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The line shape of a pair of Doppler-broadened closely spaced transitions sharing a common lower lev-

el and under the effect of a standing-wave monochromatic radiation field is studied. The eight steady-
state optical Bloch equations are solved analytically to obtain the polarization by retaining terms up to
the third power in the electric-field amplitude. The absorption coefficient derived for the standing-wave
case consists of two Lamb dips for the two allowed transitions at col and co2 and a crossover resonance
dip at the intermediate frequency ct) =(Hi+et)2)/2. The Lamp-dip peak frequencies show intensity-
dependent shifts. Numerical computations are presented for different values of Rabi frequencies and re-

laxation linewidth parameters, which are small compared to the frequency difference E=N2 N&. The
computed line shape and frequency shift are compared with the observed results in the Balmer H line of
hydrogen and the infrared Zeeman spectra of methane.

PACS number(s): 32.70.Jz, 33.70.Jg

I. INTRODUCTION

Nonlinear attenuation characteristics of Doppler-
broadened atomic or molecular resonances involving
closely spaced levels were studied in a number of theoret-
ical [1—6] and experimental [7—10] work. Very narrow
line widths of a variety of nonlinear-optical processes can
be of great use for the determination of small splittings
which may be inherently present in the atomic system
(e.g., fine-structure or hyperfine splitting). Similar small
splittings, induced in the atomic system by an external
field (e.g. , Zeeman effect), may also be resolved because of
the narrow linewidth of the nonlinear resonances. In a
standing wave, when the applied radiation field is
sufficiently strong, the nonlinear resonance appears in the
form of Lamb dip in the Doppler-broadened Gaussian
background. The line shape of the Lamb-dip signal is
Lorentzian and depends primarily on the natural
linewidth and the collisional and saturation broadening.
The increase of laser power increases the intensity of the
signal at the cost of broadening it. In the case of closely
spaced levels with the energy-level difference larger than
the Rabi frequency and the collisional linewidth, but
much smaller than the Doppler width, two distinct
Lamb-dip signals appear when both the transitions are al-
lowed. In the standing-wave arrangement, the non-
resonant interactions with the oppositely moving waves
lead to a crossover resonance which appears in the form
of an additional dip at a frequency intermediate between
the two resonance frequencies. Such additional reso-
nances were predicted theoretically [1] and later observed
experimentally in the laser saturation spectroscopy [7] of
Balmer H line in hydrogen and also in the infrared Zee-
man spectra of methane by laser-saturated absorption
[8]. Hyperfine structure of methane was measured from
the splitting of the closely spaced Lamb dips [9].

The line-shape theory of three-level systems under the
effect of one or two incident electromagnetic radiations

has been discussed in a number of theoretical work
[1—6, 11—17]. The line-shape theory for the two-level
atoms, in the presence of two oppositely running elec-
tromagnetic waves of the same frequency and intensity,
has been studied in detail [18—24]. Haroche and Hart-
mann [25] studied the saturated absorption line shape for
the case of two-level atoms in the presence of a strong
pump radiation and a counterrunning weak probe radia-
tion of the same frequency. When an atomic system is ir-
radiated by a strong electromagnetic wave, there can be
modifications of atomic eigenstates leading to level shifts
[26] or dynamic Stark splitting [27]. Haroche and Hart-
mann [25] showed that when one of the fields is very
strong in a quasirunning-wave situation, there can be ap-
preciable modification in the probe field transmission
peak line shape. In a theoretical analysis of the satura-
tion behavior of Doppler-broadened resonances involving
closely spaced upper levels and a single lower level,
Schlossberg and Javan [1] considered the effect of two
closely spaced monochromatic electromagnetic fields
having their frequencies within the Doppler width in a
standing-wave arrangement. They investigated the effect
of the third-order term in the electric-field amplitude on
the absorption. The intensity of the crossover signal was
shown to be given by the geometric mean of the two
separate Lamb dips. Their calculations did not predict
any shift of the two Lamb-dip frequencies. In the case of
a single electromagnetic wave incident on the same sys-
tem, we found by exact numerical solution of Bloch equa-
tions that the dips exhibit small shifts towards each other
[6]. Any small intensity-dependent shift of the Lamb dips
may account for important correction in the calculated
hyperfine constants. A shift of the peak frequency of the
Lamb dip from the atomic resonance frequency of the
Balmer H line would lead to a correction to the Rydberg
constant.

