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Emission from atoms in linear superpositions of center-of-mass wave packets
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We study theoretically the electromagnetic field emitted by atoms prepared in linear superpositions of
several internal states, each of which is attached to a different center-of-mass wave packet by the

preparation process. It is shown that the motion and mutual separation of the wave packets can be mon-

itored either by observing the coherent spontaneous emission in a heterodyne experiment or by measur-

ing the energy-absorption rate from a weak probe-laser beam. We also show that a three-level system in-

volving three wave packets coherently emits photons, forming a linear superposition of states of opposite
wave vectors. A heterodyne scheme for detecting the photons in this state is proposed.

PACS number(s): 42.50.Vk, 32.80.—t, 32.90.+a

I. INTRODUCTION

Defiection of atoms by laser light has been the subject
of considerable theoretical and experimental interest dur-
ing the past few years [1—6]. For sufficiently short in-
teraction times of the atom with the radiation field, spon-
taneous emission can be neglected during excitation and
the scattering process becomes coherent [2,3]. Thus the
wave packet of a single atom incident on a light wave mill

be transformed by the radiative interaction into a super-
position of product states of internal atomic levels and
center-of-mass wave packets. According to the rnornen-
tum transferred by the light field these wave packets will

propagate in different directions and finally separate,
forming a macroscopic superposition of quantum states.

Apart from the intrinsic interest in the study of effects
of macroscopic atomic superposition states, coherent
scattering of atomic beams by traveling and standing
laser-light waves is one of the key elements in the optical
realization of a beam splitter and mirror in wave-matter
interferometry with atoms [7—11] (see also Refs. [12,13]).
In comparison with neutron interferometery [14—16] the
atomic interferometer promises considerably enhanced
resolution [8] in both a new generation of fundamental
physics experiments (in, for example, gravitation physics)
and a new class of accelerometers. In addition, advances
in cavity @ED have stimulated recent theoretical studies
of coherent atomic scattering by few-photon standing-
wave fields which point out interesting perspectives relat-
ed to quantum effects of the light field and measurements
of photon statistics [4,5].

In the present paper we study the scattered radiation
and weak-Beld absorption of a stationary atomic beam in
an atomic-superposition state formed in coherent scatter-
ing by light waves. We are specifically interested in mon-
itoring the atomic motion and mutual separation of the
center-of-mass wave packets in the coherent spontaneous
emission and energy-absorption rate from a weak lzser
beam.

In what follows we consider a stationary beam of

atoms of mass m emerging from their source in a well-
defined internal state, which we shall assume as their
ground state ~g ), and with a given narrow distribution
JY(E) of their kinetic energy In t.he plane z=O, the
beam passes the hole in a screen in the z direction. After
passing the hole the atomic beam traveling mainly in the
z direction passes a laser beam in the x direction with axis

y =0, z=zo and frequency co, =ck, such that it can ex-
cite one or several internal states ~e ) of the atom. After
passing the laser field the atom is in a coherent superposi-
tion of excited states and the ground state, each of which
is attached to its own wave packet traveling with its own
mean velocity fixed by the energy and momentum (and
eventually angular momentum) conservation of the exci-
tation process.

The wave packets propagate into the region z & 0, over-
lapping at first, but eventually separating. One or two
detectors pick up the electromagnetic field emitted by the
excited atoms when they spontaneously return to their
ground state.

The field emitted from the wave packets in the region
where they still overlap contains interferences which are
absent in the radiation emitted from regions where the
wave packets have no overlap. These interferences can
be used to monitor the separation of the wave packets
and their calculation is a goal of the present paper. Al-
ternatively, the absorption from a weak probe-laser beam
passing through the atomic beam can be used to monitor
the linear superposition, and is also calculated here.

We shall consider two situations distinguished by their
simplicity. As the first and simplest case, we consider a
beam of two-level atoms, whose dipole matrix elements
are aligned in the y direction, excited by a running-wave
laser propagating in the x direction and linearly polarized
in the y direction. As the second case, we consider a
beam of atoms with a J=O ground state and a J=1 ex-
cited state, excited by a standing-wave laser such that the
degenerate Ms=+1, —1 sublevels ~e+), ~e ) of the ex-

cited state are coherently excited together by the

o+ (o ) component of the standing wave traveling in

the x ( —x ) direction.
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II. PREPARATION OF THE EXCITED STATE

A. Two-level atoms excited by a running wave

The purpose of this section is to provide a brief sum-
mary of the basic equations for coherent scattering of a
two-level system from a running light wave as well as the
approximations and assumptions involved in deriving
these equations [2,3]. We shall emphasize in our discus-
sion the derivation of these results from the point of view
of a stationary ensemble of atoms in a beam, as this corre-
sponds most closely to the situation in present experi-
ments.

The Hamiltonian may be written as

A, 2

H(t)= +H„+HF+Ht(t),
2m

where p /2m is the kinetic-energy operator containing
the momentum operator p, H„= irtorole&&el is the free
atomic Hamiltonian for the internal (electronic) degree of
freedom containing the excited state I

e & and the excited
energy Acoo, and H~ is the Hamiltonian of the free elec-
tromagnetic field. The interaction Hamiltonian in the di-
pole and rotating-wave approximation is

H, (t)= —fd x D' '(x) [8'c+'(x, t)+8'z+'(x, t)]+H.c. ,

(2)

with the negative-frequency part of the dipole operator
density

tion of the atoms at the slit: f(x,y ) = 1 W A with A the
area for (x,y) inside the hole, and f(x,y)=0 outside.
We choose the normalization factor NE '= v'2E/m = vE
to normalize the average beam intensity to one atom per
unit time.

