined
by taking the scalar product of the two rows of the ma-
trix T [with normalizations (4.6)]:

cosd0=T,, Ty + T, s, . 4.11a)

It is shown in the second half of Appendix B that cos86
can be written in a simple form involving only f and ¢:

sinhf cos¢

(sinh?f +sin¢)'/?

The variance of Q | (u,v) involves the variances of X r
and Y7 and their covariances, which may be evaluated
from Eq. (4.7) by noting that in the steady state all vari-
ances and covariances remain unchanged from one round
trip to the next. Since the vacuum field is perfectly iso-
tropic, they may all be expressed in terms of the variance
of any quadrature of the vacuum field, say
(AXY*°(z=0)?), which we denote by N for brevity.
Thus, for example,

(AXT(z=0)?)=72*(AX T (z=0)?)
+72(Ax*>T(z=0)?) ,

cosd0= (4.11b)

so that
=2
(AX£(2=0)2)=G(—_17:#N ) (4.12a)
Similarly,
a2y (1=FY)
<AY1(Z_O)2)~(_1—_7Te“Tf) (4.12b)
and
(AXT(z=0)AYT (z=0))=(AY L (z=0)AXT (z=0))*
=¢ TIOON (4.12¢)

In arriving at Eq. (4.12c), we made use of the fact that
(AxX2T(z=0)AY?T(z=0))

=TI AX VT (2 =0)2) =¢ ~1ON |
From Egs. (4.9) and (4.12), it now follows that

| (A=FHu? | (1=F2p?
(AQ, (u,v)?) Nl 1—F24  1—72e—4
+2uv cosdo | , (4.13)

where u and v are constrained by Eq. (4.10).
Although Eq. (4.13) describes the general situation, the
quadrature of most interest, as we have indicated earlier,
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is one that exhibits maximum squeezing, or equivalently
minimum fluctuations. We thus wish to minimize the
right-hand side of Eq. (4.13) in the (u,v) phase subject to
the constraint (4.10). It is worth noting that the case of
é=1/2 is special, since for this case cosd0 is O and the
minimization problem is rather trivial. The minimum
variance is obtained for the Y quadrature, corresponding
to u =0, v =1, and is given by Eq. (4.12b). The general
optimization problem for arbitrary ¢ is, however, more
involved and has been considered in detail in Appendix
C.

The results are displayed in graphical form in Figs.
2-4. In Fig. 2, we consider the threshold parameter
defined as y=F e? to have a fixed value between 0 and 1
as the mirror reflectance 7 is varied. Since the effective
gain parameter f is non-negative, the largest value of 7 al-
lowed for a given value of y is y itself, for which the
active-medium gain f is 0. We see from these curves that
in each case the quantum noise in the quietest quadrature
of the intracavity field first decreases from the vacuum
level as 7 increases from O (limit of no cavity) until some
lowest value is attained. Then as ¥ approaches y (or
equivalently, f approaches 0), the noise level begins to
rise to the vacuum level. This behavior of the curves is a
result of competition between two effects: A larger 7 al-
lows a larger effective interaction time for the field and
the nonlinear medium, but, at the same time, since Y is

L
8]
Z <
< °7
E
D>
=
2 <
23
s
~
3
<
o T T T T 1
0.2 0.4 0.6 0.8 1.0
REFLECTANCE

FIG. 2. Variance of the quietest quadrature, normalized by
dividing by N, of the right-traveling piece of the intracavity field
at the output mirror, z=0, vs output-mirror reflectance 7, for
fixed pump phase ¢ =45" and threshold parameter Y. The three
curves from left to right on the figure have y values 0.8, 0.9, and
0.95, respectively.

BARTRAM S. ABBOTT AND SUDHAKAR PRASAD 45

fixed, a smaller effective gain parameter f that controls
the single-round-trip squeezing. Of the three curves on
this figure, the one for which y is closest to 1 has the best
overall noise reduction as a function of the mirror
reflectance.