In this work, we present an analytical solution of the
eight optical Bloch equations for the interaction of a
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monochromatic standing wave with a three-level system
having closely spaced upper levels. In our case the coun-
terrunning waves have the same frequency and intensity.
We shall consider the magnitude of field intensity to be
such that the Rabi frequencies for both the transitions
are small compared to the relaxational linewidth (1/T).
This enables a perturbation expansion of the absorption
coefficient in terms of the electric-field amplitude c. We
shall retain terms up to the third power in c. Our aim in
this work is to investigate the effect of counterrunning
waves on the line shape of closely spaced transitions. The
computed line shape shows Lamb dips and a crossover
resonance dip and predicts small intensity-dependent
shift of peak frequencies. The calculated line shape of
Balmer H line of hydrogen agrees with the observed
spectrum. The computed line shapes are also compared
with the infrared Zeeman spectra of methane.

II. THEORY

A. Optical Bloch equations

We consider an ensemble of nondegenerate three-level
(a, b, c) quantum systems with E, &Eb &E, and

E, —Eb =Ah is very small. A monochromatic radiation
of electric-field amplitude c and frequency u is incident
on the system. The frequency co is close to the resonance
frequencies co& = (Eb E, ) /fi —and co2 =(E, E, )/A', —
hence, hco) =co—co) and Ac02=co —c02 are very small. We
first consider the three-level systems to have zero velocity
and to have no interaction with each other. The dynam-
ics of the system may be described by the Liouville equa-
tions for the 3 X 3 density matrix (Appendix A). The di-
agonal elements of the density matrix define the popula-
tion difference

and

~Ni =N(f aa f bb
)—

b N2 =N(p„—p„),
where N is the number of atoms per unit volume. The di-
agonal elements p„, pbb, and p„are replaced by their
volume averages [16] so that population pulsation effects
do not appear. The real and imaginary parts of the polar-
izations P, and P2 associated with the two dipole-allowed
transitions a ~b and a ~c, respectively, are (Appendix
A)

and

x )
=2pgb CIA

(4)

X2 —2Pac 6/A .

P,„/T2 Leo iPi; ——eP„;/A'=0,

P2„/T2 —ha)2P2; +ePI Ifi= 0,
bN, /T, 4eP„/A——2eP~;/fi=b, N, O/T, ,

5N2/T, —2EP„/R 4eP2—; Ifi=bÃ20/T, ,

P);/T2+hco, P), eP„,/f—i+a~@,b~ bN) /A=0,

P2;/T2+bco2P2„eP„, /fi+ei—p„i AN&/A'=0,

P„„/T„+bP„;+sip„iP&;I%'+sip, bi P2;IIi=0,

P„;/T„b,P„„sip,b—i
P—,„2A/+icy„i P, „/A=O .

(6a)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

The longitudinal (T& ) and transverse (T2, T„) relaxation
times are introduced phenomenologically. When the field
is withdrawn, the polarization terms relax to their equi-
librium zero values while the population differences relax
to the equilibrium values EN, o and AN20 determined by
the Boltzmann distribution.

B. Doppler-broadened standing-wave absorption

Equations (6) are solved to obtain the polarization and
population difference as

P„=— x iL &(co)[.AN&0 2L2(co) A (cu)xz—h—N20]

The transition b ~c is not allowed and there is no radia-
tion corresponding to this energy difference, but the time
development of pb, is not zero [Eq. (AS) in Appendix A].
The time developments of P, and P2 involve terms like

p„p,bpb, . Such terms are defined as [6,14]

nr + ni NpcaI abpbc

The polarizations P, and Pz are modified to the order
x&x2 through the coupling matrix element pb, . Hence,
the terms P„produce higher-order correction to P& and
P2. The physical significance of these terms was dis-
cussed earlier [6].

