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A-type lasers and masers: Lasing without inversion and a vector model
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We show that the problem of a A-type {and also a V-type} three-level single-mode laser {maser) is iso-

morphic to that of a two-level single-mode laser (maser) under the conditions of energy-level degeneracy
and equal decay rates. This correspondence reveals that lasing without population inversion can occur
in the A-type system with or without an initial atomic coherence, and also gives immediately the master

equation of the laser (maser) field. We analyze in detail the operational and noise properties of a A-type
laser using a Fokker-Planck approach. We also present a vector model to visualize the population trap-

ping and the absorption and emission processes in such a laser (maser) system.

PACS number(s): 42.55.—f, 42.50.Lc, 42.52.+x

I. INTRODUCTION

Recently various schemes have been proposed for
achieving lasing action without population inversion
[1—18]. These schemes can be classified into three
classes. (i) If we inject active atoms into a cavity with an
initial atomic coherence between the upper and lower
transition levels, we can achieve lasing without popula-
tion inversion in a two-level laser [3,4] and a two-level
maser [6]. Such a laser and a maser with injected atomic
coherence are the simplest systems for lasing without in-
version. Lasing without inversion has also been found in
other lasers with injected atomic coherence that involve
more transition levels [15,19].

If we do not allow an initial atomic coherence between
the upper and lower transition levels, lasing without in-
version is still possible by using more atomic levels
and/or using a driving field. (ii) For some schemes, one
can find a pair of appropriate states between which there
exists population inversion. These include a degenerate
quantum-beat laser [2,12,15], some dressed-state lasers
and masers [8—11,18] in which there exists population in-
version between relevant dressed atom-field states [20,21],
and others [14]. (iii) For other schemes [1,5,7,13,16,18],
there is no population inversion between appropriate
states [20,21]. In these schemes, a small atomic coher-
ence generated by the atomic-relaxation processes con-
tributes to the gain [17]; for example, in a resonantly
pumped dressed-state laser, it is the dressed-state atomic
coherence that leads to gain [18].

In classes (i) and (ii), the cavity fields build up due to a
proper coherent dynamics of the atom-field interactions,
i.e., due to a proper Rabi rotation of the Bloch vector
[22] in an appropriate vector space. In general, if one
finds lasing without inversion in a laser system, one also
obtains lasing without inversion in a similar maser system
[3,6,8], in which the effects of the atomic decay can be
neglected. This is in contrast to class (iii), in which the
atomic relaxation processes play a crucial role for provid-
ing gain in the absence of population inversion. Usually,
no lasing without inversion is expected in a maser with a
similar level structure. Because of the smallness of the

atomic coherence, the linear gains in class (iii) are usually
one order of magnitude [7,18], or even two orders of
magnitude [7,13,16,17,23] if the lasing frequency is far off
resonance with the appropriate (e.g., dressed) states,
smaller than those in class (ii).

In this paper, we study a A-type three-level single-
mode laser (maser), which belongs to classes (i) and (ii).
This system is similar to, but simpler than, the degenerate
quantum-beat laser [2]. This allows us to avoid the com-
plexity caused by a strong microwave driving field, and to
bring out the physics of the system in a simple and trans-
parent manner. We show that the system is equivalent to
a two-level single-mode laser (maser) under the condi-
tions of energy-level degeneracy and equal decay rates.
This correspondence reveals that lasing without popula-
tion inversion can occur in the A-type system in several
cases: (1) without any initial atomic coherence; (2)
without initial atomic coherences between the upper and
lower levels, but with an initial atomic coherence between
the two lower levels; and (3) with an initial atomic coher-
ence between the upper and lower levels. We analyze in
detail the operational and noise properties of the A-type
laser in cases (1) and (2) through a Fokker-Planck ap-
proach, and obtain the explicit expressions for the
Glauber P function, the mean photon number, mode pul-
ling, natural linewidth, and photon-number variance. We
also present, in the resonant case, a vector model to ex-
plain the lasing without inversion in such a laser (maser)
system.

