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Exact theory of the four-wave-mixing process in a nondissipative medium
with a large rate of conversion: Weak-field case
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Without making the nondepleted-pump approximation, we solve the problem of four-wave mixing
(FWM) in a nondissipative y'" medium. Instead of describing the dynamics of FWM in terms of cou-
pled wave amplitudes, we base our solution on canonical equations that describe the propagation of the
field s intensities. This structure clearly identifies the conservative exchange of energy in the FWM pro-
cess. Consequently, analysis of the FWM process is reduced to a single propagation equation that de-

scribes the energy exchange between the pump and amplified waves. This equation yields an elliptic-
integral solution. The conversion efficiency reduces to the simple analysis of a fourth-order polynomial,
which we analyze to determine the conditions for optimization. The destructive influence of the optical
Kerr effect on the phase-matching condition is shown to be eliminated by proper choice of nonzero ini-

tial wave-vector mismatch, dependent on the input intensity. The effect of the nonuniform transverse
pump-beam intensity profile on the process of conversion is considered. The direction of the energy ex-

change is shown to be a periodic function of the propagation distance. The transverse intensity distribu-
tion of the generating waves provides the characteristic spatial structure (the set of coaxial rings with or
without the central spot; the number of rings is explicitly determined by the length of interaction).
Several methods of process optimization are discussed, and nonuniformity in the pump-beam profile is
shown to be the main reason that complete energy transfer is not achieved.

PACS number(s): 42.65.Ky

I. INTRODUCTION

The four-wave-mixing (FWM) process in nondissipa-
tive media has been investigated in a number of works
from several different points of view [1—11]. It is well
known [12—14] that the process of energy transformation
of pump waves (frequencies coi and co&) into the energy of
amplified waves (frequencies co3 and co4) is most effective,
if the energy-conservation rule co&+~2= co3+ co4 and
momentum-conservation rule, k, +kz=k3+k4 are met
simultaneously. The standard approach to solve these
kinds of problems is to expand the value P of the medium
polarization, as a power series of the field amplitudes of
the interacting waves. Only the terms of lower order are
retained:

P =y"'E+y' '.EEE,

where E=+4,E (r, t) Substitution of.(1) into the wave
equation leads to the well-known system of equations for
slowly varying field amplitudes of co waves. The solution
of these equations is usually performed by the nondeplet-
ed pump-field approach. Using this standard approach,
it is difficult to investigate and find the answers for three
principal questions.

(1) As the energy in the pump waves (co, and to2) is
depleted and transferred to the amplified waves (to3 and
co4), how does the FWM process proceed?

(2) Under what conditions can there be a complete
transfer of energy from the pump to the probe waves?

(3) How does the optical Kerr effect (i.e., the
intensity-dependent index of refraction) disturb the rate
of conversion? What can be done to avoid its negative
inhuence?

Only recently have there been considerable efForts to
analyze the processes of pump depletion and complete
energy transfer [15—17]. It should be mentioned that all
these works use the Hamiltonian formalism, proposed
first for third-harmonic generation [18]. This formalism
enables the conversion of coupled four-wave equations to
the simple one-dimensional difFerential equation describ-
ing classical motion in the potential well. Analysis of this
equation has shown the principal possibility for complete
energy transfer from the pump to the signal waves. The
condition of such conversion is the nonzero initial wave-
vector mismatch, dependent on the input intensity
[16,17,19]. The extension of the problem to noncollinear
propagation has been made [19] and an additional
scheme to provide appropriate phase-matching condition
suggested (by proper choice of angular mismatch). The
inhuence of the pulse temporal profiles on the efficiency
of conversion has been also taken into account. The
nonuniform intensity distribution of the pulses results in
the decreasing of the whole rate of conversion, since now
the ideal phase-matching condition can be performed for
the local part of the pulse only.
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In the present work we consider the influence of the
spatial profile of interacting pulses on the process of com-
plete energy transfer. In Secs. II and III we follow main-
ly the Hamiltonian approach used in a previous work
[19]. The approach is based on the representation of
medium polarization P as a partial derivative [14,18—20],