In Fig, 3, the value of the effective gain parameter f is
treated as being fixed for each curve. As the value of 7
ranges from O (no cavity) to e ~% (threshold), the quan-
tum noise in the quietest quadrature of the rightward-
traveling cavity field at the output mirror decreases from
the vacuum level to 50% of the vacuum level. Of the
three curves, the one for which the gain parameter f is
the largest shows, as expected, the best overall noise
reduction or squeezing as a function of the mirror
reflectance. The curves terminate at #=e ~ 2/ where the
minimum variance assumes the threshold value calculat-
ed later in Eq. (4.14).

In Fig. 4, we have studied the dependence of squeezing
of the cavity field on the phase ¢ of the pump. In this
figure, the value of the pump amplitude and therefore g/
is maintained fixed at exp(g/)=1.2, as the pump phase
varies from 30° to 75°. As ¢ increases, so does the
effective pump parameter f [see Eq. (4.5)] and so the
squeezing is enhanced, as is clearly evident from the
figure. In other words, the best overall squeezing is ex-
pected for $=90°. The end points of the curves refer to
the threshold squeezing given by Eq. (4.14).

)
(]
=z
=
<
>
=
2 <
s
~
a4
)
° T T T T 1
0.2 04 0.6 0.8 1.0
REFLECTANCE

FIG. 3. Variance of the quietest quadrature, normalized by
dividing by N, of the right-traveling piece of the intracavity field
at the output mirror, z =0, vs output-mirror reflectance 7, for
fixed pump phase ¢=45" and effective gain parameter f. The
three curves from left to right on the figure have exp(2f) equal
to 1.10, 1.05, and 1.01, respectively.
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0.6
1

MINIMUM VARIANCE
0.4
|

0.0

T T T T 1
0.2 04 0.6 0.8 1.0

REFLECTANCE

FIG. 4. Variance of the quietest quadrature, normalized by
dividing by N, of the right-traveling piece of the intracavity field
at the output mirror, z =0, vs output-mirror reflectance 7 for
fixed pump amplitude: exp(gl/)=1.2. The four curves from left
to right on the figure have pump phase ¢ equal to 75°, 60°, 45°,
and 30°, respectively.

Squeezing just below threshold: 7e?/ — 1

There is one special case for which the maximum
squeezing is fairly simple to calculate exactly. This is the
case of the parametric oscillator just below threshold,
7e* 1. As we note quickly from Eq. (4.13), in this limit
the coefficient of the u? term becomes infinite, and so the
minimum variance for the quadrature Q(u,v) of the
rightward-traveling intracavity field at z =0 is obtained
when ¥2=0 and v?=1. In other words, the Y% quadra-
ture shows minimum fluctuations at threshold, and from
Eqgs. (4.13) it follows that the maximum degree of squeez-
ing is merely

1-72_ 7?

=1—-—" = )
Xs 1—72 1472

(4.14)

This expression tends to the correct value [2,4] of 1, or
50%, in the good-cavity limit, #—1, and O in the oppo-
site limit of 100% output coupling.

For the general situation below threshold, it is worth
noting from the last result of Appendix C that the
minimum variance is in general smaller than

1—7?
1—F2 4’

which is the variance of the Y% quadrature of the intra-
cavity field. Only when either cosb0 or sind6 is O or at

5045

threshold, as we have just seen, is the minimum variance
exactly equal to the variance of the Y. quadrature.

V. SPECTRUM OF FLUCTUATIONS
OF THE OUTPUT FIELD

Outside the cavity (z <0), the quasimode structure de-
scribed by the M;’s no longer exists. Without these
quasimodes one may wish to consider examining the
squeezing of the individual universe modes. However, as
Gea-Banacloche et al. [6] have noted, this would require
an integration of the output field over a time longer than
2L /c, but such long times would cause unphysical effects
having to do with reflections from the auxiliary mirror at
z=—L.

To circumvent this problem, the authors introduced a
finite Fourier transform in which the time of integration
T,, is less than 2L /¢ but large compared to 2/ /c, so that
a high frequency precision of order 27 /T, can be at-
tained in the spectral analysis of the fluctuations of the
output field. The transform at frequency offset dw from
the resonance is then a superposition of several universe
modes centered at that offset frequency in a bandwidth
27/T,,

2°"(8w)=

Tm X
_T:_J%/_zfo eout(t)exﬁwtdt , (5.1)
m

(
where NV is a normalization constant chosen so that

[6°"(8w),2 "(8w)']=1 . (5.2)

With this choice of the normalization, € °*(8w) may be
interpreted as a single-mode annihilation operator. Ex-
actly the same considerations as these apply to the in-
coming vacuum field e¥*°(0,¢) as well.