Our vector model is different from those for two-level
optical Bloch equations [22] and for a two-photon transi-
tion in a three-level system [24], in which the components
of the Bloch vectors are combinations of density matrix
elements. It is similar, however, to the vector model of
an off-resonance three-level system [25], since probability
amplitudes rather than density matrix elements are used
in both vector models.

The paper is organized as follows. In Sec. II we show
how to reduce A-type three-level single-mode laser
(maser) systems to two-level laser (maser) systems. In
Sec. III, using a Fokker-Planck approach, we study in de-
tail the operational and noise properties of a A-type laser
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and derive an explicit expression for the Glauber P func-
tion. In Sec. IV, we present a vector model for resonant
A-type laser and maser systems. Finally, we discuss in
Sec. V how to modify the equations in Secs. II—IV to fit
V-type three-level single-mode lasers and masers.

cos 8=g, /G, sin 8=g2/G,

G —(g2+g2 )1/2

In the case of degeneracy of the two lower levels,

6kb —
CO

(2.4)

(2.5)

II. A-TYPE THREE-LEVEL LASERS
AND MASERS: CORRESPONDENCE

TO TWO-LEVEL LASERS AND MASERS

%e consider A-type three-level active atoms interact-
ing with a single mode of radiation field in a cavity (see
Fig. 1). The atomic levels of the A-type three-level atom
are denoted by ~a &, jb &, and ~c & with atomic energies
%co„ fico&, and iriro„respectively Th. e upper level ~a & is
coupled with two lower levels ~b & and ~c & by direct elec-
tric dipole transitions. Both atomic transitions a —b and
a —c are near resonant with the cavity field. The Hamil-
tonian for such an atom and the cavity field is (under the
rotating-wave approximation)

H=HO+ V,

with

(2.1)

IB &
=

I b & cos 8+ ~c & sin 8,
~C&= —

~b & sin8+~c & cos8,

(2.3a)

(2.3b)

where

Ho =Pi«t'ai+ y iiiniplp & & @~, (2.2a)
@=a,b, c

V=fig, ~a & &b a+fig&~a &&c ~a+H. c. (2.2b)

Here a and a are the field annihilation and creation
operators, respectively; Q is the passive cavity frequency;
g& and gz are the atom-field coupling constants for the
a —b and a-c transitions, respectively. %ithout loss of
generality, we choose both g, and gz to be real in the fol-
lowing discussions.

%e introduce two combination states for the atom,

we find that the Hamiltonians in Eqs. (2.2) become

Ho=iii«a+trice, ~a &&a I+~ni, (IB &&BI+IC&& CI),

V=KG a & &B ~a+H. c.

(2.6a)

(2.6b)

(2.7a)

p,& =p,b cos 8+p„sin 0 . (2.7b)

For a coherence-injection situation in which p,bAO and

p„AO (see Fig. 1 for the method of generating initial
atomic coherences), by obtaining p» and p,z from Eqs.
(2.7), we can apply the results of Ref. [6] immediately and
find lasing without population inversion in such a three-
level maser. Such a A-type maser belongs to class (i) dis-
cussed in the Introduction.

In order to reduce the problem of a A-type three-level
single-mode laser to that of a two-level single-mode laser,
we need additional conditions regarding the relaxation
processes in the A-type laser. In general, they should be
in such a way that there is no population transfer decay-
ing from the combination state ~C & into the other one
B &. In terms of the Scully-Lamb model [26,27] of lasers,

in which transition levels decay to other lower lying lev-

els, the density operator p,f for an atom and the field

obeys the equation of motion

in terms of the atomic combination states. Equation
(2.6b) shows that the combination state

~
C & is decoupled

from the cavity field, and we can omit the term
A'cob

~
C & & C

~
from Eq. (2.6a). Thus the problein of a A-

type three-level single-mode maser is isomorphic to that
of a two-level single-mode maser, with the atomic com-
bination state ~B & being the lower transition level. It fol-
lows from Eq. (2.3a) that the initial atomic population
and coherence in the new basis are related to those in the
old basis by the relation

p» ——p» cos 8+p„sin 8+ ,'(pb, +p,b—}sin(28),

p,f = i' '[H, p,f] —,'(f'p, f+p,ff')—, —

where

(2.8)

p=a, b, c
(2.9)