BH
BE '

where H is the part of the Hamiltonian describing the in-
teraction of the field with the medium (in other words, H
is part of the time-averaged free-energy density of a
dielectric [1]). Under this representation the propagation
equations for the slowly varying amplitudes of the in-
teracting waves have the same form as the canonical
Hamiltonian equations. This enables the use of a com-
pletely developed classical-mechanical technique: The
four independent integrals of motion can be easily ob-
tained, reducing the problem to the solution of one
differential equation [see Eq. (21), below], which describes
pendulum oscillations in classical mechanics. This equa-
tion takes into account both co, +co2~co3+ co4 and
f03 +604 +co ]+c02 energy-transformation channels, as well
as the interference between them. In a nondissipative
media, the polarization responds instantaneously to
changes in the field; i.e., the adiabatic following the re-
gime is attained. In the interest of simplicity and clarity,
we consider the weak-field case only. However, the ap-
proach proposed here may be used for arbitrary field in-
tensities.

Usually, the negative influence of the optical Kerr
effect is related to the variation of the wave-vector
mismatch, 6k=k&+k2 k3 k4 during the conversion
process and the regime of complete phase matching
(b,k=O) cannot be performed in principle. However, as
shown below, such variation of hk does not disturb the
FWM-process optimization and the negative Kerr effect
influence can be completely eliminated by the proper
nonzero choice of the initial Ak0 value. The main
difficulties of the FWM-process optimization are related
to the nonuniformity of the transverse spatial-intensity
distribution of the pump waves, which makes it impossi-
ble to choose the proper initial Ak0 value which applies
to the entire beam cross section.

This work is organized as follows: In Sec. II the wave
equations are reduced to the canonical Harniltonian form
and the free energy is shown not to be the motion in-
tegral. In Sec. III four motion integrals (13) are obtained,
which allows the exclusion of all the variables but one
from consideration. In Sec. IV the FWM problem is re-
duced to one differential equation and its explicit solution
is obtained. In Sec. V this explicit solution is analyzed
for the most important case, when only three input waves
are considered (the same case is analyzed in the following
sections) and condition (37) for the initial hko value, un-

der which the conversion efficiency is maximized, is ob-
tained. In Sec. VI the quantum conversion efficiency is
considered and general ways to optimize this value are
shown. In Secs. VII and VIII some particular limiting
cases are considered.

II. FORMULATION OF THE PROBLEM:
WAVE EQUATIONS

—H= yx"'(~, )IE, I'+ ,' y~„lE-kE, I'
J IJ

+[y'FwME, E2E3E4 exp(iqz)+c c ], . . (4)

where q is the projection of the q vector on the z axis,

q =k,0+k20 k30 k40,

and g'"(coj) are the linear susceptibilities at frequency

coi; yFwM=y' '( —
co4, co„co2, ~3) is the nonlinear third-

order susceptibility, responsible for the FWM;
8;~= —,'g' '( —co;, co, , co, —c0 ) are the diagonal elements

of the nonlinear third-order susceptibility, which is re-
sponsible for the nonlinear terms of the refractive index.
The refractive index at cd is written as

4

n, =l+2ny"'(co, )+4m g B, IE

According to Eq. (2), the medium polarization is written
as

P= g exp(ik~o r itojt)+c c— .BH
BE.

Substitution of Eq. (7) into the wave equation for slowly

varying amplitudes leads to a coupled system of equa-
tions for E:

dEJ 27Tco)
l

dz e BE.*J
(8)

In order to solve Eq. (8), we rewrite it in terms of the in-

tensity I and phase g '
E&

= IE, le ', I~ =c IEJ I /2M', . (9)

The Hamiltonian H in these variables takes the form

We consider the propagation process of FWM in a
medium which fills the sernispace z ~0. It is supposed
that carried frequencies co of the plane wave E
(j=1,2, 3,4) satisfy the energy-conservation condition
co $

+c02 c03 +co4 The input beam angles with respect to
the z axis, OJ, are assumed to be small enough (8.« 1) to
omit the vector signs of the amplitudes E and to consid-
er the scalar equations. We also suppose that the values
of the refractive indices are close to unity
[In (co~ )