The steady-state optical Bloch equations are (Appendix
A)

and

P)„+iPI,; =NPb, P,b,

P2r+tP2; =Np«p« .

(2) and

bN, =bN)o{ 1 x)T,L)(n))[1 4x2L—2(co)]j—
2 ANppx 2 T& L2 ( co )[ 1 x&L

&
( co ) A ( co )], (8)—

The Rabi frequencies are defined as where

L)(co)=[IITq+hco(T2+x, T)+ ~x2T„,'x2(b T„+he@)T2) /D]——

3 (co) = T, + ,' T„—(b T„+bc@)T2)(—ET„hco2T~)!2D, — (10)
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and

4DT2 1/T2
L, (co)=

T2(4D x2T—2} (b,a)', } +1/T2

where

(12)

x 6
6N~ =N N~+

4(b, + I/T„)+x) T2/T„
(13)

and

DT„[1+T) Tzx t (1+6 T2)/DT„]'~~

T2 1+6, T+x TT/4 (14)

D =1/T„+6 T„+(x&+xz)T2/4 .

The expressions for P2;, AN&, and L2(co) are obtained
from the equations (7)—(9), respectively, by interchanging
the subscripts 1 and 2 in xk, Lk(co}, hcok, and ENko. The
expression for L&(co) in Eq. (9) may be simplified to the
following form:

and c is the velocity of light. When the atomic system is
enclosed in a cavity, there are two waves moving in oppo-
site directions and interacting with the molecules with ve-
locity U. The imaginary part of the total polarization in
this case would be

P; =Pi,-~+P), +Pq,-~+Pq, (17)

where P&,-+ mean the polarization due to the transition
a~b induced by the waves moving in opposite direc-
tions. Similarly, P2,.+ stand for the same due to the tran-
sition a ~c. In order to calculate P„+ from Eq. (7), one
has to consider the fact that, in the presence of a standing
wave, hX& relaxes to hN&+ when the field
2scos(cot+kz) is withdrawn and not to bN, oas in the
case of a traveling wave. Similarly, for P2;+, 6%2 relaxes
to EN2+ with the withdrawal of the field. The expres-
sions for b,N, + are obtained from hN& in Eq. (8) by re-
placing hm, with Au&+co'.

The polarization P,. induced by the electric field on the
three-level atomic system is calculated from Eq. (17) after
using Eqs. (7)—(16) and is obtained in the form

Similarly, we obtain P =P'"+P' '+P' '+
E l (18)

L2(co)=
I /T2

T2(4D x, T2) (b—co', ) +1/T2'
(15)

where

xi'
Atop —co 602

4(b, +1/T„)+x2T2/T„
(16)

and T'2' may be obtained from T2 in Eq. (14) by inter-
changing x& and x2.

In order to include the Doppler shift in a standing-
wave case, we have to replace Aco& and Ecole by hen&+co'

and hcozkc0', where c0'=catv/c, v is the molecular velocity

where the term P "' depends linearly on c.". This result
may also be obtained from time-dependent perturbation
theory when one solves the Liouville equations (Appendix
A) for the density matrix. The density matrix can be
written as a perturbation series in terms of the interaction
Hamiltonian. Such an approximation of the density ma-
trix would lead to the series expansion [Eq. (18)] for po-
larization [28].