Pumping Fields

FIG. 1. Scheme of the A-type three-level lasers and masers.
Before they enter the lasing cavity, the atoms in an atomic beam
are pumped from the ground state to three excited states (~a ),
~b ), and ~c)} which are involved in lasing action in the cavity.
Initial atomic coherences p,b, p„, and/or pb, can be generated
using this method.

the atomic-decay operator becomes

f'=r. lu &&uI+r, (IB &&BI+IC&&CI) (2.11}

is the atomic-decay operator with I „ the decay rate of
the atomic level ~p& (p=a, b, c) Under the con. dition of
equal decay rates

(2.10)
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in the new basis. In other words, under the condition
(2.10), there is no relaxation coupling between the com-
bination states ~B) and ~C). Consequently, under the
conditions (2.5) and (2.10), the problem of a A-type
three-level single-mode laser is isomorphic to that of a
two-level single-mode laser. Again, for a coherence-
injection situation in which p,bAO and p„+0, we can
apply the result of Refs. [3,4] immediately, and obtain
lasing without population inversion in such a three-level
laser. Such a A-type laser also belongs to class (i) dis-
cussed in the Introduction.

In the rest of the section, we study in detail the situa-
tion of no initial atomic coherence between the upper and
lower transition levels, p,&=P„=O. This situation be-
longs to class (ii) discussed in the Introduction, since the
problem of a A-type three-level single-mode laser (maser)
reduces to that of an ordinary two-level single-mode laser
(maser). Thus we know that the gain condition is
p„&PBB [cf. Eq. (2.20)]. Two cases can be discussed
within class (ii).

(1) No initial atomic coherence between the two lower
levels, p&, =0. In this ordinary case, lasing without inver-
sion is possible when

PBB 2 (Pbb +Pcc ) Paa Pbb +Pcc (2.12)

(2.13)

where v is the oscillation frequency, and the explicit ex-
pressions for the coef5cients X„and Y„depend on the
values of the detuning 6 and, in the laser case, also on the

where we have used gl =g2, since the two lower levels are
degenerate. Making use of p„+p&&+p„=1, the condi-
tion for possible lasing without inversion becomes

1 1

3 &paa& p

(2) With initial atomic coherence between the two
lower levels, pb, %0 Whe.n pb, = —Qpbbp„and
p»/p„=tan 8, we find that pBB =0. Consequently, las-
ing without inversion is possible even when only a very
small fraction of population is in the upper level ~a ), i.e.,
even when p„(&1. In this optimal situation, all the pop-
ulations in the lower levels are in the other combination
state ~C) since pcc=pbb+p cpcBB =pbb+p„, and the
population in the combination state

~
C ) is coherently

trapped [28].
To analyze the properties of A-type lasers and masers

(including both pb, =0 and pb, %0 cases) quantitatively,
we need to obtain their master equations. Because of the
correspondence, we get the desired master equations im-
mediately from those of two-level lasers [4,26,27] and
rnasers [29—31]. In the good-cavity limit, in which the
cavity-loss rate y is much smaller than the atomic decay
rates I „(p=a,b, c) (in the laser case) or is much smaller
than the inverse of the atom-field interaction time r (in
the maser case), the master equations in both laser and
maser cases can be written in a general form,

Pnm Pnm(paw n+1,m+1+PBBXnm +Pn —I, m —1Paa nm

+p„+] +]pBBY„, , i (Q v)(n ——m )p„—

+y&(n+1)(m+1)p„++], ,'y(n+m—)p—„

+(n —m) G /I ]/g„

nm /gn

(2.14a)

(2.14b)

2

1=1+ (n+m)+ (1+5) (n —m)
16a

(2.14c)

Here a=2r, G /(I +b, ), P=8r, G /(I' +5 ), and
5=5/I' are the linear gain, the saturation parameter,
and the normalized detuning, respectively; r, is the atom-
ic injection rate; and A=co,b

—v=co„—v is the atom-
field detuning [same for the a band a——c transitions
due to the degeneracy condition (2.5)]. In the maser case,
with zero detuning b, =0, the coefficients are [29—31]

X„' '=r, [1—cos(Gr~n ) cos(Gr&m )],
Y„' '=r, sin(Grv'n ) sin(Gr&m ) .

