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We use a nonperturbative method to solve the time-dependent Schrédinger equation for an electronic
state of an atom subject to a very intense ( > 10> W/cm?) laser. The oscillating, time-dependent dipole
induced by the laser serves as a source for the photoemission. Calculations of single-atom photospectra
reveal peaks at the odd harmonics of the incident laser field superimposed on a broad continuous back-
ground. We discuss a series of calculations for the hydrogen atom and a short-range Yukawa potential
containing a variable number of bound states. At intensities up to a few times 10" W/cm? at 1064 nm,
we achieve stable, converged spectra that agree very well with previously published results. As the in-
tensity increases to 10'* W/cm?, the ionization rate increases to about 1% of the laser frequency, and
converged results become extremely difficult to obtain, even for impractically large integration volumes.
These difficulties are caused by a rising background due to electron density far from the nucleus and the
increasing importance of the interaction of the wave function with the edges of the grid. We discuss the
implications of our findings for calculations at high intensity and suggest alternative ways to calculate
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harmonic emission rates in the strong-ionization regime.

PACS number(s): 42.50.Hz, 32.80.Rm

I. INTRODUCTION

Current laser systems are capable of developing field
strengths comparable to or greater than the binding ener-
gy of a valence electron to an atom or molecule. The
exceedingly nonlinear interaction of such lasers with
matter has led to the discovery of a number of unusual
and unexpected results. Perhaps the most spectacular of
these is optical harmonic generation (OHG). In this pro-
cess, a target atom X absorbs g photons and emits one
photon of g times the energy of the incident photon

X +qvy(fiwyg) —>X +v'(ghwy) , (N

where o, is the laser frequency and X may, in general, be-
come multiply ionized during the course of the laser
pulse. While nonlinear mixing of laser frequencies in
gases has been known for many years, harmonics have
now been observed to very high order. Experiments by
McPherson et al. [1], for example, at an intensity of
10'5-10'® W/cm?, observed photons at 14 nm, or 85 eV,
corresponding to the 17th harmonic of the KrF funda-
mental. L’Huillier et al. [2], using a picosecond Nd-glass
laser at an intensity of ~5X 10'* W/cm? in neon, detect-
ed harmonics up to the 53rd, and hence photons at 20
nm, or 62 eV. Recently, Sarukura et al. [3] observed the
25th harmonic (< 10 nm) of KrF in neon. Observation of
OHG requires laser illumination and proper phase-
matching conditions. The emitted harmonics are
coherent [4], and have peak spectral brightness at least
comparable to conventional synchrotron sources [5], so
OHG has the potential to become a useful laboratory
source of vacuum ultraviolet to x-ray photons.

Optical harmonic generation is one type of nonlinear
response of matter to radiation, and its basic physics is
reasonably well understood [4—8]. A laser field induces a
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time-varying dipole moment in an atom or molecule. In
a weak field, the dipole moment is strongly dominated by
the laser frequency, w,. In a strong field, the dipole mo-
ment develops frequency components at multiples (har-
monics) of the laser frequency, gwy, which can act as
sources of radiation. The even harmonics are forbidden
by parity conservation in a medium with inversion sym-
metry, so the optical harmonic spectrum consists of a
series of peaks centered at odd multiples of the laser fre-
quency.

The low-order harmonics can be viewed as arising from
multiphoton transitions to, and subsequent radiation
from, virtual bound levels. The high-order harmonics re-
sult from photon absorption above the ionization thresh-
old, and can be described in terms of a dressed continu-
um [8]. A strong relationship has thus been predicted be-
tween the peaks seen in above-threshold-ionization (ATI)
spectra and harmonic spectra [9]. These two processes
cannot be compared in a single experiment because ATI
experiments must be done at low gas pressure to mini-
mize atomic collisions and space-charge distortion of the
energy distribution, while OHG experiments are per-
formed at much higher pressure, due to the coherent N 2
enhancement of the harmonic signal (where N is the num-
ber of atoms producing the observed harmonic).

Calculating the optical response of materials to intense
laser fields presents a severe challenge. Perturbative
methods, which rely on expanding the nonlinear response
of an electron to an electric field in a series of susceptibili-
ties, fail at high intensity when the susceptibilities them-
selves become intensity dependent. Several schemes have
been developed to model the emission from atoms in the
nonperturbative regime. Prominent among these are
methods employing Floquet theory [10], dressed states
[11], classical trajectories [12], and direct numerical in-
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tegration of the time-dependent Schrodinger equation
[9,13-16].

In this paper we present the results of a detailed inves-
tigation of the applicability of time-dependent numerical
techniques to the study of OHG. Although the methods
and conclusions we present are relevant to OHG in any
gaseous medium, we focus here on results for the hydro-
gen atom, which can be treated exactly with our ap-
proach. By solving the time-dependent Schrddinger
equation directly, we treat the intra-atomic forces and the
electron-laser interactions explicitly, and need make no
assumptions about their relative magnitudes. In an effort
to better understand the dynamics of harmonic genera-
tion, we examine the intensity dependence of the harmon-
ics as well as how the electronic structure of the atom
affects the spectra. We demonstrate that when the atom
ionizes appreciably during the course of an optical cycle,
obtaining numerically converged spectra (that is, spectra
which do not change as the parameters of the calculation
are varied) is very difficult. This is particularly true when
the length form of the dipole moment is used. Therefore,
we have also investigated two alternative forms of the di-
pole, which give a larger weight to the dynamics near the
nucleus.