For a small field, the series in Eq. (18) converges rapid-
ly. We shall retain terms up to the third power [29] in E.
The effects of the next higher-order term are given in Ap-
pendix B. By omitting all the terms with powers of c.

higher than three we obtain

%xi
P; = — [EN,O[L, ~(co)+L, (ci))—2x )T,L)~(co)L) (co)]

4c
—

—,'bN20x 2 [Tl L &
(co)L2+(co)+ T&L &+ (co)L2 (co)+L

&
(co)Lz (co) A (co)

+L,~(co)L~~(co) A ~(co)]]+(1~~2), (19)

where the subscripts + correspond to + signs in front of co and the last term is obtained by interchanging the sub-
scripts 1 and 2 in xk, b Nko, and Lk+(co) and of bcvk in A+(co) in the first term. Assuming a Maxwell velocity distribu-
tion law, we can obtain the total absorption coefficient

y(co) = fP;(co'}exp( —
q co' )dco',

CC

where

(20)

q = (M/2k' )'~—c (21)

is the Doppler-broadening parameter where Tz is the Boltzmann temperature and M is the molecular mass. In the
Doppler-broadened limit of large T2, we can approximate

1/T2
=m5(hco+co') .

(b,co+cd') +1/T2
(22}
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C. Line shape and frequency shift

Substituting Eqs. (8), (10), (12), (15), and (19) in Eq. (20) and using the approximation of Eq. (22), we obtain, after the
velocity integration,

1/T2
X ' EN]o 51V]ox ) T]

4(bco', ) +(1/T2)

T, /T2'
—,'(b N~0+ EN20)x 2

(b,co'+ha)') +(1/T2')

5 (T„—T2) 1/T2+ T, +T„/2+
2(b,2+ I/T ) (Aco' —&a)') +(1/T2')

+(1~~2) . (23)

The last term is obtained from the first one by replacing
p, b by p„and interchanging the subscripts 1 and 2 in xk,
bNko, and b,co'k. Equation (23} expresses the Doppler-
broadened absorption line shape together with Lamb dips
having Lorentzian line shape. In order to observe two
resolved Lamb dips, 6 should be larger than the Rabi fre-
quency and the inverse of relaxation time. It is interest-
ing to note that the peak frequencies are shifted in such a
way that they approach each other. The shift [Eqs. (13)
and (16)] is proportional to the laser intensity when the
Rabi frequency is smaller compared to b, and 1/T„. It
also depends on 5 in such a way that, for 6 much large
compared to x& and 1/T„ it is inversely proportional to

If 6 is smaller than x and 1/T„, the shift is propor-
tional to 6, but in this case Lamb dips are not resolved.
The intensity dependence of the shift may be compared
with the dynamic Stark effect or Autler-Townes effect
[27]. The shift in the present case arises from the non-
resonant interaction between the closely spaced levels
and it vanishes for large h. A similar shift of the
Doppler free absorption peak frequencies was also ob-
tained by us from the numerical solution of the Bloch
equations [6]. The shift disappears when the terms P„ in-
volving the product ofp,b and p„are omitted.

D. Crossover resonance

In addition to the Lamb dips at hm&=0 and 6m&=0,
Eq. (23) predicts an additional dip when hco&+bcoz=0,
i.e, at a frequency

x2, the crossover resonance will shift towards the
stronger Lamb dip. The last term in Eq. (23) is indepen-
dent of frequency and depends on h=co2 —

co& only. This
term becomes important in the energy-level-tuned level-
crossing experiments.

III. COMPUTATION OF LINE SHAPE AND SHIFT

We have computed the line shape [Eq. (23)] for
different values of 6, x &, x2, and T, = T2 =T„=T, which
are assumed to be equal. The parameters used for com-
putation are chosen, as far as possible, to correspond to
the observed [7,30,31] Balmer H transitions 2S,&2-3P, &2

and 2S&&2-3P3/2 sharing the common level 2S&&2 and cor-
responding to the frequency region 15230 cm '. The
Doppler broadening in this region is very large. For
these closely spaced transitions, b, =3.3 6Hz and the pa-
rameters x ( =x, =x2 }and T's are so chosen that the ap-
proximate linewidth (x +1/T )'~ is much less than h.
The observed linewidth is of the order of 0.7 6Hz. The
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(24)

o 1.75-
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0
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%hen x
&
=x2, the dip occurs at the intermediate frequen-

cy co, =(co,+co&}/2. This dip is known as the crossover
resonance dip [1,24]. In this case the left-traveling com-
ponent at co is Doppler shifted to co2 (or co&) for atoms of
an appropriate velocity, while for the atoms with the
same velocity the right-traveling component at co is
Doppler shifted to co, (or co2). When x, is not equal to