(2.15a)

(2.15b)

Note that there exist simple relations between the
maser's and laser's coefBcients,

f (M)I e
—P d& /(L)

nm nm

"Y' 're-"d~=Y"' S=o.nm nm~

For both lasers and masers, the diagonal coeScients X„„
and Y„„satisfy the relation

(2.16)

&nn =&n'n =
Ynn =&& (2. 17)

Substitution of Eq. (2.17) into the master equation (2.13)
gives rise to a detailed-balance relation in steady state for
the diagonal elements p„„,

7 +PBB n )Pnn PaaZnpn —],n —] (2.18)

Equation (2.18) leads to the steady-state photon-number
distribution in both laser and maser cases,

pall
P Poo II

1=1 7 PBB I
(2.19)

Let (n ) =n be the steady-state mean photon number,
where h =a a is the photon-number operator. Equation
(2.18) also leads to the "semiclassical" equation for deter-
mining no (or, in the maser case, positions at which the
steady-state photon-number distribution peaks),

(P PBB)z,='Yno . (2.20)

Equation (2.20) confirms that the gain condition is

relaxation rates. The Scully-Lamb model [26] of lasers
assumes that atoms are injected into the laser cavity and
the atomic levels involved in lasing action decay down-
ward to other lower lying levels which are not involved in
the lasing action. For simplicity, the atomic decay rates
of the upper and lower levels involved in the lasing action
are often taken to be equal [27]. For the A-type lasers
studied in this paper, with equal downward decay rates
I,= I b

=I,—=I, the coefficients in Eq. (2.13) are
[4,26,27]

X„' '= —]a[n +m +i( n —m )5



5014 NING LU 45

p, & p&&. For the maser, numerical calculations are
needed to determine the mean photon number no and
photon-number variance. For the laser, however, analyt-
ic expressions can be obtained for the mean photon num-
ber no and the photon-number variance as well as for
mode pulling and natural linewidth. In Sec. III, by using
a Fokker-Planck approach, we calculate these quantities
for a A-type laser which belongs to class (ii).

III. FOKKER-PLANCK APPROACH
TO A A-TYPE LASER

where

dt(I ) =
a(p paa )

1+IP/a

Paa Paaa( — )5

2(1+IP/a)

(3.6a)

(3.6b)

are the intensity- and phase-drift coefficients, respective-
ly, and

Dtl(I) =2I[D&+&+Re(D@@e ' ~)]

p= fP(@)
I
@& & @ld'| (3.1)

we obtain the Fokker-Planck equation in the P represen-
tation,

We denote
I
v ) as the coherent state of the laser field,

a
I
@) =@6). We now convert the master equation

(2.13) with coefficients (2.14) into a Fokker-Planck equa-
tion in the Glauber-Sudarshan P representation [32,33].
Using

aI (p„+paa I13/a )

(1+I13/a)

D&&(I)= [D&+& Re(D—@@e
' t')]/2I

ap„+ ,'IP(1+—5)(p„+paa )

4I ( 1+If3/a )

PI(P Paa )5
Dt&(I ) =Im(D@@e ' ~) =

4(1+IP/a)

(3.7a)

(3.7b)

(3.7c)

a2+
2 Dee+c. c. P(6', t ),

a 2
(3.2)

where the drift and diffusion coefficients can be derived
under the assumption that the mean photon number in
the field is much larger than unity, no»1. The deriva-
tion has been presented in Ref. [4] for more general initial
atomic conditions. Specializing to the pumping situation
of no initial atomic coherence between the upper and
lower levels, the drift coefficient is

dt(no) =0 . (3.8)

Such an no is also the position at which the P function
peaks in steady state. Substitution of Eq. (3.6a) into Eq.
(3.8) gives the steady-state mean photon number

are the intensity-, phase-, and cross-diffusion coefficients,
respectively.