Experimental harmonic spectra, and spectra calculated
from time-dependent quantum methods and classical tra-
jectories, consist of a series of peaks superimposed on a
broad, continuous background. (Floquet calculations
that require the field to be exactly periodic cannot calcu-
late the response of the atom at nonharmonic frequencies,
and so do not address the issue of the background.) Cal-
culations on inadequate (i.e., too small) spatial grids can-
not accurately characterize the bound excited states and
thus greatly underestimate the strength of the back-
ground emission. Small grid calculations may also pre-
dict inaccurate harmonic intensities. We will show that
the magnitude of the background depends very strongly
on the presence of a set of bound excited states of the
atom. The background is time dependent, and can be
very sensitive to both the integration parameters of the
calculation and the pulse shape of the laser. When the
atom is ionizing rapidly, the ionizing portion of the wave
function interferes with the part of the wave function re-
sponsible for the harmonic and causes significant varia-
tions in the harmonic intensities with comparatively
small changes in the parameters of the calculation. How-
ever, at intensities up to a few times 10'> W/cm? at 1064
nm, with an adequate representation of the low-lying
states and careful attention to the calculational details,
numerically converged harmonic intensities can be ob-
tained.

In this paper, we discuss in detail calculations of the
photoemission from a hydrogen atom in a 1064-nm laser
field with a peak intensity of 2X 10'*> W/cm?. At this in-
tensity, we obtain an ionization rate of ~4X107 s!,
which is in excellent agreement with the Floquet calcula-
tions of Potvliege and Shakeshaft [10], and is at least five
orders of magnitude below the lowest-order perturbation
theory result [10]. Therefore, this is a regime well above
that in which perturbation theory is valid, and one in
which concepts based on field-free atomic states can be
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misleading. The ponderomotive shift of the ionization
potential at 2X 103 is ~2 eV, which exceeds the photon
energy, so any excited “states” that exist under these con-
ditions will be very strongly mixed, or dressed, by the
field. With our method, however, this intensity is fairly
low in the sense that very little of the atom ionizes during
a single optical cycle. We show that when the intensity is
increased to 1X 10'* W/cm? at 1064 nm, the atom ionizes
in less than a picosecond and a qualitative change in the
dynamics occurs. Increased ionization causes the wave
function to spread rapidly over large regions of space,
which has both physical and computational implications.
Obviously, rapid ionization occurs in all systems at high
enough intensity. We illustrate how the difficulties en-
countered under such conditions affect the interpretation
of calculations and experiments.

II. METHOD

The solution of the time-dependent Schrodinger equa-
tion can be efficiently realized by using a grid representa-
tion of the electronic wave function. This method has
been described previously in other contexts [16—18], so
here we concentrate only on the details particular to the
calculation of optical harmonic spectra.

We consider the case of the hydrogen atom in a linear-
ly polarized, classical laser field. The method proceeds
by solving the time-dependent Schrodinger equation,
which can be written in atomic units as

i%¢(r,t)=H(r,t)1p(r,t) . )
We expand the electronic wave function in spherical har-
monics [17,18],

L ! <I)1m(r,t)
Wro,6=3 3 —" " yme,4), 3)

=0 m=—1 r

and discretize the resulting coupled equations on a radial
grid between r =0 and R, with a maximum of L angular
momentum channels. The azimuthal quantum number m
is conserved because the laser is linearly polarized. All of
the calculations presented in this paper begin in the ls
ground state, in which m =0. The choices of L, R, and
the radial grid spacing are dictated by the vicissitudes of
convergence. The discretized equations are derived vari-
ationally from a Lagrangian formulation that is
equivalent to the Schrddinger representation, but allows
us to explicitly consider the » =0 boundary. The Hamil-
tonian for this system is then

H=H,+H1) . 4)
H (’) is the atomic Hamiltonian,

1d> , 140+1) 1
____+_.—___
2 dr? 2r? r’ ®

and H,(?) is the atom-field interaction, given by

H(t)= —gof (t)z sin(wyt ) , (6)

Hi=

where we have assumed that the field is polarized along
the Z direction. f(t) is a slowly varying envelope func-
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tion that models the intensity evolution of the laser field.
The peak intensity is ce3/(8w) in atomic units. Since the
laser field couples only angular momentum channels with
[+1, the Hamiltonian operator is tridiagonal in /, making
it possible to integrate the resulting coupled equations
very efficiently [19]. An alternative procedure [16], in
which 1 is expanded in cylindrical, instead of spherical,
coordinates was also tested. This method gives the same
results, but requires a larger number of grid points.

Equation (2) is an initial-value problem, and requires as
input the ground state of the atom on the grid. The
ground state can be calculated in one of two ways, either
by diagonalizing the field-free (discretized) Hamiltonian,
or by integrating Eq. (2) in imaginary time in the absence
of the field with an initial guess for the wave function
[20,21]. For any reasonable starting function, the imagi-
nary time propagation causes the trial function to relax
to the ground state in a small number (~ 50) of integra-
tion steps. Both methods yield a wave function that is an
eigenstate of the discretized Hamiltonian. If this pro-
cedure is not followed (if, for example, an eigenstate of
the continuous Hamiltonian is used), nonphysical cou-
plings between numerical eigenstates of the grid will be
introduced, leading to spurious oscillations in the time-
dependent wave function.

In the case of hydrogenic potentials, the wave function
can be further improved by imposing a discrete form of
the virial theorem. One way to do this is to spread the
positive nuclear charge uniformly over an area equal to
about one grid spacing. This introduces an additional po-
tential at the r =0 boundary which, when properly
chosen, results in a ground-state wave function that obeys
the virial theorem to very high accuracy. In addition,
this procedure produces a grid eigenstate that has a
greatly reduced discrepancy between the discretized and
the analytic wave functions.

The single-atom emission spectrum can be determined
from the time-varying, induced dipole of the excited sys-
tem [6]. The length form of the dipole can be calculated
from the time-dependent wave function as

d()= [dry*(r,)z¢(r,1) . (7

Note that this form is independent of the gauge (A-p or
E-r) used to calculate ¥(r,#). The harmonic spectrum is
proportional to the square of the Fourier transform of
(d(1)),

2

1 Ty —iwt
ToT, ledte dwy| . (8)

olo)x|d(w)?=
To determine the power emitted in a given harmonic,
|d(@)|? in Eq. (8) should be multiplied by w>. In an effort
to minimize the complications caused by a time-varying
pulse, and to focus on the emission of an atom subject to
a particular intensity, we use a pulse consisting of a linear
(or sin?) ramp of the electric field for 2—10 optical cycles,
followed by 15-20 additional cycles at a constant intensi-
ty. To generate the spectrum, we Fourier transform only
the final 5-10 cycles. By this time, the transients in-
duced by the ramp have decayed, and the spectrum de-
pends only on the laser frequency and intensity. This
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method is a reasonable approximation to the usual case of
a laser pulse consisting of hundreds or thousands of opti-
cal cycles at approximately the same intensity. For very
short pulses (< 100 fs), the emission spectrum should be
obtained from the transform of the induced dipole over
the entire pulse. We note that the n-cycle Fourier trans-
form is performed only at frequencies w =kw,/n, where
k is an integer, to avoid introducing aliasing errors due to
a finite time series.