1.65-25 -0.5 0.5
Detuning (0Hz)

FIG. 1. Absorption line shape in the visible region for vari-
ous Rabi frequencies (a) x =0.2 GHz, (b) x =0.25 GHz, and
(c) x =0.3 GHz with fixed relaxation time T=1.5 nsec and
5=3.3 GHz. The detuning corresponds to co—co, .
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FIG. 2. Absorption line shape in the visible region for vari-
ous relaxation times (a) T =1.4 nsec. (b) T =1.5 nsec, and (c)
T=1.6nsec with fixed Rabi frequency x =0.2 GHz and 6=3.3
GHz. The detuning corresponds to co —cu, .

FIG. 4. Absorption line shape in the ir region for various
Rabi frequencies (a) x =0.08 MHz, (b) x =0. 1 MHz, and (c)
x =0.12 MHz with fixed relaxation time T=4.0 psec and
6=4.0 MHz. The detuning corresponds to co —co, .

computed line shapes for T = 1.5 nsec and the values of x
in the range 0.2-0.3 GHz are shown in Fig. 1. It is in-
teresting to note that the peak height of the crossover
Lamb dip is very close to those of the Lamb dips. This
arises from the fact that the intensity of the crossover
Lamb dip is given by the geometric mean [1]of the Lamb
dips at co, and co2. An interesting feature of the computed
line shape is the shift of the Lamb dips co& and co2 towards
each other, as predicted by Eqs. (13) and (16). Since
x& =x2, the crossover Lamb dip does not exhibit any
shift. The curves (Fig. 1) show rapid increase in the
Lamb-dip intensity with Rabi frequency. Similarly, the
curves in Fig. 2 show the sharpening of Lamb dips with
increase of relaxation time T. We have computed the
shift of co& with laser power in the range 2 —250 mW/mm
as used in Ref. [7]. Using a computed value of the oscil-

lator strength for the 2S-3I' transition of hydrogen, we
obtain the values of x in the range 0.01-0.15 GHz, which
are proportional to the square root of the laser intensity.
Hence, the shift of b, co& given by Eq. (13) varies linearly
with the laser intensity. From the computed curve (Fig.
3) we obtain a shift of 12 [kHz/(mW/mm )] or 1 part in
4X10' per mW/mm of the laser power. This is within
the experimental upper limit [7] of the intensity-
dependent shift of 2 parts in 10' per mW/mm .

We have further computed the line shape of the Lamb
dips in the infrared region which were observed in
methane [8]. The curves show the effects of variable Rabi
frequency with constant relaxation time (Fig. 4) and of
variable relaxation time with constant Rabi frequency

2.0-

C19-

2.0- 0
1.8-

C

1.0- C1.7-
Q

00
0.0 50.0 &00.0 1 50.0 200.0

~ntenQity (mQ//ram )
250.0

FIG. 3. Shift in the Lamb-dip position vs field intensity with
T =5.0 nsec and 6=3.3 GHz (see text).

—0.5 0.5
Detuning (MH?)

FIG. 5. Absorption line shape in the ir region for various re-

laxation times {a) T=3.0 psec, (b) T=4.0 psec, and (c)
T=5.0 @sec with fixed Rabi frequency x =0.1 MHz and

5=4.0 MHz. The detuning corresponds to co —co, .
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FIG. 6. Absorption line shape in the ir region for {a)x
&
=0.6

and x2 =0.2 MHz, (b) x
&
=0.2 and xz =0.6 MHz with T= 1.0

@sec and 6=4.0 MHz. The detuning corresponds to co —co, .
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FIG. 7. Shift of the Lamb-dip position vs Rabi frequency
with T =3.0 psec and 5=4.0 MHz (see text).