Above threshold a(p„—paa ) & r, the laser field first

builds up spontaneously in the cavity and then reaches its
steady-state value no ())1), which is determined by the
semiclassical equation

—r+2i(v —Q)
a(p,. paa )(1—i&)—

d@ 1+ I @I'P/a
(3.3)

a a(pwca Paa) 'rno=-
r 13

(3.9)

and the diffusion coefficients are

4ap„+P(p„+paa ) ( 1+5 )181

8(1+181P/a )

13(p.. paa ) I @I'—
4(1+

I
@I'P/a)' '

P(p„+paa)(1+5 )6

8(1+
I
C I'P/a)

@p..—paa )(1—t ~)@'

4(1+ I e I'P/a)'

(3.4a)

(3.4b)

In order to study the intensity and phase properties of the
laser field, we rewrite the Fokker-Planck equation (3.2) in
terms of intensity and phase variables I and P through
the relation 8=&Ie '~,

a a a aP(I,Q, t ) = ——dt — dp+ Dtt+ D~~
a~

'' aI' ay aI' ' ay'

which can be obtained alternatively by substituting Eqs.
(2.17) and (2.14) into Eq. (2.20). Solution (3.9) is stable,
since the "locking strength"

&dt(no)
[a (p.. paa—) 'r]—&0.

a
(3.10)

Another semiclassical equation d&(no)=0 leads to the

mode-pulling relation v —0=—,'y5, where use has been

made of Eq. (3.9). The oscillation frequency is found to
be

I 0+—,'ye@,b

r+ (3.11)

In steady state the diffusion coefficients take their
values at I=no Making u. se of Eq. (3.9), we find from

Eqs. (3.7) the steady-state intensity- and phase-diffusion

coefficients,

C}2+2 Dtt, P(I,p, t),
OIa

(3.5)
r(r+apaa)no

DJI(no) 7a(p..—paa)
(3.12a)
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D&&(no) = [a(p„+priri )+y

+(P +Prrrr )[~ —(P.. —
Priri ) 'y ]&'] /8no .

5I=I—
no, respectively, and obtain the linearized

steady-state solution

(3.12b) I'(I)=-
a 2mDrr(no }

f Ar /(I n—o)
exp

2Drr(no)

dr Drr P(I ) =0 (3.13)

The detailed-balance solution of Eq. (3.13) is

C'o d
I'(I ) = exp J dx

II oDrr x
(3.14)

where Co is a normalization constant. Using Eqs. (3.6a)
and (3.7a), we obtain the following explicit expressions:

r dr(x) fi+f2p«ri ' f2di = I— I
o Drr(x) 2n

+ fo (fi+AP 1 )P /It

7l

X ln 1+ when priri@0,
gI
Paa

Expression (3.12b) reduces to the result of Ref. [4] when
5=0. The quantity D&&(no) is half the natural linewidth

[34] of the A-type laser. Equation (3.12b) shows that the
detuning 5 increases phase fiuctuations and the natural
linewidth. When a A-type laser is far above threshold
a(p„—psri ) » y, one finds from Eq. (3.12b) that
Dtt(no)=a(p„+prrri)(1+5 )/8no, and thus the effect of
the detuning 5 becomes significant. Far above threshold,
we may call the factors (p«+priri) and (1+5 ) the
population-induced and the detuning-induced linewidth
enhancement factors, respectively.