III. RESULTS

Figure 1 shows the time-dependent dipole induced by a
pulse that increased over 5 optical cycles, and then was
held constant for the next 15 cycles. This calculation
used a photon wavelength of 1064 nm, the fundamental
of a Nd:YAG laser (where YAG denotes yttrium alumi-
num garnet), a peak intensity of 2X 10'* W/cm?, and was
performed on a grid with a maximum radius of 225a,
and a maximum [ of 48. The integration time step was
1/800 of an optical cycle and the grid spacing was 0.25a.
After each time step the wave function was multiplied by
a cos!’® mask function that varied from 1 to O over a
width of 50a, at the outer radial boundary. The purpose
of the mask function was to force the electron density to
zero at the edge of the grid to prevent reflection of the
wave function from the grid boundaries, as discussed
below.

The absolute square of the Fourier transform of the
calculated time-dependent dipole in Fig. 1 is proportional
to the emission spectrum of a single atom in the field.
Figure 2 shows the spectrum obtained from the last five
optical cycles of the dipole in Fig. 1. Using too few cy-
cles in the Fourier transform results in a noisy or poorly
resolved spectrum, and choosing cycles too close to the
ramp causes variations in the spectrum due to transients
induced by the field gradient. At higher intensities, the
transients decay very quickly, and the ramp becomes less
important. The results in Figs. 1 and 2 are independent
of the upper limit of the radial integration in Eq. (7) as
long as it is at least ~25a,. This indicates that the physi-
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FIG. 1. Time-dependent dipole {d(¢)) induced in a hydro-
gen atom by a 1064-nm laser pulse at 2X 10'* W/cm?®. The field
was ramped to its maximum intensity over 5 optical cycles, and
held constant for 15 additional cycles.
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FIG. 2. Harmonic spectrum |d(w)|? obtained from a Fourier
transform of the last 5 optical cycles of the time-dependent di-
pole in Fig. 1.

cally significant excitation dynamics responsible for the
photoemission at this intensity take place near the atom.

The photoemission in Fig. 2 consists of a series of nar-
row peaks at odd frequencies of the fundamental, and a
broad, significantly weaker background that reaches a
maximum near the energies of the field-free Rydberg
states. The widths of the harmonic peaks correspond to
the inverse of the period over which the induced dipole
was transformed. If the ionization rate were fast on this
time scale, the peaks would be further broadened. At
2X 103 W/cm?, and 1064 nm, 14 photons are required to
ionize the atom. As seen in Fig. 2, the harmonic emission
extends well beyond the (Stark-shifted) ionization thresh-
old. The harmonic intensities are converged with respect
to such integration parameters as the time step, grid
spacing, and box size, and do not change if the ramp pa-
rameters or absorbing boundary are varied over a reason-
able range.

The spectrum in Fig. 2 is stable at the frequencies of
the odd harmonics (w=gqw,; where ¢=1,3,5,...). By
stable we mean that both the magnitude and phase of
d (qw,) are independent of the integration parameters, as
well as which cycles after the transient period are includ-
ed in the Fourier transform. At nonharmonic frequen-
cies, the phase of d(w) changes from cycle to cycle. The
amplitudes of the weak background features in the Ryd-
berg region differ somewhat depending on which cycles
are Fourier transformed, but do not change qualitatively.

As we mentioned previously, harmonic generation is a
coherent process, and therefore the harmonics are
enhanced by a factor of N? in the experiments and in cal-
culations including the effects of phase matching [7]. The
background radiation in our calculated spectra does not
have a constant phase from cycle to cycle, and so is in-
coherent and will not phase match over a macroscopic
distance. Since a single-atom spectrum, such as the one
in Fig. 2, does not include the effects of phase matching,
it tends to obscure the difference between the coherent
emission at the odd harmonic frequencies, and the in-
coherent emission at all other frequencies, and hence
greatly overestimates the importance of the background.
In a single-atom calculation, however, there is no way to
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separate the two contributions to the dipole. This
presents no problem when the harmonic intensities are
well separated from the background, since it is clear at
which frequencies the harmonic photoemission occurs.
In general, at least for the lower-order harmonics, an esti-
mate of the harmonic conversion efficiency can be reli-
ably determined from a single-atom spectrum.

We would like to point out that the background in the
experiments, which is clearly observed, arises predom-
inantly from sources not included in the calculations.
For example, the experimental background contains
many closely spaced fluorescence lines caused by emis-
sion after the pulse is over, on a time scale very long com-
pared to the harmonic emission [5]. This component of
the background can be removed by performing time-
resolved experiments [22].

The harmonic intensities in Fig. 2 agree very well with
the previously published results of Potvliege and Shake-
shaft [10], as shown in Fig. 3 at 2X 10" W/cm?, and
wavelengths of 532 and 1064 nm. This agreement is gra-
tifying because the Floquet ansatz is expected to be very
good at the intensity and wavelengths of the figure. We
have also calculated emission spectra with an equivalent
velocity gauge formulation, in which the harmonic spec-
trum is obtained from the current, rather than the time-
dependent dipole, and obtained the same results.