(Fig. 5). In this case, the crossover Lamb dip also has the
same intensity as the Lamb dips. Figure 6 shows the shift
of crossover Lamb dip when x i+x2. It should be noted
that the shifts of the Lamb dips lead to a decrease of 6 by
8 kHz at x =0.25 MHz and T =3.0 @sec (Fig. 7). Since
the value of 6 is useful in the calculation of g factor or
hyperfine splitting constants, such intensity-dependent
shifts may be important in the calculation of these pa-
rameters. For an estimation of the correction due to the
shift of peak frequency, one must have an accurate
knowledge of T and the laser intensity.

It is to be noted that the observed infrared Zeeman
spectra of methane by Uzgiris et ol. [8] show that the in-
tensity of the crossover Lamb dip is much smaller com-
pared to the lamb dips of the parent transitions, although
our theoretical computation predicts the crossover Lamb

dip to have the same intensity as the other dips. Our re-
sult is in agreement with that of Schlossberg and Javan
[1]. It may be mentioned here that Cardimona et al. [32]
deduced the effect of quantum electrodynamic correc-
tions [33] on the steady-state absorption line shape of a
single traveling wave. They showed that when the dipole
moments p,b and p„are parallel and equal in magni-
tude, then the total absorption rate vanishes at the inter-
mediate frequency co, . In absence of the quantum elec-
trodynamic effect, a nonzero absorption is found at co, for
a single running wave [6]. Hence, the inclusion of the ad-
ditional damping terms arising from the quantum electro-
dynamic effect would lead to similar vanishing of the ab-
sorption at m, if the dipole moments are properly
matched. The crossover Lamb dip which arises from the
nonlinear resonance of the oppositely running waves
would be superimposed on this. Thus, the quantum elec-
trodynamic effect will lead to a decrease of the observed
intensity at co, . However, such a decrease is possible only
if the transition moments obey the above condition.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, the Doppler-broadened absorption line
shape for coupled closely spaced transitions in the pres-
ence of a standing wave has been presented. The Bloch
equations are solved to obtain the polarization by retain-
ing terms up to the third power in the electric field.
Hence, the shift is obtained in the fifth power of interac-
tion. The fifth power terms in electric-field amplitude a
in the line shape lead to a correction to the frequency
shift in the seventh order of interaction. The correction
in the line shape arising from these terms is given in Ap-
pendix B. But numerical computation shows that it has
negligible effect on the line shape and frequency shift for
the values of Rabi frequencies used in our work.

The computed line shape predicts intensity-dependent
shifts of the Lamb-dip frequencies. In the present case,
the shifts are such that the dips approach each other so
that the splitting is reduced. The computed intensity
dependence of the shift of Lamb dip is within the estimat-
ed intensity-dependent shift of the observed Balmer H
line of hydrogen [7]. The observed intensity-dependent
shift may also arise partly from the dynamic Stark effect
[27] or Bloch-Siegert effect [34]. Similar shifts in the in-
frared region may also be responsible for small correction
of the observed hyperfine [9] and Zeeman splitting [8]
which may lead to small corrections of the computed
hyperfine interaction constant or the g factor of the mole-
cule.

It may be noted that in our work we have used a stand-
ing wave with the same field strength for the co-
propagating and counterpropagating waves. The field
strength is taken to be such that a perturbation-type cal-
culation is allowed and the small third-order term leads
to Lamb dips in the large Gaussian background. If one
of the waves is very strong and acts as a pump, while the
other wave is weak, one has to use a semiperturbative
technique, as used in Ref. [25], to obtain the line shape in
a two-level atomic system. The additional features com-
puted by Haroche and Hartmann [25] would also be ex-
pected in the three-level system. But these features are
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very small in intensity. In the experimental work
[7,30,31] on Balmer H lines involving closely spaced
upper levels, a strong pump and a weak probe were used,
but no additional resonances, predicted theoretically [25],
were reported. Haroche and Hartmann [25] obtained a
small light shift of the resonance peak at co =coo, where coo

is the resonance frequency of the two-level system. The
light shift arose from the strong pump. The shift ob-
tained by us is also intensity dependent but it arises from
the closely spaced levels. It disappears when b is very
large. It must be mentioned that our calculations are not
attempted to obtain a fitting of the spectral lines. Hence,
we have used the same values for the relaxation times.