—1
I &&1]. It will be shown further that the re-

sults obtained can be extended to cases where the last
condition does not apply. The wave amplitudes are

EJ(r, t)=E~ exp(ikjo r —icojt)+c.c. ,

where E is a slowly varying function of the variables z,
r = t —z/c and kjo is the input wave vector at the en-
trance of the medium (Idol =coj/c). The true values of
kJ in the medium are functions of the z coordinate and
include an intensity-dependent Kerr effect. Following
[1],the H value is determined from
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H = g y I . g bp I Ii, y+IiI2I3I4cosf (10}
j j,k

where

f=g4+ f3 f—z f—, f—r 9—z,
y, =2irco, y' "(co,)/c,

bji, =(2n /c) fuujcoi, BJi, ,

x 2@2~/c} ~XFWM~+~1~23~4 '

(1 la)
BHp dQ 1 BHp

e B1(
'

dz ~ Br
dI
dz

(1 lb)
where

tion for I (z} is I (0)=0.
The next step of our mathematical formalism is to

reduce four pair conjugative variables IJ, Q~ to new ones.
The variables I and

hatt
are chosen as one of the pairs; the

choice of the other three pairs does not really play a role.
Then Eq. (12) is written as

Here fr is the phase of y„'w'&. The canonical transforma-
tion (9) of Eq. (8} gives the following expressions for a
new pair of conjugative variables I, and g'

dI 1 BH dg —1BH
dz fi Bg,

'
dz iii BI

In the case of a noncollinear (q%0} interaction, Eq. (12)
describes a nonconservative system, i.e., BH/Bz0. It is
obvious that the free energy varies with z, because of en-
ergy redistribution between the quantum beams propaga-
ting at difFerent angles with respect to each other (the re-
sulting Poynting vector changes its direction}. Conse-
quently, the role of the Hamiltonian will play another
magnitude signed as Hp and determined below [Eq. (16)].

III. MOTION INTEGRALS

Analyzing Eq. (10), one realizes that BH /Bf,
=BH /B$2 = BH /B$3 =—BH /BP4 =—BH /Bg. Substitu-
tion of these relations into Eq. (12) results in four in-
dependent integrals of motion:

Hp=H+AqI . (16}

Hp =(bk—p+bI)I yf cosg —.l
(17)

Here the constant term which does not include the vari-
ables I and 1(t is omitted. Taking into account the trivial
relation H(z =0)=Hp, we rewrite Eq. (13} in a form
which determines the relationship between phase 1( and
intensity I variables:

It is readily noted that Eqs. (15) have the same form as
the canonical Hamiltonian equations for one-dimensional
classical motion. The values I and g are regarded as the
generalized coordinate and momenta, respectively, the z-
variable replaces the time, and Hp/fi is equivalent to the
Hamiltonian. It is seen from Eqs. (10) and (16) that Hp
has no explicit z dependence. It is consequently the
fourth motion integral, i.e., dHpidz =0, which results in
conservation of the energy density of the medium along
the z axis. The expression for Hp can be written as an ex-
plicit function of I and g. Substituting Eq. (14) into (16),
we obtain Hp as a function of variables I and f only:

I1 —I2 —I10 I2p, I3 I4 =I3p I

and

I1 +I2+I3+I4=I1p+I2p+I3p+I4p,

H (Ii +I2 I—
3 I4)——

=H (z =0)— (I&p+Izp —I3p I4p ), (13—b)

b,kpI+bI =yf cosg —yfp cosfp,

where

akp=q+x, +x2—
y3

—
y4

4
+2 g (bij +bzj b3J b4J )Ijp

j=1

b =2(b i3+b (4+b4z+ b32 b i2 b34)

—b —b —b —b11 22 33 44 s

(18)

(19a)

(19b)

where IJp=I (z =0) and H (z =0) are the initial values of
I~ and H. Equations (13a) are known as the Manly-Rowe
relations [21] and are widely used in the theory of para-
metric amplification [22]. The relation (13b) describes
the H (z) behavior. It follows from (13b) that only in the
case q =0 does the free energy H not depend on z. The
relations (13a) in turn enable a reduction of the four vari-
ables I. to one, I:

I1p
—I, I2 =I2p —I,

(14)

I3 =I3p+I, I4 =I4p+I .