Calculations employing grids as large as those used to
produce the results of Figs. 1-3 are fairly demanding
computationally, taking on the order of 10-20 min on a
supercomputer. Our code is essentially completely vec-
torized, and linear in the number of grid points. It prop-
agates the wave function at a rate of over one million
space-time points per second on a Cray Y-MP computer.
Although this is quite efficient, it would be very desirable
to reduce the size of the grid significantly, yet still deter-
mine accurate photoemission probabilities.
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FIG. 3. Comparison of harmonic intensities as calculated in
this work with previously published results using a method
based on Floquet theory (Ref. [10]). The laser intensity is
2X 10" W/cm?, at wavelengths of 1064 nm (filled squares, this
work; open squares, Ref. [10]) and 532 nm (filled circles, this
work; open circles, Ref. [10]). The first harmonics have been
omitted from the plot, and the intensities have been normalized
at the third harmonic. Note that, as published, the Floquet re-
sults contain a factor of w®, which has been removed in this
figure.



5002

The ability to use small grids depends critically on the
range over which the relevant dynamics occurs. In a
photoionization problem, the extent of the electronic
wave function increases without limit as time increases.
At any finite time, however, the extent of the wave func-
tion is finite. Since an electron absorbs photons primarily
near the nucleus, and since an electron that absorbs
enough photons to ionize never returns to the nucleus,
calculations of ionization rates can be accurately realized
on relatively small grids [16]. In contrast, calculating
ATI spectra requires knowledge of the entire final-state
wave function, and hence demands grids large enough to
contain all, or most, of the ionizing wave function [23].
Our experience indicates that calculations of OHG re-
quire grids intermediate in size between the extremes of
ionization rates and ATI.

Figure 4(a) shows a harmonic spectrum for the hydro-
gen atom, at a laser intensity of 2X 10'* W/cm?, as calcu-
lated on a 50a grid with an absorbing boundary similar
to that used in our ionization rate calculations (a width of
~10a, [16]. Since the quiver motion of the electron at
this intensity is only about 13a,, it would seem that 50a,
would be adequate to characterize the dynamics. Howev-
er, when Fig. 4(a) is compared to the converged spectrum
of Fig. 2, which is reproduced in Fig. 4(b), two striking
differences are immediately revealed. The small grid
spectrum has a much lower background, and many more
harmonics than the converged spectrum. The harmonic
intensities on the small grid, though generally correct to
within an order of magnitude, differ from the converged
values and are very sensitive to variations in the integra-
tion parameters, as well as the form and strength of the
absorbing boundary.

The additional, spurious harmonics seen in Fig. 4(a)
but not in the converged spectrum of Fig. 4(b) are caused
by reflection from the grid boundary. When flux reaches
the boundary of the grid, the instantaneous electric field
is driving it predominantly outward, along the axis of po-
larization. If the flux reflects elastically from the bound-
ary, it is accelerated towards the nucleus when the field
reverses its direction during the next half of the optical
cycle. This causes the reflected flux to have a much
higher velocity when it subsequently rescatters from the
nucleus. Even a very small amplitude of energetic flux is
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sufficient to cause spurious high harmonics such as those
seen in Fig. 4(a). Reflection can be minimized by using a
very soft (apotropaic) mask function, but cannot be com-
pletely eliminated when the wave function is interacting
with the edge of the grid. We have tested many different
functional forms for the absorber, including Gaussians
and exponentials of varying widths and strengths, linear
functions, and several powers of the cosine. We find that
a broad, smooth function, such as cos!’?, is the most
effective, while a function with a kink, such as linear, is
the worst. The main reason for the sensitivity to the
form of the mask function is that reflection tends to
occur at the boundary between the grid and the absorber.
With any reasonable mask, essentially no flux actually
reaches the edge of the grid, so the part of the absorber
that is most critical is the leading edge, which should be
as smooth as possible. We have also tested the use of a
complex absorbing potential instead of a mask, and found
that the two methods are basically equivalent. The mask
has the advantage that it requires less computer memory,
since the potential is real, rather than complex.

With boundary conditions that force the wave function
to zero at a finite distance from the nucleus, no state is
truly bound, but the tunneling lifetime of many states is
long enough for them to behave as if they were bound.
States near the ionization limit are strongly affected by
the absorber, which effectively lowers the ionization po-
tential. These states are presumably not important in cal-
culations of the ionization rate because excitation to such
energies at high intensity, where the states are
significantly shifted and broadened, is followed by facile
transitions into the continuum. Similarly, the very-high-
lying states have little influence on the photoemission,
since electrons excited to such states are either ionized
immediately, or cannot reach the outer turning point of
the potential and return to regions near the nucleus on
the time scale of the laser pulse. The low-lying excited
states, however, appear to be strongly involved in the
creation of the harmonics, as well as the background ra-
diation.

The reduction in the magnitude of the background on
a small grid seen in Fig. 4(a) is quite surprising, and ap-
pears to be related to the lower number of effectively
bound states in the problem. To test this hypothesis, we
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FIG. 4. Harmonic spectra at 2X 10'* W/cm? and 1064 nm, calculated on radial grids of (left) 50a; and (right) 250a,.
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FIG. 5. Same as in Fig. 4, using a Yukawa potential, rather than the hydrogenic Coulomb potential. The Yukawa parameters
were adjusted so that the potential supported only one bound state, at 0.5a, below the (field-free) ionization threshold.

performed a series of calculations with a Yukawa (or
screened Coulomb) potential of the form,

e —ar

Vinn=2zZ '—r— , 9)
in which we adjusted a to change the number of bound
states in the potential. Because the number and intensity
of the harmonics at a given laser intensity depends
strongly on the ionization potential, we also varied Z' to
maintain a constant (field-free) ionization potential of 0.5
a.u.

Figure 5 shows the harmonic spectra for a Yukawa po-
tential with one bound state on a 50a, grid compared to
the spectra obtained on a 250a, grid. As in the calcula-
tion with the Coulomb potential, the spectra on the
smaller grid has additional harmonics caused by
reflection. In contrast to the Coulomb case, however, the
background levels in Figs. 5(a) and 5(b) are nearly the
same. Comparing the spectra from the two potentials
(Fig. 6), we see that the harmonic intensities, as well as
the background intensities, are significantly reduced in
magnitude in the Yukawa potential. The ionization rate
for the Yukawa potential is also reduced by a factor of
about 100 compared to the Coulomb potential, due to the
absence of resonant, or near-resonant, contributions to
ionization by the excited states. Note, though, that the

two spectra in Fig. 6 have about the same number of har-
monic peaks. This may be consistent with the recent sug-
gestion that the number of harmonics is related to the ra-
tio of a mean Rabi frequency to the laser frequency [24].
In the one-state Yukawa potential, however, the
definition of a Rabi frequency is somewhat unclear.