Unlike the phase-diffusion coefficient D&t, (no ), the
intensity-diffusion coefficient Drr(no) itself is not a physi-
cal quantity and represents only a part of intensity Quc-
tuations. We calculate the photon-number variance in
the remaining of this section. Since the drift coefficients
(3.6) and the diffusion coefficients (3.7} are independent of
the phase variable P, the steady-state solution of the
Fokker-Planck equation (3.5) must be P-independent too.
Consequently, it satisfies the equation

(3.17)

As a function of I, I'(I) is a Gaussian distribution peaked
at I=no with a "variance" [by Eqs. (3.10}and (3.12a)]

Drr ("o ) a etprrrr&(»P)= " ' =—1+
u y

(3.18)

&paano

rr(p«prirr ) y
(3.19)

Far above threshold a(p„—priri) »y, the normalized
photon-number variance reaches its lower limit
& (&n ) )/& 8') =P„/(P„—Priri ), which is still larger than
that of a Poisson distribution unless pzz =0.

It is clear from Eqs. (3.9), (3.12b), and (3.19) that, for
given parameters a, P, y, and p„, a nonzero pris de-

creases the laser intensity no and, at the same time,
increases the natural linewidth 2D&t, (no ) and the normal-
ized photon-number variance & ( b R)) /& 8' ) 'compared
with a zero pzz. Thus the coherence-injection case of

pb, = Qpbi, p„—is better than the usual case of pb, =0,
although one can find lasing without inversion in both
cases.

IV. A VECTOR MODEL

The population trapping and the emission and absorp-
tion processes in the A-type lasers and masers can be
visualized in terms of a vector model in the resonant case
5=0, in which there is no mode pulling v=Q [by Eq.
(3.11)]. Let us write the state vector of the coupled
atom-field system as

Since the P function is a normal-ordering function, the
photon-number variance is found after using Eqs. (3.18)
and (3.9),

&(be)'& = &:(ae)'.&+ & e &
=

& (»)')+n,

r dr(x)
~o Drr(x)

(3.15a)
1 (foI+ ,'fiI —,'f2I )——

Paa

gju„(t)~}u&(n &e
p=a, b, c n

(4.1)

where
when p~z =0, (3.15b)

where p„(t) are the probability amplitudes. Using the
Schrodinger equation ifi~4') =II~4), we obtain the equa-
tions of motion for these probability amplitudes,

p p y«
(p prrrr 2y /~ }P/~

f~ =yP'/er',

Paa&/~ . —

(3.16a)

(3.16b)

(3.16c)

(3.16d}

d
n —1 g1+n

dt
e„ —g, &n

g, &n

Cn

n =1,2, 3, . . . (4.2)

As an approximation, we now expand the intensity-drift
and intensity-diffusion coefficients dz and Dzz in Eq.
(3.14) around I=no up to first and zeroth order in

where we have neglected the atomic relaxation terms for
simplicity. Each set of equations in (4.2) can be put into
the form of a vector model
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dS„
=Q„XS„, n =1,2, 3, . . .

dt
(4.3}

The relations between the probability amplitudes in the
two atomic basis are found after using Eqs. (2.3),

with an amplitude vector b„=B„cos8—C„sin 8,
c„=B„sin8+C„cos8 .

(4.8a)

(4.8b)

S„= ia„ (4.4a) Thus the amplitude vector for the trapping state
IC&In &, for which we can write B„=O and C„=l, is

parallel to the driving field vector Q„,
and a driving field vector

g—,&n —sin 8

S'"= '"= Qn in G~ n (4.9)

0

gi V 12 cos 8
(4.4b)

While the driving field vector Q„ is real, the amplitude
vector S„ is complex. By separating S„ into real and
imaginary parts S„=v, „+iv2„, the complex vector equa-
tion (4.3) can be decomposed into two real vector equa-
tions,

dvI
=Q„Xvi„, /=1, 2

dt

where

(4.5)

Reb„ Imb„

v &„= —Ima„, , v2„= Rea„ (4.6)

Rec„ Imc„

I
q &

= y(~. —1 la & Iri —1 &+B.IB & I
~ &

+C„IC&ln&)e
'"" "

(4 7)

Equations (4.5) show that the two real amplitude vectors
vi„and v2„rotate about the same driving field vector 0„
as illustrated in Fig. 2.