The magnitude of I is characteristic of the energy ex-
change between waves ~12 and co34. The initial condi-

f= [(Iip
—I}(I2p—I)(I3p+I)(I4p+I) ]' (19c)

Here fp=(I,pIipI3pI4p) and 1(p=g(z =0).
Because of its importance, let us examine the physical

meaning of the value of hkp. We determine the; wave-
vector mismatch hk as a projection of hk =k1
+kz —k3 —kz onto the z axis, where kj=cojn(coj. )/c
Then, taking into account Eqs. (6) and (19b), we obtain

hk =hkp+2bI . (20)

As seen, the magnitude 2bI defines the exchange of the
wave-vector mismatch Ak along the z axis, while hkp is
the initial wave-vector mismatch value, i.e.,
hkp=b, k(z =0).
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IV. MOTION EQUATIONS: EXACT SOLUTION

dI
dz

=+~VV(I), (21)

Here Eq. (15) is considered. The first part of Eq. (15)
together with Eq. (17) yields the form dI/dz=yf sinl(.
Substituting the value of sinl1 from Eq. (18), we finally ob-
tain

The length L is defined as L =F(g,p)/g, where F(g,p) is
a second-order elliptic integral with parameter p and

variable g=+S4(S, —S3)/S3(S4 —S2).
Expression (26) describes the periodical function

I (z)=I (z +21); i.e., the direction of energy transfer
changes its sign with the period 21 (see Fig. 1). The half-
period value l is given by

where
1 =K(p)/g, (29)

V(I)=(I |p I)(I~ p I)(I 3p+I)(I4p+I)

a[I—+(b,kp/b)I+yf p cosPp/b] (22)

The sign of Eq. (21) dePends on the sign of sinl(tp, and
u=b /g is a dimensionless parameter describing the ra-
tio between diagonal and nondiagonal elements of the g' '

susceptibility [see (11) and (19)]. Equation (21) describes
one-dimensional finite motion. Such types of equations
are widely investigated in the theory of elliptic functions
[23—25]. The allowed range of motion of detertnined by
the roots of the equation V(S)=0. We indicate these
roots as S (j =1,2, 3,4) and set them as

(23)
1 ) 1 ) 1 ) 1

1 2 3 4

In this case I ranges between S, )I)S4. One can see
from (22) that the roots S& and S4 satisfy the relations

I1p, 2p S1 0 S4 —I30 40 . (24)

These relations mean that the direction of energy ex-
change alters its sign, usually before depletion for any of
the input waves occurs. The maximal rate of conversion
(i.e., complete depletion for one of the input waves) is
achieved only in the case when the initial wave-vector
mismatch is taken as

where E(p) is the full first-order elliptic integral. The
function E(p) has been tabulated [26,27]. However, the
relation of Tricomi [28], ln4&K(p)+ —,'ln(1 —p) &n/2,
allows us to obtain an extremely convenient estimation
for l.

11 e )l) 11 16

2g 1 —p 2g 1 —p
(30)

I(z)

$i
21

~ ~

0

(a)

~ ~ ~

Using either the left side of Eq. (30) for 0&p & 0.6 or the
right side for 0.6&jtt & 1 allows one to estimate 1 with a
relative error of less than 3%%uo. As seen from Eq. (30},
1~ac for strong convergence of some roots S (p~l).
In this case the function I(z) becomes nonperiodic and
the energy-transfer direction either does not change its
sign at all or changes sign only once at z =L [see Figs.
1(b) and 1(c)]. The case i~Do is a pure mathematical
abstraction, since it can be obtained only for definite
values of input intensities I.p and wave-vector mismatch
5kp ~ The solution with l = ~ is extremely unstable; i.e.,
any small deviation of the variables mentioned above
makes the l value finite and comparable in magnitude

Akp = bI gf p cosgp/'I (25)

When condition (25) holds, we obtain S, =I;„,
if I;„=mi [nI, p Ipp ] ol S4 = I tf I'
=min[I3p, I~p]. In order to obtain the value of bkp in

the form of Eq. (25), one should properly choose the in-

put beam angles 6I . It should be mentioned that as the
condition for maximal conversion, Eq. (25) is not
sufficient. In order to make it so, we should require the
value I;„to be the least positive root of Eq. (22).