The state vector Igz(t)& can be written as a sum of
terms describing the presence of n =0, 1,2, . . . scattered
photons in the field,

where I QE (t ) & is the state where no photon has yet been
0

emitted (vacuum amplitudes) and lg(„}(t)& corresponds

to the one-, two-, etc., photon contribution [17]. For
z & 0 we solve the Schrodinger equation with the ansatz
of stationary oscillations with the frequency coL

(t) & =e ~' "~ 'I() &
0

f d x[gs(x)lg &+e P, (x)le &] Ix& .

(9)

Its insertion in the Schrodinger equation (6) with the
Hamiltonian equation (1) leaves us with the two coupled
time-independent Schrodinger equations for the vacuum
amplitudes

2

Egs(x) = — V Pg(x) —d*8' '(x)e P, (x), (10)

(E+&to )P,(x)= — V P, (x)—dt"+'(x)e ~
P (x)

D' '(x)=«'le &&gle lx&&xl, (3)

' 1/2

@a+ (x)=i y
'RN

A,
4m.

(4)

bkz is the annihilation operator and e&& is the polariza-
tion vector for the mode kA, , respectively. The positive-
frequency part of the field traveling in the x direction and
polarized in the y direction is written as

C~c+'(x, t ) =e„ra(x)e (5)

with amplitude CG(x) changing in its transverse y and z
directions slowly on the scale of the laser wavelength.

%e are interested in a stationary solution of the
Schrodinger equation

(6)

describing a stationary atomic-beam configuration which
enters the interaction region in the ground state. As the
boundary condition at z =0 we choose

&x,y, olyE(t) & =VNEe ""'"f(x,y )Ig &e lo&,

where IO& denotes the vacuum of the electromagnetic
field, and f(x,y ) describes the (coherent) spatial distribu-

where d is the dipole matrix element, e is a unit vector in
the direction of the dipole, and lx & is the atomic center-
of-mass position eigenstate. The positive-frequency part
of the quantized electric field at position x is

l+ Ace ——fig0

Here y is the spontaneous-decay rate of the excited level.
Once Eqs. (10) and (11) have been solved, the statistical
operator of the atomic beam for z=0 in the subspace of
the photon vacuum is known,

p' '(t)= fdE W(E)IQE (t)&&1(E (t)l, (12)

where W(E) is the energy distribution of the atomic
beam.

Equations (10) and (11) can be simplified under the as-
sumption of large kinetic energy E» fifit, hy, A'zkz/2m

[for all E for which W(E) is appreciable]. We write

Ps, (x)=e P, (x) with Pg, slowly varying on the
scale of the de Broglie wavelength A,@=2M/(mvz).
Then Eqs. (10) and (11) can be simplified by dropping the
second-order derivatives with respect to z, but keeping
the first-order derivative in z.

For simplicity we shall work in the Raman-Nath limit
where the interaction time is assumed to be short com-
pared to the spontaneous-decay time and the inverse
recoil frequency, that is Wo /vE « 1/y, 1/(fikL /2m ),
1/(irikL /mL) with Wo the laser beam waist of a Craussian
laser beam [18]. We further assume the beam width Wo
is much greater than L, and the optical wavelength
»L, 2'/kL and zo «v'L!k so that diffraction effects
may be neglected. Then the Schrodinger equation can be
simplified further in the region inside the laser beam by
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—ikLx-
iUE p = —

—,'Q(z)e
Bz

(13)

neglecting y and the spatial derivatives with respect to x
and y. Furthermore, because L «8'„ the laser field can
be considered to be constant over the cross section of the
atomic beam @G(x)= 60.

The resulting equations are

scattering I2,3].
Simple analytical and qualitatively correct solutions

are obtained by approximating the z dependence of the
Rabi frequency by the step function

T

~( )
&0 if lz —zol «~wo
0 otherwise.

Imposing the boundary condition
(14)ivE p 5L, Q &~ Q(z }e

az pg(x, y, O)=f(x,y), P, ( xy, O)=0,

we see that the solution of Eqs. (13) and (14) is

Pg(x, y, zo+ ,'&n. w—o)=Cgf(x,y },

P, ( xy, z 0+—,'&m W )o=C,f(x,y)e

with

—(z —zp) /Wp2 2

with the Rabi frequency Q(z ) =Qoe
QO=2ld@ol; z=zo, the beam axis; and 5L=col —coo, the
detuning. Equation (13) has the form of a Schrodinger
equation for a two-level system with the z coordinate
playing the role of an "effective interaction time" z/vE.
This equation has been the starting point of essentially all
previous theoretical work on coherent atomic-beam

(16)

(17)

i5g +7TWp/(2UE )

e cos
}/UE

&~w,0 (52 +g2)1/2
2UE

i5 &nWL . 0 2 2 1/2

(5L +Qo) 2v,
sin (5L +Qo)

(18)
1 iQI 0 l5LV~Wp/(2UE)

(52 + f12)1/2

&~w,
L 0

0 (52 +~2)1/2
UE

X(p (t)lz + ,'&7rw &, —(19)

with

(z, + ,'&~w, ly, (t)-)

=e "/"'x'J d'x(c, lg)+e' '" "'
C, le&)