We have presented the line shape for transitions in the
visible and infrared region for different values of relaxa-
tion time T and Rabi frequencies. These curves may be
useful for comparison with the actual observed curves.
The peak height of the crossover resonance is in agree-
ment with the observed spectra of the Balmer H line of
hydrogen [7]. But the observed intensity of the crossover
resonance in the infrared Zeeman spectra [8] of methane
is much smaller than our computed result. Such a
discrepancy may arise from the quantum electrodynamic
correction terms [32] which depend on the relative orien-
tation and magnitude of the transition dipole moments of
the coupled transitions. Such corrections may be useful
when the two dipoles are parallel and equal in magnitude.

In this work we have investigated the line shape of the
frequency-tuned absorption. Hence, the last term in Eq.
(23) is constant for our case. In the case of energy-level-
tuned spectroscopy this term would lead to Zeeman
coherence efFect [35] analogous to the Hanle resonance.
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H =H0 —P[s
exp(idiot

—ikz)+c. c.], (Al)

where p is the dipole moment operator, Ho is the unper-
turbed Hamiltonian of the three-level system with the ei-
genvalues E„Eb, E„and k =co/c for a plane wave in
vacuum. The density matrix corresponding to the Ham-
iltonian of Eq. (Al) satisfies the equation

iA =[H o] . (A2)
at

Following Refs. [11,14], the rate equations for the com-
ponents of the density matrix p in the interaction repre-
sentation and under the rotating-wave approximation are

a
Paa e(pabPba+PacPca ) E(PobPba+PacPca )

at
a'~
g Pbb e(pbaPab PbaPab } |at
a

Pcc =e(PcaPac P'caPac } &at
~ a

Pab ePab(Poa Pbb } ePacpcb +~~~lpab
at '
a

Pac ePac(poa Pcc } ~Pabpbc+~~2pocat

(A4)

(A5)

~ a
Pbc Pbai ac EI baPac ~~Pbcat

(A8}

under the effect of the applied field a macroscopic polar-
ization will develop, which can be written as

P=N [Pb,p,b+P„p„]exp[i (cot —kz)]+c.c. , (A9)

which leads to the definition of the real and imaginary
parts of polarizations given in Eqs. (2) and (3).

Time derivatives of Eqs. (1)—(3) and (5) together with
Eqs. (A2) —(A8) lead to the optical Boch equations (6)
when the phenomenological relaxations are added.

APPENDIX A

The Hamiltonian of the atomic system interacting with
the electromagnetic field is

APPENDIX B
The fifth-order term in Eq. (18) for polarization is obtained as

p,"'= x 21xT22, (bN» xL2, (+c)Lo, (to)[L2+(co)A+(co)+L2 (to) A (co)](S) & 2 2

8c

+6N20 I x,L,+ (co)L, (co)[L2+ (co) A+ (co)+L2 (co }A (to)]

+x2L2+(to)L2 (co)[L,+(co)A+(to)+L, (co)A (to)]])+(1~~2) . (Bl)

Using the procedure outlined in Eqs. (20)—(23), we obtain, for the contribution to the absorption coefficient due to the

fifth-order terms in polarizations [Eq. (B 1)],
8 3/2

y'(co)= q ip, bi exp[ —(qua)', ) ]

1
(

1/T2
&2&2T T2 (T —T /4l+g~ ~472T

10 1 2 o 2 1++2T2 ' 1 o ~ 10 1 1 2 4(g s)2+(I/T }2

+—T,x2(b,N, 0+BN20) T, +T„/2—1

4

b T„(T„+T2)
2(1+/ T )

1/T2 1/T2' 1/T2

4(bco', ) +1/T2 (bco', +hco2) +(1/T2 ) (bee', —benz) +(1/T2')
(B2)
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