The outgoing field e®"(¢) arises from the transmitted
left-traveling wave inside the cavity and also includes a
contribution from the vacuum partially reflected off the
output mirror,

e%(¢)=T7e_(0,t)+7"*(0,t) . (5.3a)

By using Eq. (4.2a), we may rewrite this relation in terms

of the e, field as

e(t)=—Le (0,6)+Le(0,1) . (5.3b)
r r

Since 7 and 7 are both real, this relation also holds for any
quadrature of these fields as well, both in time and fre-
quency domains. Thus, for example, in the frequency
domain,

2t T(s0)
T (80)

7(0,80)
7(0,80)

1 XveeT(0,80)
T 9veT(0,80)

_z
¥

(5.4)

The superscript T denotes the same transformation as
performed in the previous section. Note that the Fourier
transform of a quadrature field like X" 7(¢) produces a
generalized quadrature [16,17,6] in the frequency do-
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main, involving a pair of frequencies 6w and — 8w of the
original field e°"'(z).

The quadratures of the e (0,¢) field that occur on the
right-hand side of the preceding equation in the frequen-
cy domain may be obtained easily in terms of the

J

X7(0,80)
?7(0,80) | * 0

(l_fFereiBle/C)—l 0

(1_76*2fei5w21/0)—l
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vacuum-field quadratures by Fourier transforming [via
Eq. (5.1)] the relation (4.7). Since in the large-T,, limit,
the Fourier transform of any function f(¢) and its time-
displaced form f(¢—7) differ merely by a multiplicative
factor e‘3%7 it follows that

Xv2eT(0,8w)

Pv2eT(0,80) (5.5)

It is now only a matter of a simple substitution of this relation in Eq. (5.4) and the use of the identity 1—72=7?to show
the following connection between the output field and the vacuum field in the frequency domain:

F— e pidal/c o
N r—e-¢ =
XotT(5w) | —pp2fpida2i/c
i}out,T(a = __,—2f,idw2l/c
W) F—e “e
+ 0

1—7e —ZfeiBw?.I/c

The preceding equation enables one to determine the
spectrum [5] of quantum noise, or equivalently, squeez-
ing, for the output field. In what follows, we shall restrict
our attention to the case of zero detuning, 6w =0, since
we expect to see maximum squeezing for this special situ-
ation and also since the general case of nonzero detuning
can be handled very similarly [6]. For dw=0, all quadra-
tures such as X T are Hermitian and their variances

and covariances are, from Eq. (5.6), the following:

Pout, Tyn\2\ — F—e/ ’ ’
(AXT(0)?) = T N,
(5.7a)
out, Ty\2\ — F—e ¥/ ’ ’
(AP T(0)2) = pE——T N',
and
(AR T(0)APET(0)) =( AP T(0)AXT(0))*
= OON" (5.7b)

where N’ denotes the variance of any quadrature of the
vacuum field, say (AX***7(0)?), and 86, the difference
between the phase angles of the transformed X and Y
quadratures, can be computed as before via Eq. (4.11).

Armed with these variances and covariances, we may
now write down the variance of the central Fourier com-
ponent of an arbitrary quadrature of the output field. We
follow the same procedure as in the preceding section to
determine that quadrature that has the smallest variance.
The results of Appendix C are again applicable, albeit
with different values for parameters a and b. It is worth
noting that since @ and b here assume values that are
different from those for the intracavity field, the quadra-
ture that has minimum fluctuations in the intracavity
field is in general not the one that displays minimum fluc-
tuations in the output field and vice versa.

The results are shown in graphical form in Figs. 5-7.