The general solution of Eq. (21) is given by

sn (gz/p) +S (1—v)cn (gz/p)
41+v cn (gz/p ) 1+v cn (gz/p )

where sn(x/p) and cn(x/p) are the Jacobian elliptic
functions (elliptic sine and cosine, respectively); the pa-
rameters p and v are given by

$ ~ ~
~ ~

4 ~ Iio

~0

E(z)

$

I(z)

S)

~, 2L
$4-

M2L I

(b}

(c)

Z/Ip

Z/ Ip

(St —S4)(S2 —S3)
(S, —S3)(S~—S4)

'
S~ —S3

(27}
Z/lp

g=2XQ(1 —a)(S, —S3)(S4—S2) . (28)

and satisfy the condition 1)p) 0 and v) 0; the gain g is
written as FIG. 1. Intensity I(z) vs normahzed distance z/lo for

sinPp) 0 (solid line) and singp &0 (dashed line): (a) without de-

generacy of roots S, (b) Sl =S2 and (c) S3 =S4.



45 EXACT THEORY OF THE FOUR-WAVE-MIXING PROCESS IN. . . 4983

with g . The estimations show that in most cases of in-
terest I varies within the limits 2g ' ~ l ~ 10g

V. SOLUTION FOR I4O =0: GENERAL EXPRESSIONS

From here on we consider the case of practical applica-
tion, I4p=O. Under this condition Eq. (14} shows that
the magnitude I equals the intensity I4. The function
V(I) takes the form V (I)=IR (I},where

R (I)=(I~p I)(I2p I)(I3p+I) aI(I+hkp/b) . (31)

The values S1 ' ~S2 ' ~S3 ' are determined from the
roots of Eq. (31), Sz =0, respectively. The magnitude I in
this case varies between 0 and S„and its dependence on z
is given by the expression

The dependence of I (z) for different values of the pa-
rameters p and v is shown in Fig. 2. Now we consider
several cases, where the roots S (j =1,2, 3,4) are degen-
erate.

(1) S&=S2. In this case (p=l}, 1=~, the function
sn(x/p) transfers into the hyperbolic tangent
sn{x/I ) =tanhx, and Eq. (32) becomes

sinh gz

%+cosh gz
(34)

) S sin gz

1+vcos gz
(35)

(2) Sz =S3. In this case (p=O), the imaginary period of
sn(x/M) becomes infinite, i.e., sn(x/0)=sinx, and Eq.
(32) takes the form

where

sn (gz/p)
1+vcn (gz/p)

(32) (3) S& =S2=S3. This situation is realized when the fol-

lowing condition holds: 2 = [I3p(I]p+Izp ) I~pIpp

+hkp/y ) )0. In this case 1=~, and Eq. (32) takes the
form

S( 1 —S3/Sz

S3
'

1 —S3/S,
(33)

1 x''
I(z) = I&pI p2I p3 1+Ay z

(36)

1 1g= —X I10I20I30 S1

I (z)
( )

0.5

I (z) (b)
I.O

0.5

0 I

1/2

S3

IO2

M= IO

M=)O 2

IVI= I

Z/lo

lVl= IO

M= IO

M=I

Z/lo

Expressions (34)—(36) illustrate the root's exact degen-
eracy. However, these expressions can be utilized for the
estimation process in the cases where exact degeneracy is
absent. For instance, when p, 50.6 the function sn(x/p)
is slightly different from sinx. Therefore expression (35)
with the substitution gz —+mz/21 describes I(z) with
sufficient accuracy. Similarly, for p ~0.6 expression (34)
can be utilized within the half period 0 z ~ l. The cases
(34}-(36}are shown graphically in Fig. 3.