As a—0, and Z'—1.0, the ionization rate and the
background levels of the spectra calculated with the Yu-
kawa potential increase smoothly to the Coulomb limit.
At 2X 10" W/cm?, with a such that the Yukawa poten-
tial contains 4 (field-free) bound ! =0 states, the Yukawa
spectrum becomes identical to the Coulomb spectrum.
The sensitivity of the background to the number of
bound state suggests that a major component of the back-
ground is due to population of excited states by the laser
pulse, and subsequent incoherent beating, or ‘“Raman-
like” transitions among them. A similar mechanism has
been suggested previously to explain supercontinuum
emission in gases [25]. The importance of such transi-
tions also accounts for the dependence of the background
on which cycles are included in the Fourier transform,
because the excited-state population continues to evolve
in time throughout the laser pulse. We note also that the
general shape of the background in the Yukawa spectrum
is very similar to that in the hydrogen atom, but is much
weaker and shifted to higher energy. In the Coulomb po-
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FIG. 6. Comparison of harmonic spectra for (right) the Coulomb potential and (left) the 1-state Yukawa potential at 2X 10"
W/cm? and 1064 nm. Both spectra were calculated on a radial grid of 250a,.
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tential, the broad peak in the background is presumably
related to the increased density of states near threshold.
In the Yukawa potential, the peak is shifted into the con-
tinuum, where the oscillator strength of this system is
concentrated, and is much more a property of continuum
to continuum transitions. The background in all of the
cases that we have studied decreases asymptotically as
1/w?.

The importance of the density and energies of the low-
lying bound states on the grid, along with the near impos-
sibility of completely preventing reflection from the grid
boundaries, explains in part the sensitivity of the harmon-
ic spectra calculated on small grids at low intensity.
Fairly small variations in the integration parameters are
sufficient to shift the energy levels, and hence to cause
significant changes in the excitation dynamics. We often
find that one or two harmonics are especially sensitive.
Such behavior is a signature of resonant interference, as
discussed below.

We have illustrated that with some care converged har-
monic spectra can be calculated on moderate grids at an
intensity of 2X10'*> W/cm?. However, for hydrogen at
1064 nm, this is a fairly low intensity, in the sense that
most of the electron density remains relatively close to
the nucleus, and the ionization rate is quite low, about
1077 per optical cycle. As the intensity increases, several
factors conspire to make the physics more interesting,
and to complicate the calculations as well as the interpre-
tation of the results.

Figure 7 shows the ionization rate of the hydrogen
atom as a function of laser intensity at 1064 nm. These
rates were determined by calculating the decay of the
norm of the wave function on the grid as a function of
time. Rates obtained by this method do not differ
significantly from those calculated by monitoring the de-
cay of the ground state, except at very low intensity. As
can be seen in the figure, the ionization rate first increases
rapidly, and then begins to saturate. As the intensity in-
creases, the ionization rate becomes quite smooth. This
is a characteristic of tunneling ionization, which occurs
when the Keldysh parameter [26],
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FIG. 7. Ionization rate (in s™! and % per optical cycle) of a
hydrogen atom at 1064 nm as a function of the laser intensity.

is less than, or on the order of, 1. In Eq. (10), I, is the
field-free ionization potential, I is the laser intensity, and
wy is the laser frequency. At 1064 nm, y? equals 6.4 at
1X10" W/cm?, and decreases to 0.64 at 1X10'
W/cm?’, which is clearly in the tunneling regime. By
1X 10" W/cm?, the ac Stark shift of the continuum,
which is given by the ponderomotive energy

E=s

4wy
is about 11 eV, so most of the bound states have been
shifted to very high energy, and the role of resonant exci-
tation is greatly reduced.

By the highest intensity shown in Fig. 7, the atom ion-
izes in less than a picosecond, which corresponds to
about 1% of the atom per optical cycle. We have found
that this parameter, the amount of ionization per cycle, is
the factor that determines whether the ionization rate is
“high” or “low” in our calculations. As the ionization
rate increases, the spatial extent of the wave function also
increases, because the photoelectrons are emitted with
higher energy (via ATI). By 10'* W/cm?, the size of the
grid in r and / that would be required to completely con-
tain the ionizing wave function is enormous. Since the
Hamiltonian in the length gauge is proportional to both
the magnitude of the electric field and the maximum ex-
tent of the grid, as either I or R increases the time step
must decrease. As the wave function spreads in 7, more
I’s are necessary as well, because the wave function tends
to elongate along the direction of polarization. These
factors mean that calculations at “high” intensities re-
quire greatly increased resources, both in memory and
CPU time. As a practical matter, at high intensity it is
not feasible to perform calculations in which the grid is
large enough to prevent the wave function from reaching
the boundaries of the grid, and in which the time step is
small enough to assure convergence. For example, at
1X 10" W/cm?, a radial grid of 2000a,, L =120 and
2000 steps per optical cycle is still insufficient to converge
the harmonic intensities to better than one to two orders
of magnitude. Such a grid is already unphysically large,
because the interatomic spacing at the tens of torr pres-
sure in the experiments is only about 200a,. If the im-
portant dynamics really occurs on scales much larger
than the interatomic spacing, calculations that do not in-
clude the atom-atom interactions would be meaningless.
We do not expect this to be the case, however, and will
show that the critical spatial volume is in reality much
closer to the atom.