To summarize, the atomic beam, immediately behind
the exciting laser field, is described by the statistical
operator

(z + —,'&7rw lp' '(t }Iz + ,'&7rw )—
= f dE W(E)(zo+ —,'&awol'~ (t))

systems with a common ground state. Thus the analysis
of Sec. II A can be used with only a few changes and we

can therefore be brief.
The changes in the Hamiltonian a6'ect the free atomic

Hamiltonian for the internal degrees of freedom, which
now reads H„=duo (ale )(e I+le+ )(e+ I), where

I e+ ) denote the degenerate m =+1 sublevels of the excit-
ed state (we drop the state Ie 0) which does not couple
in the present laser configuration). The positive-

frequency part of the atomic dipole operator density now

reads

D'+'(x)=d(e+lg)(e+ I+a Ig)(e l)lx&(xl .

ef(,xy)l xy &NIIO&, (20)

where Cs and C, are given by Eqs. (18), and f(x,y ) is the
slit function. Thus the atom is prepared in a linear super-
position of the ground and excited states.

Here e+ are the complex unit vectors describing right
and left circular polarization. We shall take the quanti-
zation axis in the x direction. The exciting laser mode
with cr+ and o —counterpropagating components has a
positive-frequency part of the electric field of the form

B. J=~J=1 transition excited by o.+~cr standing wave

e ) I eo) I
&.)

We now shall consider a three-level atom in a V
configuration interacting with a standing-wave field as
shown in Fig. 1. Due to angular momentum conserva-
tion the o. + and o. components of the exciting laser
beam separately drive the m =0~m = 1 and
m =0~m = —1 transitions, respectively, and this excita-
tion scheme reduces to that of two independent two-level FIG. 1. Energy-level diagram for the three-level system.
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( '+'(x, t)=i '+'(x, t)+( '+'(x, t),

with

(v'+'(x t ) = —(v'+'(x)e
2

(22)

(23)

We can now repeat the analysis of Sec. II A
and find that the three-level problem reduces to a two-
level problem between the levels lg & and

le, &=2 ' (le+ &e +le &e ). The result for the
statistical operator of the atomic beam, immediately
behind the exciting laser beam (i.e., for z =zp
+&n.Wp/2), is therefore given by Eq. (19) with

(z p+ '&irWpIPE (t}&=e ""' 'f d x Cglg&+ —'e '
'(le+ &e' "+le &e

' ") f(x y)lx y&(8)10&
0

(24)

where Cs and C, are still given by Eqs. (18). Thus the
atom is now prepared in a linear superposition of the
ground state and two excited states.

III. PROPAGATION OF THE SUPERPOSITION
OF WAVE PACKETS

a-
i fivE

8 82+2m Bx By

ifivE ps = —
3

+B — ~' B' B'
Bz s 2m Bx' By'

—%5+iL

(26)

(27)

After passing the laser beam the atoms are left in linear
superpositions of excited states and the ground state,
traveling as free wave packets with differing mean
center-of-mass velocities, and spreading in directions
transverse to the atomic beam. We shall calculate the
propagation of the wave function below.

A. Two-level atoms

The wave function in the region z&zp+(+ir/2)II/p
=zp is still of the form

(t ) & e
—

(i/A)EtI0&
0

with the boundary conditions

Pg (z =zp ) =Csf(x,y ),
$, (z=zp)=C, e f(x,y) .

For simplicity we now redefine z so that zp =0.
The solutions of Eqs. (26) and (27) are

P (x)=C fE(x,y, z),

i(SL +i y )z/vz +ikL x LA'k z
X ,y, z

mvE

(28)

(29)

f d3X ei(+2mE/i))z[y (X)lg &

+e tT[.t, (x)le &] lx&,

where t[(')s and tl), satisfy

(25)

where

A'kL2

5 —tt) COL L 0

and

(30)

lmvE (imv&/2hz)[(x —x') +(y —y') )
E X&y&Z (irL')'/'2MZ x'+) '«'

It follows from Eq. (31) that

f(x,y) if z «L mvE/A'

(31)

fE(x&y&z) '
i [(mve/Az) }L

2 (ni.rL }' p

1/2
mvE

(x +y )' g dg if z»L mvE/()i,

(32)

where we assumed a circular hole x +y ~L . In the following we shall only be concerned with the region
z &&L mvE/fi. Thus the ground and excited states propagate with different k vectors as shown in Fig. 2.

B. J=0 J=1 superposition

The wave function in the region z & zp+ (3/ir/2) 8'p (or, after redefinition of z, z & 0) can be written in the form

I1[&E (t) &=e " "' 'f d x e' "' ps(x)lg &+ —e [([)+(x)le+ &+([) (x)le &] mix&I8tl0&0
(33)
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Xt

w, -, p =mv, E, U3O
p = ITIVE

0

where II}s(x) and II}+(x) are determined as for the two-
level atom in Sec. IV A. We find, using the notation of
Sec. IV A

Pg(x}=CgfE(x,y, z),
e i(5L +iy) / zekvik&xC RkL z

((}~(x)= e fE x+,y, z
2 P72 VE

. (34)

In this case the atom propagates with the different k vec-
tors for the ground state and two excited states as shown
in Fig. 3.