XT(0,60)
?v21(0,80)

(5.6)

In Fig. 5, we fix the value of threshold parameter Y,
which is less than 1, while the reflectance 7 is varied from
0 to 1. It is evident that for all values of ¥, the squeezing
of the central Fourier component of the output field is
nearly perfect at very high output-mirror coupling (low

1.0

0.6
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1

0.0

T T T T 1
0.2 0.4 0.6 0.8 1.0
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FIG. 5. Variance of the central Fourier frequency com-
ponent (80=0) of the quietest quadrature, normalized by divid-
ing by N’, of the output field at the output mirror, z =0, vs
output-mirror reflectance 7, for fixed pump phase $=45° and
threshold parameter y. The three curves from left to right on
the figure have y values 0.8, 0.9, and 0.95, respectively.
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7), degrading as the cavity becomes less and less transmit-
ting. This behavior can be understood in the following
way. Since Y is held constant, a low value of 7 implies a
large effective gain or squeezing parameter f as well as
only a small contamination of the output field by incom-
ing vacuum light reflected into the output field by the
output mirror [see Eq. (5.3a)]. Thus the output light re-
sults mainly from the incoming transmitted vacuum field,
which undergoes large squeezing as it circulates through
the high-gain parametric medium. As the output cou-
pling decreases, the gain parameter of the parametric
medium decreases as well, if y is held fixed, and the con-
tamination of the output by the reflected incoming vacu-
um field increases. Therefore, in the limit of low output
coupling the squeezing of the output field decreases for
fixed x.

In Fig. 6, on the other hand, the value of the gain pa-
rameter f is held fixed. Clearly, for this case, as the out-
put mirror becomes less and less transmitting, the squeez-
ing of field fluctuations by the parametric amplification
process happens over an ever-increasing number of round
trips. Thus, the degree of squeezing both of the cavity
and output fields is enhanced as 7 rises to 1. Further-
more, since the leftmost curve on this figure has the larg-
est value of f of the three curves, it represents the largest
overall squeezing.

In Fig. 7, we display the dependence of squeezing of

MINIMUM VARIANCE

0.0

T T T l
0.2 04 0.6 0.8 10

REFLECTANCE

FIG. 6. Variance of the central Fourier frequency com-
ponent (80=0) of the quietest quadrature, normalized by divid-
ing by N’, of the output field at the output mirror, z =0, vs
output-mirror reflectance 7, for fixed pump phase ¢=45° and
effective gain parameter f. The three curves from left to right
on the figure have exp(2f) equal to 1.10, 1.05, and 1.01, respec-
tively.
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FIG. 7. Variance of the central Fourier frequency com-
ponent (8w =0) of the quietest quadrature, normalized by divid-
ing by N’, of the output field at the output mirror, z =0, vs
output-mirror reflectance 7 for fixed pump amplitude:
exp(gl)=1.2. The four curves from left to right on the figure

have pump phase ¢ equal to 75°, 60°, 45°, and 30°, respectively.

the central frequency component of the output field on
reflectance for a fixed value of the pump amplitude, or
equivalently of the parameter g/, while the value of the
pump phase ¢ is changed from curve to curve. We set
expg/ =1.2, while the value of ¢ changes from 30° to 75°,
as in Fig. 4. Once again for the same reason as in Fig. 4,
namely that as ¢ increases, so does the effective gain pa-
rameter f, we have enhanced squeezing with increasing
phase angle. As in the preceding section, we now consid-
er explicitly the situation just below threshold, i.e., as
Fe 1.

Squeezing just below threshold: 7e2/ — 1

Since at threshold the variance of the X7 quadrature
becomes infinite [Eq. (5.7a)], it is evident that any admix-
ture, however small, of this quadrature in the construc-
tion of a general quadrature will give rise to an infinite
value for the variance of the latter. In other words, the
minimum variance is obtained only for the Y% quadra-
ture of the output field. Furthermore, it follows from Eq.
(5.7a) that this minimum variance vanishes at threshold,
regardless of the degree of output-mirror coupling 72. (In
Fig. 5, for example, this situation would be represented
by a line that coincides with the abscissa for 71 with a
step discontinuity of 1 at #=1). Thus, the Y¥ quadra-
ture of the central frequency component of the output
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field is perfectly squeezed just below threshold, while any
other quadrature of this field has infinite variance.

There is one other conclusion worthy of note here.
Even if 7=0, which amounts to a perfectly transmitting
output mirror, the Y7 quadrature of the output field still
exhibits some squeezing, namely that its variance is lower
than that of the vacuum field by a factor of e ~*/. This is
a result of the fact that although the output mirror is ful-
ly transmitting, the output field from the cavity arises
from the vacuum field entering the cavity at z=0 and
then amplifying (and getting squeezed) through a round
trip before emerging at z =0.