When the wave function is interacting strongly with
the edge of the grid, the results become very sensitive to
the parameters of the calculation. One contribution to
this sensitivity can be discerned by examining the intensi-
ty dependence of the harmonics. Figure 8(a) shows har-
monic intensities for the hydrogen atom at 1064 nm as a
function of the laser intensity for harmonics 1, 3, and 5.
All three of these harmonics begin in the perturbative re-
gime, where their intensity dependence is well fit by a
straight line. The slopes of these lines give the first-,
third, and fifth-order susceptibilities. Our calculated
values for these susceptibilities, along with the first-order

’ (11)



45 CALCULATION OF PHOTOEMISSION FROM ATOMS SUBJECT . ..

corrections to them, are shown in Table I, where they are
compared to the perturbative calculations of Pan and co-
workers [27]. The agreement is excellent.

At some intensity, about 8X 10! W /cm? for the first
harmonic, 6 X 10'3 for the third and 2X10'* W /cm? for
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FIG. 8. Intensity dependence of the harmonic radiation for a
hydrogen atom at 1064 nm for (a) harmonics 1, 3, and 5 and (b)
harmonics 7 (top), 9 (middle), and 11 (bottom).
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TABLE 1. First-, third-, and fifth-order susceptibilities y;,
and their first-order corrections x{?, for the hydrogen atom at
1064 nm as calculated in this work, compared to the perturba-
tive calculations of Pan and co-workers [27]. The numbers in

square brackets denote powers of 10.

Susceptibility This work Ref. [27]
X 4.550 4.550
X1 4.550 4.550
2 7.98[2] 8.96[2]
X 2.81[2] 2.78[2]
¥ 1.97[5) 2.04[5]
Xs 8.24[4] 9.03[4]
¥ 5.76[8] 2.51[8]

the fifth, perturbation theory breaks down. The harmon-
ics begin to scale with a dependence less than I9, where ¢
is the harmonic order, and start to develop resonance
structure. The intensity at which perturbation theory be-
comes invalid decreases with increasing harmonic order,
again in agreement with the calculations of Pan and co-
workers [27]. This behavior is seen even more clearly, in
Fig. 8(b), which shows the intensity dependence of har-
monics, 7, 9, and 11. These harmonics are nonperturba-
tive over the entire intensity range of the calculations. At
lower intensity, the harmonics have fairly broad, well-
spaced resonance structures that can probably be associ-
ated with individual atomic states Stark shifting through
resonance, and should be observable experimentally. At
higher intensity, the resonances become much more
closely spaced, and the harmonics have roughly the same
overall scaling with intensity. This constant scaling
signifies the formation of a plateau in the harmonic spec-
tra. At very high intensity, the resonances overlap, and
the harmonic intensities oscillate rapidly. In this regime,
harmonic generation is dominated by the interference of
many excitation and ionization pathways, and in general
the individual peaks cannot be associated with a particu-
lar atomic state. In fact, the atomic states have been
broadened and shifted by the field to such an extent that
the quantum numbers labeling the field-free atomic states
are no longer meaningful. Comparing Fig. 8 to Fig. 7, we
see that the harmonics are much more sensitive to this in-
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FIG. 9. Intensity dependence of the 19th harmonic for a hy-
drogen atom at 1064 nm as calculated on a grid of R =150a, by
L =32 (filled circles) and R =225a, by L =48 (open circles).
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terference than the ionization rate.

Figure 9 shows the intensity dependence of the 19th
harmonic as calculated on two grids, one with a dimen-
sion of R =150a, and L =32, and the other 50% larger,
or R=225a, by L =48. The grids in both calculations
were augmented by a 50a, cos!’® mask function. At in-
tensities up to about (4—5)X 10'> W/cm?, the two calcu-
lations agree very well. At higher intensities, as the wave
function interacts increasingly with the edges of the grid,
the spectra start to diverge, and the results become very
sensitive to the “basis” defined by the grid parameters.
Small changes in the integration parameters cause the
resonances to shift slightly in energy and to display
significant variations in amplitude with intensity. This
sensitivity is a major complicating factor in calculating
high-intensity harmonic spectra. A similar phenomenon
occurs, for example, in basis-set-type calculations if one
attempts to use a fixed, finite basis to resolve many close-
ly spaced, overlapping scattering resonances.

Figure 10 shows harmonic intensities at 2, 4, 6, 8, and
10X 10" W/cm?, as calculated on a grid of R =225a, by
L =48. This figure clearly illustrates the motivation for
performing experiments and calculations at high intensi-
ties. As the intensity increases, the harmonic intensities
also increase, and the plateau extends to higher order.
However, as shown in Fig. 11, the background also in-
creases with increasing laser intensity, and eventually be-
gins to interfere with the harmonics. As we discussed
above, one of the major contributions to the background
is excited-state—to—excited-state (‘“Raman-like”) transi-
tions. Saturating the background requires grids large
enough to characterize all of the states important to the
dynamics. In the 225a, box, bound states up to about
n =15 are well resolved on the grid. It is difficult to im-
agine that states higher than this contribute significantly
to the calculations, because population in Rydberg states
very close to the ionization potential does not remain in
the vicinity of the nucleus. We find that the background
level is saturated on the 225a, grid, even at the highest
intensities considered. However, a problem that occurs
with increasing severity as the intensity increases is
reflection from the edges of the grid, which has a definite,
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FIG. 10. Harmonic intensities for a hydrogen atom at 1064
nm and laser intensities of 2X 10" W/cm? (open circles),
4X 10" W/cm? (filled circles), 6 X 10'* (open squares), 8 X 10"
W/cm? (filled squares), and 10X 10'* W/cm? (open triangles).
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observable effect on the spectra. All of the spectra in
Figs. 10 and 11 except for 2X 10'"* W/cm? show some
contribution from reflection, in the form of spurious har-
monics. Because these extra harmonics can be as intense
as the harmonics in the plateau, it is important to estab-
lish their source, and, if possible, to find a way to mini-
mize their effect. We have performed extensive tests to
determine which of the harmonics at high intensity are
believable and which are not, and to which aspects of the
calculation the spurious harmonics are most sensitive.
Some indication of how reflection and other numerical
artifacts affect the calculated harmonic spectra can be ob-
tained by examining the spatial dependence of the har-
monic emission.