Now we consider the efficiency of energy transfer into
the wave co4. As was mentioned, the maximal value of
the co4-wave intensity is equal to S, and is reached for
z =(2m +1)1, where m =0, 1. . . . Thus conversion-
efficiency analysis in the plane-wave approach is reduced
to the analysis of the magnitude of S, , the least positive
root of Eq. (31), R (S)=0. For simplicity, we take the
case I20 I10. Then the local conversion efficiency can be
determined as r1

=S, /I, p (the meaning of "local"
efficiency is explicitly defined in Sec. VI). The maximal
conversion g=1 occurs under complete depletion of the
co, wave. From (25) and (31), the value S& =I&p, i.e., r1=1
can be reached only by proper choice of initial wave-
vector mismatch Ak0,

} (z) {c)
IO—

v= l04 I(z) /S(

0.5—

0

M=IO

M= IO

M=I

z/~o

l.O

0.5

0 gZ

FIG. 2. Intensity I(z) vs normalized distance z/lo for the
various values of the parameters v and M =1—

LM, in the case
I~ =0.

FIG. 3. Normalized I(z)/S& vs normalized distance gz for
the cases of S; root degeneracy: (a) Sl =S2, (b) S& =S2=S3,
and (c) S3=S4.
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hko= —bI,o . (37}

The physical meaning of condition (37) is elucidated by
considering the average value ( b,k ), which is determined
as follows:

(hk ) = f b,k(I)dI=b, ko+bS, .
1

(38)

We realize immediately from (38) that (b,k ) =0 if condi-
tion (37) holds. Thus we maintain that the negative
influence of the intensity-induced Kerr effect can be corn-
pletely eliminated (in the plane-wave approach} by taking
the initial b, ko in the form of Eq. (37). The sign of b, k (z)
changes periodically [b,k =b,ko for z =2ml and
b,k = —b, ko for z =(2m + 1)z, where m =0, 1. . . ], while
the average value of hk (z) is equal to zero.

VI. QUANTUM CONVERSION EFFICIENCY

In this section we consider the quantum conversion
efficiency (QCE) W= W(z), which we define as the ratio
between the photon number in the co4 wave and the initial
photon number in the co, wave. Supposing axial-beam
symmetry, we can write the following expression for W:

W= f I dp f I,opdp (39)

where p is a transverse coordinate. All previous con-
siderations relating to the conversion efficiency are valid,
generally speaking, in the monochromatic plane-wave ap-
proach, i.e., large pump-beam radius and uniform
transverse-intensity distribution: thus one can put
I o(p)= const. In this case the $V(z) dependence coin-
~~dc~ ~~6~ ~~tb. Z(.~1.; th~ opt'.~(~o~~~~oo. (.~7) ap~u.~s

to the whole beam cross section, leading consequently to
the maximal rate of conversion, W=1, at distances
z =(2m +1)l (m =0, 1. . . ). In a real situation the
pump-beam transverse-intensity distribution is nonuni-
form. Although the plane-wave approach is still valid
from the mathematical point of view, 'the nonuniform in-

tensity dependence along with the radius p should be tak-
en into account.

The radial I o(p) dependence means that all the param-
eters involved, g, l, hko, and g, become functions of the
coordinate p. The dependence b,ko=bko(p), for in-

stance, means that the optimal condition (37) cannot hold
simultaneously along the whole beam cross section: i.e.,
the maximal efficiency W=1 cannot in principle be
achieved. The transformation "period" dependence
l =l(p) means that different parts of the beam cross sec-
tion have different rates of conversion; moreover, they
can have opposing directions of energy exchange
( co ]+ cop+—co3 + c04 ). In such conditions the magnitude

g=r)(p) indicates the conversion rate for different parts
of the beam cross section, depending on the distance p
from the beam axis.