VI. CONCLUSIONS AND OUTLOOK

We have considered in this paper the fully quantum-
mechanical problem of a degenerate parametric oscillator
operating below threshold. The main objective of this
work has been to develop a theory of matter-field interac-
tion inside a cavity with arbitrary output-mirror coupling
and to illustrate this theory for the optical parametric os-
cillator.

There are at least four aspects of the problem that need
further attention. The first concerns the somewhat ad
hoc nature of the effective-Hamiltonian approach adopted
in the present work. This phenomenological approach
cannot satisfactorily incorporate the effect of spontane-
ous emission and must be supplanted by a fully micro-
scopic theory of nonlinear parametric interaction. Clear-
ly spontaneous-emission noise will compromise the max-
imum squeezing available in a parametric oscillator or
any other nonlinear active device.

A relatively straightforward extension of this work
concerns a double-sided cavity, one that allows light to
emerge from both sides of the cavity. This extension
must be considered if one is to treat the problem of cou-
pling of several parametric oscillators in series.

A third important extension of the present work is an
analysis of the above-threshold behavior of the paramet-
ric oscillator. Here one needs to address the question of
saturation of both the pump and signal intensities either
via an effective Hamiltonian or by developing a fully mi-
croscopic theory. As we have noted earlier, a microscop-
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ic approach will have the added advantage of lending it-
self well to a natural and correct inclusion of spon-
taneous-emission noise.

The question of pump amplitude and phase noise is
also an important one, particularly if one is to apply the
present theory to realistic experiments. It would seem
that a purely classical theory of noise may suffice here.
However, squeezing of the pump noise, which can only
be treated quantum mechanically, may also be an in-
teresting problem to consider, since the noise reduction
of the signal field will depend critically upon such squeez-
ing.

APPENDIX A: THE FUNCTIONS G4 (z,z')
We first note from Eq. (3.8) that
G, (z,2')=—G*(z,z2") .
So we need only consider one of the two functions, say
G,.(z,z'). We first rewrite G, (z,z') by splitting
sin[k(z'—1)] into its exponentials:

G, (z,z')= S MR (e (z 1) — ¢ —ik(z'=D)

4c eOAL

i8Q,z/c _;
k e ikl .

Xe (A1)

In terms of the detuning 6Q; =c(k —k,), we may recast
the above equation in the form

7l iko(z'~21) i8Q
—— e ° 3> Mie *
4cey AL k

(z+z'—=21)/c

G+(Z,z’)=——

—ikyz' 2 80, (z—2")/c

3 Mie

(A2)

From the periodic nature of M? as a function of k and
from the shift property of the exponential function

as,az

e >e%e% under z—z+s ,

it follows that each of the finite k sums in Eq. (A1) may
be reduced to a finite kK sum over a single period of M} of
length 7 /1. Picking this period to be the one centered at
kg, we may rewrite Eq. (A2) as

#0 Ko . . .
0 iky(z'—21) i8Q, (z+2z'—21)/c i
G (z,z)=————|e ° S Mie Tk T einmatz 21)/1
4cegAL - =
—ikyz' 80, (z—z') /e & : —
—e 0 Z'sze k 2 emfr(z z')/1 , (A3)
k n=—ow

in which the prime on the summation sign represents a
restricted k sum over the fundamental period
[ko—m/21,ky+m/ 21].

We now use the identity

S, einm/l=7] > 8(x—2ml)

n=-—o m=—c

in Eq. (A3). By noting the fact that for the physical situ-
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ation at hand, 0<z,z’' <[, we see that in Eq. (A3) the first
resulting 8-function sum will have no contributing terms,
while in the second such sum only the term 8(z —z") will
contribute. The net result of this observation is that Eq.
(A3) reduces to the following simple form:

A ik,

— (A4)
2cegAL ¢

G, (z,2')= 8(2—2’)2’M,3 .
k

One may carry out the k sum above by recalling that in

the limit L — oo, the universe modes become continuous

in k with a density of modes L /, so that

L w/21
’ p— M2
Ek M; - f K

—m/2l
_2Lp w2 1
- do—— 2.2
ml Yo sin“0+p “cos“6
=L
l b

in which use was made of expression (2.2) for M; and the
known integral identity

fﬂ/Z 1 _ T
0 sin?0+p2cos’®  2p .