IV. COHERENT SPONTANEOUS EMISSION

u), =ck„

FIG. 2. Scattering of a two-level atom from a traveling-wave
laser field. (Note the width of the laser is not drawn to scale; ac-
tually 8'0»2L. ) The shaded area represents the overlap re-
gion.

u3, =ck„

FIG. 3. Scattering of a three-level atom from a standing-
wave laser field with 0+ —cr counterpropagating (again the
width of the laser is not drawn to scale; actually 8'0 »2L). The
shaded area represents the overlap region.

a' + = a'—c V 6' '(x, t)=— 4n —Di '(x, t}, (36)
Bt Bt

A, (x, t)= A(x, t) — Vf,' d x'1 V A(x', t)
(37)

where Di+'(x) is the transverse projection of the positive
frequency part D'+'(x, t ) of the dipole operator density
D(x, t) in the Heisenberg picture. The transverse projec-
tion of a vector field A(x ) is defined by

A. General expressions

We now wish to evaluate the coherent electromagnetic
radiation spontaneously emitted by the atoms after their
coherent excitation. To this end we consider the expecta-
tion value of the positive-frequency part of the emitted
quantized electromagnetic field

( (v+(E()xt })=i g f d k
A. 4~

' 1/2

e'" *e„k(b„,)e

(35)

The equation of motion of ((E+v)(x, t), 6'(E '(x, t) in the
Heisenberg picture follows from the Hamiltonian (1). It
can be put into the form of the inhomogeneous wave
equation

and satisfies VAj =0, VX A~=VX A. We note that the
operations [A(x)]i and f d x'(Ix —x'~ 'A(x') commute.

The emitted quantum field is given by the retarded solu-
tion of Eq. (36) which reads

e(,-+)(x, r ) =—
(}2 (+), [X —X'(

', fd'x'
/x —x'/

(3&)

Taking expectation values and evaluating the retarded
time-dependent expectation value on the right-hand side
in the Schrodinger picture using the density matrix (19)
and (20) we obtain

(C(„*)(x,t)) =—1 fdE ~(E)fd3 1 (}
~

)x x) D{+)( ) @
)x x

2 ~x
—x'~ Qr 0 c 0 c

(39)

B. Two-level system

Inserting the wave function (25) and the dipole density (3) in the general expression (39) we find for the positive-

frequency part

(O'E+ (x, t)) =klde f dE W(E}C C, fd x'

ik&()x —x' +)x') +i( &5+i y/2)z /v& +, ', Lhaik z'

Pl U~

(40)
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It is clear from this result that only the spatially overlap-
ping parts of the wave packets fE(x) and

fF(x (—RkLz/mvE)e„} of the ground state and the excit-
ed state contribute to this coherently radiating dipole
density. As soon as the two components of the center-
of-mass wave function are completely separated spatially,
the coherent emission stops and the excited state can only
decay via incoherent emission. Indeed, after complete
spatial separation, the two linearly superposed com-
ponents of the atomic beam are nonoverlapping both in
center-of-mass coordinate and momentum and behave in-
distinguishably from two mutually independent and in-
coherent atomic beams of corresponding intensity. How-
ever, if the two separated components of the beam are
somehow brought to overlap again, as is done in an atom-

I

ic interferometer, interference effects and coherent emis-
sion will reappear, provided the decay due to spontane-
ous emission is not yet completed, i.e., yx'/2UE is not too
large.

The remaining task of this subsection is the evaluation
of the integral {40). For simplicity we consider only a
limiting case defined by the following conditions: (i)

kI L »1 {the hole is large compared to the laser wave-

length}, (ii} z' «L /A, z (only the near zone of the hole is
considered where diffraction of the atomic beam is negli-
gible), (iii) x »L, (x +y )' »(kLL)L (the radiation
field is only considered at large distances from the atomic
beam), (iv) furthermore, we consider a square hole
~x

~

& L, ~y ~
&L. As we show in Appendix A, we obtain

as our final result for {CI1+')

1/2

kl

(x2+y2)3/4

(cosa)'/ y[(x +y ) —x cosa]

AkL
Xexp ikL cosa —tana (x +y )' +ikrzsina

2mUE

L
Xexp ikLx

27?2VE

Ak Ak
sina+i

2mUE

kL xz
z exp —ikL cosa

2mvE (x +y )

x cosa
( x 2+y 2

}I/2
Xsin kLL 1—

P

y cosa
Xexp — [z —(x +y )

/ tana] sin kLL
V

I
( 2+ 2)1/2

111kL(z
—(x +y )' tana)1—

2mvEL

Xe 2L—AkL
(z —(x +y )' tana) e z (x +—y )'/ tana

mUE
J

(41)

where we defined the angle a by

L
slna =

kL vE

I

111 coo+ (A'kL /2m ), which is different from 11lcoL if

5L =0. In order to make up for this difference the atoms
have to make use of a Doppler shift by emitting at an an-
gle a&0 (blueshift) if ror &coo+fikl /2m or a&0 (red-

(n./2 —a) is the mean angle between the z axis and the
mean direction of propagation of the coherently emitted
field as shown in Fig. 4; and 6 is the step function. This
expression is complicated because of the somewhat corn-
plex geometry of the system which lacks simple sym-
metries.