As we mentioned previously, at 2X10'* W/cm? the
harmonic spectra are insensitive to the endpoint of the
radial integration used to determine {(d(¢)) as long as it
is greater than ~25a,. The same is not true at 1X 10"
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FIG. 11. Harmonic spectra for a hydrogen atom at 1064 nm,
and laser intensities of 2X10"* W/cm? (top), 6X 10> W/cm?,
(middle), and 10X 10'> W/cm? (bottom).
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FIG. 12. Harmonic intensities for a hydrogen atom at 1064
nm and 1X 10" W/cm?, calculated on a 1000a, radial grid, with
the endpoints of the integration in Eq. (7) set to (filled circles)
150a,, (open squares) 250a,, and (filled squares) 500a,.

W/cm?. Figure 12 shows harmonic spectra calculated on
a 1000a, grid, with the endpoints of the integration in
Eq. (7) set to 150, 250, and 500a,. The spectra are quite
different. Figure 13 shows the contribution to the har-
monic spectra at 2X 10> W/cm? from 0 to 50a, com-
pared to that from a spherical shell of 50-250a, sur-
rounding the nucleus. As expected, the dominant contri-
bution to the spectrum occurs when the electron is near
the nucleus. However, as the intensity increases the con-
tribution to the dipole from regions far from the nucleus
gradually increases as well. By 1X10'* W/cm?, as shown
in Fig. 14, the contribution to the spectrum from 50 to
250a, is comparable to that from O to 50a,. This result is
problematic, since nonlinear scattering processes should
occur only when an electron interacts with a photon near
the nucleus, in regions where the potential is changing
rapidly. At high intensity, though, a substantial fraction
of the wave function has been excited to regions far from
the nucleus. The electron executes a quiver motion as it
moves away from the nucleus of ~60a, at 1X10'
W/cm?, and can continue to serve as a radiation source.
A similar effect has been reported in classical simulations
[12], where the background completely dominates the
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FIG. 13. Contribution to the harmonic intensities for a hy-
drogen atom at 1064 nm and 2 X 10'* W/cm? from (filled circles)
0-50a, and (open squares) 50—-250a,.
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FIG. 14. Contribution to the harmonic intensities for a hy-
drogen atom at 1064 nm and 1X 10'* W/cm? from (filled circles)
0-50a, and (open squares) 50-250a,.

spectrum unless the calculation of the dipole omits the
portion of the trajectory far from the nucleus. The spec-
tra can also be affected by small amounts of reflected flux
rescattering from the nucleus at quite high energy, with
unpredictable effects.

In an attempt to better understand the factors govern-
ing the dynamics of harmonic generation, we have em-
ployed a simpler, approximate definition of the dipole
[28]. This method begins by expanding the wave function
in a basis of field-free atomic states,

w=3a,®ls,,) , (12)

where the summation is understood to include an integra-
tion over continuum states. An equivalent expression for
the dipole in Eq. (7) can then be written as

d)=3a,ar{¢,lzld,) . (13)

m,n

If we assume that only the ground-state term is important
in the sum, Eq. (13) becomes

d(t)~Ia}a,,(dlzl$, )+c.c. (14a)

~ag {olzlyp(t)) +c.c. ,

where the index zero labels the ground state.

Equation (14) contains only contributions to the dipole
from transitions that are directly connected to the ground
state. Thus, for example the 19th harmonic is produced
only by emission of a photon of 19 #iw to the ground
state. This expression also excludes contributions from
regions far from the nucleus by the explicit projection
onto ¢y, which has a relatively small spatial extent.

We have also repeated a subset of our calculations us-
ing the acceleration form of the dipole operator, which
can be written as

(14b)

dA(t)=<1[1(r,t) su/‘"(t)sin(coot)—i3
r

1/1(r,t)> . (15)

The harmonic spectra are then calculated as
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1 2

d =
olw)=|d ()] AT>—T)

TZ —iw
le dre~i'd ,(1)

(16)

Because the operator in Eq. (15) weights the wave func-
tion by 1/r3, this form of the dipole should also be less
sensitive to the behavior of the electron in regions far
from the nucleus than the length form.

At low intensities, the spectra produced by all three
methods, the length, acceleration, and alternate forms of
the dipole, agree quite well. However, at high intensity,
the alternate and acceleration forms show far less effects
of reflection, and a greatly reduced background. Figures
15 and 16 show harmonic spectra calculated with the
three methods at 1X 10" W/cm? In the plateau region,
the intensities agree very well. However, the plateau in
the spectrum calculated with the length form extends to
much higher order than the plateaus in the spectra calcu-
lated with the other two methods. We believe that the
extra harmonics in the length-form spectra are spurious,
and are due to the interaction of the wave function with
the boundary. The spectra calculated with the accelera-
tion and alternate forms are in excellent agreement at the
cutoff. Some evidence of reflection remains in these spec-
tra but the spurious harmonics appear after the cutoff
and are much lower in intensity. Examining the full
spectra in Fig. 16, we see that the overall background lev-
els in the acceleration and alternate forms agree fairly
well, and are much lower in magnitude than the length
form. The details of the background in the Rydberg re-
gion differ in all three spectra. Finally, the intensity
dependence of a given harmonic, as shown in Fig. 17 for
the 19th harmonic, illustrates that the acceleration and
alternate forms tend to agree better with each other than
they do with the length form, though the agreement does
vary somewhat depending on the harmonic. We note
that the 19th harmonic is one of the more difficult to con-
verge in this intensity range because the Rydberg states
have been ac Stark shifted to near the energy of the har-
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FIG. 15. Harmonic intensities for a hydrogen atom at 1064
nm and 1X 10" W/cm? as calculated with the length (open cir-
cles), acceleration (open squares), and alternate (filled circles)
forms of the dipole operator. See the text for the definition of
the “alternate” form.
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monic. All three forms continue to show strong effects of
resonances, and individual harmonics that are unusually
sensitive to the parameters of the calculations.
Comparison of the three different ways to calculate the
dipole moment tends to support the conjecture that the
background in the length form is due primarily to contri-
butions to the dipole from regions far from the nucleus.
The fact that the acceleration and alternate forms have
such similar cutoffs is an indication that the background
in the length form is unphysical, and that the main result
of exciting the electron away from the nucleus is to pro-
duce numerical noise. The agreement between the alter-
nate [Eq. (14)] and the acceleration [Eq. (15)] forms gives
us confidence that the calculated spectra are converged to
within an order of magnitude, and that the sources of the
high-order harmonics are transitions that are dipole con-
nected to the ground state. However, if the effects of
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FIG. 16. Harmonic spectra for the same conditions as Fig.
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tom) forms of the dipole operator.
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FIG. 17. Intensity of the 19th harmonic for a hydrogen atom
at 1064 nm as calculated with the length (open circles), accelera-
tion (filled diamonds), and alternate (filled circles) forms of the
dipole operator.