With this simplification, Eq. (A4) may be reexpressed in
its final form as

ﬁQO —ikgz
——— 4

G =
+(z2) 2ceyA

8(z—z') . (AS)
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APPENDIX B: THE SIMILARITY
TRANSFORMATION T

We seek here a similarity transformation matrix T that
will diagonalize the following evolution matrix M:

0052¢+sin2¢e2‘7’ cos¢ sind;(l—e_qu) 51
M= cos¢ sing(e??—1) cos’p+sin’pe 24 | - (B1)
In other words, we wish to find the class of matrices T
such that

TMT '=M, , (B2)

in which M, is diagonal.

Since a similarity transformation leaves the eigenvalues
of a matrix invariant, it is clear that the eigenvalues of M
are the diagonal elements of M. Furthermore, since Eq.
(B2) may be rewritten as

MT '=T"'M, ,

it follows that the eigenvectors of M form the columns of
the matrix T~ ! whose inverse T is the matrix we seek.
Evidently, then, the problem of finding T reduces to the
problem of finding the eigenvalues and eigenvectors of M.

1. Eigenvalues and eigenvectors of M

The eigenvalues A obey the following quadrature equa-
tion:

(cos®p+sin’pe 24— A )(cos’p+sin’pe ~29'— 1)
=cos?¢ sin®p(1—e ~24) (e —1) .

This may be expanded into the following equation:

A2 —2A(cos2¢ +sin’¢ cosh2ql )+ [ cos*d + sin*d +2 cos?s sin’p(cosh2gl —2 sinh’ql ) ]=0 .

Using the identities cosh2gq/ =2sinh’q/+1 and sin’$
+cos’p =1, we reduce this equation to the form

A2—2A(1+2sin%psinh?gl)+1=0 .
By now introducing a symbol f by the relation
sinhf =sin¢ sinhg/ , (B3)

it is easy to show that the above quadratic equation
reduces further to

A2—2Acosh2f+1=0,

whose roots are simply

Ay=e* (B4)
If x . are the eigenvectors for A,
Uy
p.o + = v + Py

then the ratios u /v, may be determined by either of

the two relations

u4 _ M12

= Mahs (BS)
Uy M —As M,

where M;; denotes the ij matrix element of M. We pick
the latter relation for computing u , /v, and the former
for u_ /v_. Thus,

Uy _ 1—sin’¢p(1—e %) —e¥
v, sing cosg(e29'—1)
_ 2e/sinhf +2 sin’$ sinhgle ~ 7'
2 sing cos¢ sinhgle?
f4gi —ql
_ e’ +sinde ) (B6)

cospe?

Note that we have made repeated use of Eq. (B3) in arriv-
ing at the above result. One may show in a similar way
that the eigenvector corresponding to eigenvalue A_ is
given by
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u_ —ql
Eo_ __cose T (B7)

v e f+singe?

Of course, each eigenvector is determined only up to
an arbitrary normalization constant, which means that
the matrix T~ ! whose columns these eigenvectors consti-
tute is determined only up to arbitrary normalization
constants. Clearly, therefore, T too is arbitrary up to
these normalization constants. In other words, there is a
whole class of similarity transformations that will diago-
nalize M. Since

u, u_
T 1=

’

vy U_

it follows that up to normalization factors the desired
similarity transformation matrix T is

—V_ u_
T=

’

vy U,

with the ratios u 4 /v given by Egs. (B6) and (B7).
2. Expressing cos80 in terms of f and ¢

By noting from (B3) that e/+e ~%sing=e ~/+e%sing,
we have from (4.4) and (4.11a) that

cos80=2y .y _(e "/ +e%sing)sinhgl cosé . (B8)

Now one may show from Eq. (4.6) that when 1/y% and
1/y% are multiplied together, the nine terms obtained
may be grouped as