A major source of complication is the presence of de-
tuning 5L %0 giving rise to aAO. Physically this is easily
understood: the coherent emission from a stationary
beam of atoms must occur with the frequency coL of the
driving laser frequency. On the other hand, the excited-
state wave packet of the atom in the laboratory frame
difFers in energy from the ground-state wave packet by

~ (x,y, z)

r i

V SlnO,

zl VE

FIG. 4. VE is the velocity of the atom in the z direction. The
component of the velocity in the direction of the coherent radia-
tion is VEsina. P is the position of the detector. The frequency
of the light emitted by the atom in its rest frame is mo. Howev-
er, due to the Doppler shift, the frequency seen by the vector is
the laser frequency 8'I .
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shift} if 5L &0 (see Fig. 4}. Indeed this simple physical
consideration leads to Eqs. (A6) and (42) relating the po-
sitions where the coherent radiation is emitted and re-
ceived, and it can be seen from Eq. (41) that, apart from
corrections of order (1)'ikl /mvE), the field is emitted along
a cone of angle (n/2 . a—) around the z axis as shown in
Fig. 5.

A major feature of the result (41) is the fact that the
coherent radiation can only be observed in a certain re-
gion of space given by

2 2 1/2 2mvEL
(x +y )' tana&z &(x +y )'/ tana+

Ak
(43)

and x &0, that is, in the upper half cone of angle
(~/2 —a) around the z axis whose vertex lies at the point
where the wave packets separate. For a&0 the lower
boundary for z should be replaced by 0.

Having discussed the effects of detuning 51 %0, we

may now restrict our attention to the case 5L =0, a =0,
where Eq. (41) reduces to

21T 1/2

Qk~

(x +y ) ikL((x +y )
/ +(Ak&/2mvz)z]X

2 21y y[( 2+ 2)1/2 x ]

Xsin kL L 1—
( 2+ 2)1/2

AkL, xz yXexp —ikL z sin
2muE (x +y )' 2vE

AkLz1—
2mUEL

(x 2+y 2)1/2

tiki8 2L — z (44)

Because kI L ))I, the radiation is emitted into a region y/(x +y )'/ —1/(kL L ) «1. The strongest radiation is re-
ceived in the (x,z ) plane, y =0. In that case Eq. (44) reduces to

fikz z

X 2',v gL

AkLz —ik& [x —(AkL /muE)z]
1 —— e 8(x)+e

2mvEL

AkL z
sin 2k

vEL
- e( —x) (45)

This expression shows that the amplitude of the radiation
goes to zero continuously as one approaches the border
of the region where it is no longer seen due to the separa-
tion of the wave packets. It also shows a pronounced
asymmetry between the radiation emitted in the upward
x direction (the direction of propagation of the exciting
laser field) and the radiation emitted in ( —x) direction
which is strongly suppressed [on the order of (kL L ) ']
except in a domain of thickness of the order of
(muz/)r1kl ) near the boundary of the region where the
coherent radiation disappears. Within that domain, the
radiation emitted in the upward and downward direc-
tions is of about the same magnitude.

FIG. 5. The coherent radiation emitted from the two-level
atom is depicted. The lengths of the arrows represent the am-

plitude of the radiation.

C. J=~J=1 superyosition

The calculatIon presented I Sec. IV 8 can be repeated
in a similar fashion for the two-level transitions
~g)~~e+), (g)~~e ). The interesting feature is that
the coherent spontaneous emission observable in the cone
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2mvEL
(x +y )' tana&z&(x +y )'~ tana+

Akq
(46)

consists now of photons in linear-superposition states of
opposite circular polarization traveling in different direc-

I

tions as shown in Fig. 6.
As the effects of detuning and the preferential emission

at small angles [of order (kr L ) ') against the (x,z) plane
are exactly the same as before, we only state the result for
y =0 and a=0:

i6kL z (y/2g )z

I& l
mvE

fikl z
X 1— [e+e(x )+e e( —x )]

2mUEL 2

ikL ~AkL /muE )z+e

A'kL z
sin 2klL 1—

2muEL

2kL, L

x [e,e(x)+e e( —x)]1

2
(47)

Thus in the (x,z) plane, except in a domain of thickness
b,z-(muE/RkL ) near the boundary of the region in Eq.
(46) the coherent emission in that region consists of linear
superposition states

&@' +( xO, z)& — — [e e(x)+e e( —x)]
2 x

+~kL lxlXe

as is seen in Fig. 6 for the case of a) 0.

(4g)

D. Homodyne detection of coherent spontaneous emission

The coherent emission from the atomic beam may be
detected via homodyning the emitted field with the field

I

of a local classical oscillator of the same frequency which
has a well-defined phase P with respect to the driving
laser field. Most conveniently the local oscillator is de-
rived directly from the driving laser. The photocurrent
generated in the detector is then proportional to

I-~ELo~ +Ero(@a~+'&e '&+(@~ '&E„oe'~, (49)

where Bzoe'~ is the amplitude of the positive-frequency
part of the local-oscillator electric field. Subtracting out
the contribution of the local oscillator alone, which is
done automatically in a balanced homodyne scheme, the
photocurrent becomes a direct measure of the desired ex-
pectation value. [By varying the phase P of the local os-
cillator with respect to the driving laser, the contribu-
tions from the positive- and the negative-frequency parts
( 8'*'

& can be distinguished. ]

V. DETECTION OF THE SUPERPOSITION
BY ABSORPTION

Instead of observing the coherent spontane-
ous emission one can observe the overlap of the wave
packets and its disappearance by measuring the absorp-
tion rate of energy from a weak probe beam

ici)L t l Scot+ ik'x[E'+ '(x)e +c.c. ] at the frequency
coL+hco passed through the wave packet. The probe
field is assumed to have a fixed phase relation to the excit-
ing laser field. The energy-absorption rate is given by