transitions among high-lying Rydberg levels, visible as
the structure in the background, are important to the dy-
namics, the alternate form, which does not include such
transitions, will be incorrect, and the acceleration form
may be difficult to converge.

IV. CONCLUSIONS

We have shown in this paper that calculating optical
harmonic spectra with a nonperturbative, time-dependent
method works quite well at intensities at which the wave
function is ionizing slowly. The calculations become ex-
tremely demanding and difficult as the intensity increases
to the point that appreciable ionization occurs during an
optical cycle. Harmonic spectra span many orders of
magnitude in intensity, and the very high harmonics
derive from the dynamics of an extremely small fraction
of the wave function. One of our primary purposes in
this paper was to show that great care must be taken to
calculate harmonic spectra properly if the results are to
have even qualitative value.

If the laser intensity is low enough, as it is at 2X 10"
W/cm?, most of the electron density remains reasonably
close to the nucleus, and converged calculations of
manageable size are possible. Even at this intensity, how-
ever, the grids required are much larger than those ex-
pected from ionization rate calculations. In particular,
the grid must be large enough to assure that all of the im-
portant excited states are adequately characterized and
that the wave function interacts as little as possible with
the edges of the grid. Since the calculations are sensitive
to even a small amount of reflection, the absorbing
boundary must be as efficient as possible.

We showed, by calculating harmonic spectra from a
Yukawa potential with one bound state, and a Coulomb
potential on an inadequate grid, that excited states con-
tribute to the background radiation and enhance harmon-
ic emission. However, the number of bound states on the
grid does not significantly alter the overall number of
harmonics. High harmonic emission requires a nonzero
matrix element from a virtual bound level or continuum
level back to the ground state. This matrix element
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derives amplitude from the mixing of the bound states,
which contain most of the oscillator strength in the atom,
into the continuum by the laser field. The cutoff in the
spectrum occurs at energies which are too high to have
sufficient oscillator strength to emit a photon to the
ground state [29].

At 1X 10" W/cm?, the highest intensity analyzed in
this paper, the grid required to completely contain the
ionizing wave function is enormous, and the wave func-
tion in any calculation is interacting strongly with the
edges of the grid. As a result, using the length form of
the dipole we were unable to obtain fully converged re-
sults at this intensity, even on a grid of 2000a, a distance
well in excess of the average interatomic spacing in a typ-
ical OHG experiment. At such intensities, the results are
also very sensitive to small changes in the parameters of
the calculation. This situation is akin to the attempt to
resolve many narrow, closely spaced scattering reso-
nances with an inadequate basis. Small variations in the
basis cause the resonances to shift and interfere
unpredictably. At 1X10'"¥ W/cm?, the harmonic spec-
trum contains contributions from many resonances and
many interfering paths, and the harmonics intensities os-
cillate rapidly as a function of the laser intensity.

Some of the difficulties at high intensity are apparently
alleviated by using either an alternate form of the dipole
that includes only transitions to the ground state, or the
acceleration form of the dipole. The alternate expression
is intuitively appealing, because it contains only the term
that is expected to dominate harmonic generation. It
also diminishes the effects of reflection, which are purely
numerical artifacts. The background levels and the
cutoffs in the harmonic spectra calculated with the alter-
nate form of the dipole agree quite well with those using
the acceleration form of the dipole operator. These re-
sults indicate that the length form of the dipole should
not be used in high-intensity calculations.

Finally, we would like to emphasize that all of the cal-
culations presented in this paper concern the response of
a single atom to a laser field. To compare these results
with experiment, the phases and magnitudes of all of the
atoms in a macroscopic volume of gas must be combined
to predict the experimentally observed signal. This re-
quires knowledge of such parameters as the focal
geometry of the laser, and the density, active length, and
extent of ionization of the medium. Calculations on xe-
non have shown [7] that when the highly oscillatory
single-atom spectra, such as those in Figs. 8 and 9, are
phase matched, the intensity dependence of the harmon-
ics becomes much smoother, in agreement with experi-
ment. The phase-matching results suggest that the most
reasonable way to provide single-atom spectra for input
to comparisons between theory and experiment is to
choose the best grid and mask function possible (given
the available computational resources), and then to use
the same parameters for every intensity. In this way the
resonances are treated consistently for all intensities.
Our experience indicates that as long as the grid size is at
least a few times the quiver motion of the electron, this
procedure yields phase-matched harmonic intensities that
are in error by no more than an order of magnitude [7].
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We are exploring a number of possible ways to improve
our calculations, including the use of alternative propaga-
tors that may require fewer steps per optical cycle and
the transformation to different coordinate systems or
gauges. Although the quantity d(¢) is gauge indepen-
dent, it is possible that more efficient absorbing boun-
daries can be constructed in alternative gauges. We are
also examining the recent suggestion [30] that performing
the calculations along a complex exterior contour allows
flux reaching the grid boundary to be removed analytical-
ly. Finally, we have extended these calculations to study
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harmonic generation in the hydrogen molecule, based on
a prediction that molecules should be more efficient than
atoms at generating high harmonics [31].
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