1/y% v =2+4sin’¢+2 cosh(2f +24gl)
+ 8 sing cosh(f +4ql) .
This expression is further simplified by using the identity
cosh2(f +gql)=2sinh*(f +gl)—1
to the form
1/7%y% =4[sing+cosh(f +ql)]* .
We now use the relation (B3) to write
cosh(f +gl)=coshf coshql +sinhf sinhg/

=coshf(1+sinhf /sin*$)!/>+sinh?f /sin¢

1
sing

[coshf (sinh®f +sin’$)!/2+sinhf ] ,

and so from the previous equation it follows that
sing
sin?¢ +sinh2f +cosh f (sinh?f +sin%¢)!/?
(B9)

Y4y -=

From Eq. (B3), one may solve for e%sing by noting that
e ¥sing = (sinhgl + coshgl )sin¢

=[sinhf + (sinh?f +sin2¢)'/?] . (B10)
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By now observing that e /+sinhf =coshf and using
Egs. (B8), (B9), and (B10), one may see that

sinhf cos¢
(sinh®f +sin?¢)'/2 ’

provided use is made of Eq. (B3) as well.

cosb0=

APPENDIX C: A CONSTRAINED
MINIMIZATION PROBLEM

We wish here to provide the details of the minimiza-
tion of the fluctuations (4.13), subject to the constraint
(4.10). In simpler notation, the problem is to minimize

flu,v)=au?+bv?+2cuv , (C1)
subject to the constraint
ul+vi+2cuv=1. (C2)

We first note that by rotating the u-v axes by 45°, we
transform Eq. (4.10) of the constraint ellipse to its “diag-
onal” form which does not have the “mixed” wv term.
This diagonal form may be parametrized in terms of a
single angle. Symbolically, if we let

u=%§(u’+v’), v=—‘/l_2—(—u'+u'), (€3)
then Eq. (C2) becomes
wXl—c)+v'o1+c)=1,
which may be parametrized as
1 1 .
u'= cosf, v'= siné . (C4)
Vi—-c T Vite

In terms of the parametrization angle 6, the function
f(u,v) to be minimized may be recast as

2
a cosf sinf
F(0)=— . —
) 2 |Vi—c¢ Vi+ec
2
+2 ___cos@ sinf
2 Vi—c Vi+ec
sin?0  cos’0
el e T |’
which is of form
F(0)=a’'cos?*0+ b'sin?0+2¢'sinf cosh , (C5)
where
, a+b—2c
a=—,
2(1—c¢)
a+b+2c
= C6
b'= 2(1+¢) (C6)
o= a—b
T Vi—c?

The solution of the minimization problem, which is
now reduced to a form involving a single parameter 0,
may be completed as follows. By using the trigonometric
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identities
cos’0=1(1+cos26) ,
sin?0=1(1—cos20) ,
2 sinf cos@=sin20
and by defining another angle a by the relations
(a'—b")/2
[(a'—b")/4+c' 227

’

C
[(a:_br)2/4+cr 2]1/2 ’

cosa=
(o))

sina=

one may rewrite expression (C5) as

atb—2c* 1
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F(8)= +[(a'—b')2/4+c" 2] %cos(20—a) . (C8)

a'+b'

2
Clearly, the minimum and maximum values of this
expression are attained for 6=a/2+m/2 and 6
=a/2(mod), respectively, and they are

minF(e)zg“_;—b‘—[(a'—b')z/4+c'2]1/2 ,
l+bl (C9)
maxF(6)="2 +[(a’'—b")2/4+c" 212 .

We may rewrite these expressions in terms of the original
parameters a, b, and ¢ by making use of the definitions
(C6). After straightforward algebra, one may show that a
useful final form in which the expressions in Eq. (C9) may
be written is the following:

minf(u,0)="——"3 52 {[a—b—2c*(1—b)P+4c’sX(1—b)*}!?,
s s
1
_atb—2? 1 2 244,22 2172 (€10
maxf(u,v)——~é—7—+-i—2{[a—b~—2c(l—b)] +4csH(1—-b)*} /7,
s s

where s’=1—c?% Since in our problem c¢ stands for

cosb6, s is merely a short form for sin80. A useful by-
product of this form for minf(u,v) is that this minimum
is in general smaller than

a+b—2c* a—b—2c%(1—b)
2s? 2s?

b

or simply b.
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