~=fd x E' '(x) —(D'+'(x, t)&e
Bt

+C.C. (So)

FIG. 6. The coherent radiation from the three-level atom is
depicted. The lengths of the arrows represent the amplitude of
the radiation of the two components corresponding to 0.+ and
cr polarizations.

and oscillates with the frequency he@. By this oscillation
and its proportionality to the probe-beam amplitude, this
rate can be distinguished from the incoherent absorption
rate. Evaluating the expectation value using the results
of Secs. IV A and IV B, we obtain for the two-level atom
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W= i—ck d f dE W(E) C'C e ' 'f d x E' '(x)e fz x z x— e„—c.c.
))ski z

mUE

We shall assume that the probe beam has constant ampli-
tude Ezy over the atomic beam in the x and y directions
and illuminates a very small section of the atomic beam
in the z direction.

Introducing the Fourier transform of the overlap

s~nkyL t'(flak k z )/2mvE
g, (k,z )= ekL

Ak, zp
sink L-

2P? UE

k„L

—(y/2vE )zo
e

AkL z
gz(k, z~ ) = d x fz(x)e '" "fz x— e„

mUE

—(y/2v )z —(z —z ) /8'
X — 8 8

v'~W,
(52)

AekLW= Q dE W(E} C'C e
2i g e

51
XgE k —e„kL —ez, z~

UE

where the normalized Gaussian factor describes the
profile of the probe beam, we may rewrite Eq. (51}as

For z~ outside the overlap interval gz(k, z ) vanishes, i.e.,
the absorption rate 8' is a very good indicator for the
overlap of the wave packets. We again find a pronounced
directional characteristic, because gz(k, z ) is small un-

@
less )k„L~ &1, ~k„[L—A'k, z~ /(2mvz)]~ &1. As long as
0 &z~ &&2muzL /Ak„ this condition implies that W
remains small unless the wave vector k of the probe beam
satisfies )k L ) 1, )(k„—k )L )

& 1, k,L & +2kl L,
where the third inequality follows from k +k +k, =kL .
The maximum absorption rate is obtained for k„=kL,
k~ =0, k, =5L /UE and is given by

Ak, z
W,„=,'fickLQ fdE—W(E) 1—2' UEL

Xe '(Cg*C, e ' '+c.c. ) .
—(y/2v )z

C. C. (53) (55)

where Qz =(dE&/2A') is the Rabi frequency of the probe
beam. We note that 8', for suSciently small E, is linear
inE .

Using the wave packets in the limit (A 1)
and assuming, for convenience, that the width

of the probe beam in the z direction satisfies

W~ && vz/y, muz/Rki k„,(1/k, )e, we have explicitly, for
0 & z„&2m vz /fikL,

For the J=O~J = 1 transition, very similar results are
obtained. Even more crucially than in the preceding ex-
ample, the absorption rate depends on the polarization of
the probe beam. A probe beam that is circularly polar-
ized with respect to the z direction predominantly cou-
ples only to the upward or downward moving component
of the excited-state superposition. A beam linearly polar-
ized in the z or y direction couples to both components,
and we shall therefore assume polarization in y direction.
Equation (53) is then generalized and now reads

fickL
W= . Q dE W(E) —C'C, e ' '

gz k —e„kz —e, ,z~ +gz k+e„kz —e, ,z~
2i

+c.c. , (56}

with

—(y/2v~)z —(z —z ) /W
gz (k, z )=fd3x fg (x)e '"*fz x+ e„— e e

muz
(s7)

The conclusions concerning the importance of the overlap of the wave packets of the ground state and the excited
states, and of the directional characteristics of the probe beam for a nonvanishing absorption rate W+0 remain the

same, except that now k„may have a positive and negative sign,
~
(k„+kL )L

~

& l.

VI. INCOHERENT SPONTANEOUS EMISSION

A. General expressions

For the sake of completeness we also consider the incoherent spontaneous emission from the atomic beam after pass-

ing the exciting laser beam. This is most conveniently represented by the correlation function
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G; (x,x';t t—')=(hatt;(x, t)8t( j(x', t'))

(i,j refer to polarization indices), which in the Heisenberg picture can be written as

(58)

G,,(x,x';t t'—)=kt4 fdE W(E) fd'X fd'x' gx D,'; ' X, t
x gllx —g I

~ " ' c

D(+1X ij X t—
C

(59)

Inserting a complete set of plane-wave states lp) with
momentum p and turning to the Schrodinger picture, we
can rewrite Eq. (59) in the form

G,,(x,x';t —t')= f dE W(E)G,, ( x, x', t t';E—),
1

(60)

G; (x,x';t t', E)=—
2 fd p F;*(p,x,E)FJ(p,x', E)

(21r(11)'

i [co&+El%'—p /(2m')](t —t')
Xe

S,"(x,x';(v)= fd'p W(E(p))F;(p, x,E(p))
(21r1(t)2

XF,(p, x', E(p)),
with

E(p) =R(tv tot )—+
2@i

(63)

(64)

d x
lx —x'I

x &glN &plD,',+'(x )Iy, (0)),

i[co&+E/A' —p /(2m%)]ix —x'i/c

F;(p, x, E)=kL2 f
(61)

B. T~o-level atoms

For two-level atoms we obtain from Eqs. (25) and (29)
where we made use of the time dependence of the wave
function in the explicit form given by Eqs. (25) and (33).