Using the combination states IB & and
I
C & and the res-

onant condition b, =O, the state vector (4.1) becomes

S'"Q =v',"Q =O.
n n 1n n (4.10)

Thus if an atom is initially in the combination state IB &,

its amplitude vectors vI„' (n=1,2, 3, . . .) will rotate
about the driving field vectors Q„, and there will be ab-

sorption. While the absorption process can be canceled
(e.g., when an atom is initially in the trapping state

I
C & ),

the emission process always occurs when an atom is ini-

tially in the upper state la &, since its amplitude vectors
are perpendicular to the driving field vectors Q„and ro-
tate.

Combining the above physical pictures for each of the
three atomic states I

C &, IB &, and Ia & together, we can
visualize lasing without inversion for various situations.
For example, in the optimal situation discussed in Sec. II,
we have the following picture: The amplitude vectors for
atoms initially in the upper state Ia & rotate about the
driving field vectors Q„, but those for atoms initially in

the lower state IC & do not rotate; i.e., there is emission
but not absorption.

When an atom is initially in the trapping state I C &, we
find that dS'„'/dt =0, n =1,2, 3, . . .. Thus none of the
amplitude vectors vi„' rotates. In other words, one finds

population trapping but no absorption (since there is no
atomic population transfer from the lower states to the
upper state la &). On the other hand, the amplitude vec-
tor for the combination state IB & In &, for which we can
write B„=1and C„=O, is perpendicular to the driving
field vector Q„,

V. DISCUSSION

FIG. 2. The vector model of a resonant three-level system.
Two real amplitude vectors v, „and v~„rotate about the same

driving field vector Q„, n =1,2, 3, . . ..

So far we have studied A-type three-level single-mode
lasers and masers in which co, )cob, co, . For a V-type
three-level single-mode laser (maser) in which

co, &cob, m„we now prove that it is also isomorphic to a
two-level single-mode laser (maser) under the conditions
(2.5) and (2.10) [condition (2.5)], with the atomic com-
bination state IB & being the upper transition level. The
proof goes from Eq. (2.1) to Eq. (2.11) with the exchange
a~a in the interaction Hamiltonian V in Eqs. (2.2b) and

(2.6b). For V-type lasers and masers, "inversion without
lasing" [2] will occur under conditions (2.12}; Eqs.
(2.13)—(3.19) are valid provided that we make the ex-

change p„~phiz in them and redefine h=cob, —v; and

Eqs. (4.1)—(4.10} are valid provided that we let

a„—,~~„+,, lii —1&~In+1&, and &n ~&11+1.
In summary, we have proved that, under the condi-
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tions (2.5) and (2.10) [condition (2.5)] the problem of a A-
type three-level single-mode laser (maser) is isomorphic
to that of a two-level single-mode laser (maser). This con-
nection reveals that lasing without population inversion
can occur in the A-type system in several cases: (1)
without any initial atomic coherence, p,b

=p„=pb, =0;
(2) without initial atomic coherences between the upper
and lower levels, p,b =p„=0, but with an initial atomic
coherence between the two lower levels, pb, AO; and (3)
with initial atomic coherences between the upper and
lower levels, p,b%0 and p„+0. In cases (1) and (2), the
problem reduces to that of an ordinary two-level laser
(maser), and we have found laser (maser) master equa-

tions and photon statics. For the A-type laser, we have
obtained in Sec. III the explicit expressions for the
Glauber P function, the mean photon number, mode pul-
ling, natural linewidth, and photon-number variance. In
case (3), the problem is equivalent to that of a two-level
laser (maser) with injected atomic coherence, which has
been studied in Refs. [3,4] (Ref. [6]). In Sec. IV, we have
presented a simple vector model to account for the popu-
lation trapping and the lasing without inversion in such a
laser (maser) system. Finally, we have shown that a V-
type three-level single-mode laser (maser) is also iso-
morphic to a two-level single-mode laser (maser) under
the conditions (2.5) and (2.10) [condition (2.5)].
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