Thus the emitted field is an incoherent mixture of the
amplitudes F;(p, x,E) for difFerent p and E, oscillating
with frequencies toz+[E (fi p /—2m)]/fi, respectively
The fact that the atomic beam is in a linear superposition
state with diferent center-of-mass components attached
to the excited state and the ground state has no inQuence
on the amplitudes F,(p, x,E) and the correlation function

G;J. The spectrum of incoherent spontaneous emission

SJ(x,x', to)= f dt e ' 'f dE W(E)GJ(x, x';t;E) (62)

is given by

(g I (plD', +;'(x) lg, (0) )

=C,d e fz x—

Xexp —i

Sk,z
e„,y, z

Pl VE

mvx 5t +iy/2+ e,
VE

kL C 'X (65)

An approximate evaluation of the integral (61) is summa-
rized in Appendix B. We obtain

Fi(p, x,E)= A' k C,d
L ' k'cosP

1/2

X exp — [z —(x +y )'/ tanP)+ik'[(x +y )'/ cosP+z sinP]
(x 2+y 2)1/4

XS p„+~k "+ —~k, S p +~k(@2+y2)1/27(+2+2)l/2 (66)

where we have defined for fixed intermediate momentum
p, and beam center-of-mass energy E the angle P(p„E)
by

(5L /vs)+(mv~ —p, )A'

sing= (67)

We can now return to Eq. (60). For xAx' we can do
the integration over the intermediate momentum using
the 5 functions, a stationary-phase approximation. The
resulting correlation function G; (x,x', t t', E) is non-—
vanishing only at space-time points that are connected by

(k'dlC, I)'
gS;;(x,x;co)=2m f dE W(E)

vEcil/c

X
x +y sin P(co)

(x2+y')'/'cosp(co )

Xe
—(y/v )[z—(x +y ) ta]

(68)

an emitted photon.
For x=x' the approximation (B3) yields a diverging re-

sult and we have to return to the expression (Bl) to
resolve this divergency. We obtain, taking the trace over

~ ~

&)Js
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with

, ~—~o—Xk,'/2m
sinp(co) =

UE CO
(69)

The condition ~sinp(co)~ &1 limits the frequency of the
emitted photons to a small neighborhood of
~o+ AkL /2m.

C. J=O J=1 system

The calculation of Sec. VIB may be repeated for the
J=0+-+J= 1 system with only minor changes.

One feature is the possibility to do coincidence mea-
surements on photons emitted in opposite directions. We
therefore consider

S (x,z, co) =S„~(x,O, z, —x, O, z;co)+H. c .

and obtain

(irkL1 ~C, ~ )
S~~(x,z, co) = —f dE W(E)

L cosp(co)UEco/c
—(y/UE )[z—~x ~tanp(co) jXe

(70)

x 5(coL —co cosp(co) ), (71)

where sinP(co) is given by Eq. (69).
This correlation function is measured in a heterodyne

experiment where the emitted field is first added to the
field of two mutually coherent local oscillators with fre-
quency co at the two points (x,O, z) and ( —x, O, z) and
then measured by two photodetectors whose intensity-
intensity correlation is recorded. The negative sign of Syy
reflects the anticorrelation for the emission of photons in
opposite directions; but the linear superposition in the ex-
cited state, or between the excited state and the ground
state, has no influence on this correlation function.

VII. CONCLUSIONS

We have analyzed the coherent and incoherent emis-
sion of photons from a stationary atomic beam placed in
a linear superposition of excited states and the ground
state attached to diferent center-of-mass wave packets.
The examples of two-level atoms excited by a running
wave laser, and of J=O~J=1 level atoms excited by a
o.+ —o. standing-wave laser, have been considered ex-
plicitly. For convenience the excitation process was
treated in the Raman-Nath limit, which requires that the
interaction time be short compared to the spontaneous-
decay time and the inverse recoil frequency. However,
these limitations are a rnatter of computational conveni-
ence only and not of any fundamental importance to our
results. Within the Rarnan-Nath approximation the
wave packet created in the excited state is identical in
form to the ground-state wave packet, but its momentum
is displaced by that of the absorbed photon. In the
o.+ —o configuration the exciting laser mode is a stand-
ing wave and hence a linear superposition of the photon
momenta +fikL. This linear superposition is transferred
to the excited state in the case ofJ=O~J = 1 transitions.

The two examples we considered were made particular-
ly simple by angular momentum conservation. In the
more general case of a standing-wave field without angu-
lar momentum conservation the atoms, after passing the
exciting laser beam, are in a linear superposition of the
ground state and the excited state, each consisting of a
linear superposition of several center-of-mass wave pack-
ets. These have average momenta 2n fikL and
(2n + I )fikt for the ground state and the excited state, re-
spectively, where n assumes positive and negative integer
values. Each such component of the total wave function
then carries a phase factor exp[ il(c—oLt —kLx)), with
l =2n, 2n+1, respectively.

In Secs. V and VI we have analyzed two ways to detect
and monitor linear superpositions of the ground state and
the excited state, provided their wave packets have spa-
tial overlap. The most promising experimental signature
is provided by the energy absorption rate from a weak
probe-laser beam, which is proportional to the probing-
6eld strength, oscillates with the difference of the
probing- and exciting-laser frequencies, and, for a
sufficiently monoenergetic atomic beam, exhibits a pro-
nounced directional characteristic. The directional
characteristic arises because the spatial extension of the
atomic beam in all directions is assumed to be large com-
pared to the laser wavelength, and because of the spatial
coherence of the atomic beam over its cross section.
Another experimentally detectable signature is provided
by the coherent spontaneous emission from the superpo-
sition state at the frequency of the exciting laser which
has also, and for the same reasons, pronounced direction-
al characteristics and could be measured by a homodyne
scheme.

Both experimental tests require a second laser field in a
fixed phase relation to the exciting laser, and most easily
derived directly from the driving laser field. In the case
of the absorption experiment, the frequency shift (b,co)

could be generated via sidebands using a modulation
technique. In order that the finite-energy spread AE of
the atomic beam does not destroy the phase coherence of
the linear superposition at position z with the exciting
laser at z =0 the inequality AE/E « U~/z 5L vg/WpQp
must be satisfied, as is most easily seen directly from Eqs.
(40) and (18). To satisfy the first of these conditions over
the entire overlap domain of Eq. (A2) the condition
AE/E « fikt /mL5'L must be satisfied. Interestingly,
only the detuning 5L, which can be made very small, and
the Rabi frequency appear in these conditions, but not
the laser frequency coL, because the coherent oscillation
in time at frequency ~L of the atomic dipole moment is
imposed by the driving laser field, and is only limited by
the phase coherence of that field, independent of the ve-

locity distribution of the atoms in the beam.
Rote added. Realization of an atomic interferometer

has been reported by O. Carnal and J. Mlynek, Phys.
Rev. Lett. 66, 2689 (1991);W. Keith, C. R. Ekstrom, Q.
A. Turchette, and D. E. Pritchard, Phys. Rev. Lett. 66,
2693 (1991); M. Kasevich and S. Chu, Phys. Rev. Lett.
67, 181 (1991); and, F. Riehle, Th. Kisters, A. Witte, J.
Helmcke, and Ch. J. Borde, Phys. Rev. Lett. 67, 177
(1991).
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APPENDIX A: EVALUATION OF THE INTEGRAL (40)

(2L) ', lxl, lyl&L,
0 elsewhere . (Al)

In this appendix we evaluate the integral (40) under the
following assumptions for a square hole lxl &L, lyl &L
(see Sec. IVB): (i) kLL )&1, (ii) z «L /A, E, (iii) x »L,
(x +y )' »(k L)L

Due to the second condition, the function fz(x) can be
approximated by

The region of overlap of the two wave packets is then re-
stricted to

mvE

i.

RkL z' —L +x'+L (A2)

AkLz'
Xf(x'„y')f x'—,y'

mUE
(A3)

can then be performed in the limit (x +y )'~2&&kLL,
where we can use the fact that the integrand of Eq. (A3)
is cut off by the functions f rather than by the oscillations
of the phase factor, because in that limit we have

ki L « QRkL with R = lx —z'e, l. Expanding therefore
the phase to first order in x',y' and performing the in-

tegrals we get

and is located entirely within the near zone of the hole
because of the first condition kLL »1. The condition
x »L permits us to neglect x' in the integrand of Eq.
(40), except in the phase factor which varies rapidly. The
integrations over x',y'

FE(x,z')= fdx'dy', e
lx —x'l

ikL t(R+(tiki z')/(2muE)(1 —x/R )]
F@ x, z' = L

frkL z'
sin(kLyL /R )sin kI (1—x /R ) L—

(y /R )(1—x /R )

2mUEe — L —z'
I.

(A4)

where we defined the step function 8(x ) = —,'(x + lx l )/x.
The remaining space integration

(A5)

can be carried out in stationary-phase approximation, be-

cause the phase factor e L L E varies much more
ik R +i 5 z'/U

rapidly than the rest of the integrand. Its phase is sta-
tionary for

i(k'x/R +p„ /& —ki )(&kL /~UE )z'
2e

sin k' —+ —k& L sin k' —+ L, x Px . , y Py

R fi R

k k, y
R A

' R

(B1)

(x 2+ 2)1/2
z —z'=(x +y )'~ tana, R =

coscx
(A6)

where

where the angle a is defined in Eq. (42). This gives Eq.
(41).

P ] VEk'= —
coL +—— =—

coL
— (p, mvE)—

c A' 2m A c fi

(B2)

APPENDIX B: EVALUATION OF THE INTEGRAL (61) We shall assume that kl L &) 1 and approximate (B1) by

We sketch the further steps by which the integral (61)
can be evaluated in stationary-phase approximation.

(i) Equation (64) is inserted in Eq. (61) and the phase of
the rapidly varying phase factor is expanded to first order
in x',y'.

(ii) Using the approximation (Al) for fE(x) and as-
suming R )&L, R )&kIL where R =[x +y
+(z —z') ]'~ the x',y' integrals can be done, yielding
the factor

2 2
3

L R A R fi
(B3)

'We note that this factor appears under the integral over
the intermediate center-of-mass momentum p. Therefore
the factor (Bl) does not imply any directional charac-
teristics of the emitted incoherent radiation.

(iii) The integral over z' can be done in stationary-
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phase approximation. This approximation yields simpler
expressions under the assumption AkL «mU~. For fixed
intermediate momentum p, and beam center-of-mass en-
ergy E, we define the angle P(p„E) by Eq. (67). In terms
ofp, the stationary phase condition assumes the form

z —z' =R sinp =(x +y )' tanp . (B4)

The condition ~sinp~ ~1 limits the z component of the
momentum which may appear in the intermediate state.
As our final result we obtain Eq. (66).
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