In most experiments performed, a sufficiently low
quantum conversion efficiency is obtained ( 8'« 1). This
fact is usually related to the negative influence of the op-
tical Kerr efFect. It is natural that the Kerr effect lead to
a decrease of the conversion efficiency. However, in some

cases its negative influence can be more or less eliminated
(see Secs. VIII and IX). We show below that the main
factor which strongly decreases the efficiency is the pump
intensity-dependent period I of the energy transfer.

The discussion below is divided into two cases: the ab-
sence of the Kerr effect and the more general Kerr
active-medium case.

(a) When the Kerr effect is absent, b =b, =0. Consid-
er the case where the exact phase-matching condition
6kp =0 occurs, Suppose that the pump beams are coaxi-
al and have the same transverse distribution:

Ijo(p) =Ijo(0)e

Now l(p) will take the form

1 = loexp(plpo)

(40a)

(40b)

(a)
I.O- ~ 0~ ~

0

A
-2 -I 0 I 2

t
(b)

1.0- I.O- ~ ~ ~

0.05-

0 I 2

0.5-
.A'i l .

-2 -I 0 I 2

~ ~ ~

0.5-

-2 -I
I

0 I 2

0.5-
.ii„l J

-2 -I 0 I 2

transverse coordinate p &pc

FIG. 4. I4-beam transverse-intensity distribution vs normal-

ized radius p/pp for various propagation distances: (a)

z =0.8lp, (b) z =lp, (c) z =2lp, (d) z =3lp, (e) z =4lp, and (f)

z =5lp. The curves are calculated using hkp=0, v=10, and

p=0.99 (dashed line shows the pump-intensity distribution); Ip

is the period of energy transfer at the beam center (p =0)~

where lo is the minimal value of the transfer period, at
the pump-beam center (p=0). As follows from Eq. (32),
for z & lo the energy transfer of any part of the pump
occurs in the same way, co, +co2~co3+co4. For lengths
2 ) lo some parts of the pump experience the opposite
direction of transfer, co3+co4~co&+co2. Therefore the
co4-wave transverse-intensity distribution obtains the
characteristic structure I=I(z,p); this dependence is
modified with the length z of propagation (Fig. 4). It is
readily noted that the transverse-intensity distribution of
the co4 wave represents a set of coaxial rings with a cen-
tral spot (or without it). The central spot appears at
z =(2m + 1)lo and disappears (by transformation into the
new ring) at z=2mlo, where m =0, 1. . . . Thus the



the parameters p and v with strong convergence S& and

S2 roots, when p~1. It will be seen further that such a
situation (p~l) is possible in the case of the pump de-
generation I&~~I2O only. Since we considered the case
hk0=0, b;. =0, the magnitude g=1 should be put into
Eqs. (42) and (43) (as has been done for Figs. 5 and 6}. W
dependence similar to Figs. 5 and 6 has been observed in
an experiment [29] where conditions allowed a
sufficiently high ( W„-0.25) conversion efficiency.

(b) Now we discuss the more general Kerr active-
medium case (b; %0). The value b, ko [Eq. (19a)] can be
expressed as a sum of linear (bkL, =q+yi+y2 y3 y4)
and nonlinear components. Suppose for simplicity that
phase-matching conditions are fulfilled in the linear ap-
proximation, i.e., for hkL =0. It is readily seen that in
this case the main results of (a} above are still valid, if
rI=qo is taken in Eqs. (42) and (43) and all the curves of
Figs. 5 and 6 are normalized to the value go, where go=g
(p=O) is the local conversion efficiency at the center of
the pump beams. The extent to which go(1 is a measure
of the degree that the Kerr effect reduces the conversion
efficiency [in addition to the factor considered earlier in
(a) above].

The quantum efficiency-optimization procedure has
been reduced to optimization of the magnitude of gp.
This may be done by one of two basic approaches. The
first one consists of the optimization of go by means of
the proper choice of the input intensities I 0. The second
is related to the proper choice of the medium and field
parameters, under which b =0. The large number of in-
dependent parameters does not allow us to make more
specific comments. Therefore, in the following section,
we consider some particular cases.

number of rings n is determined by the integer part of the
expression n =[z/21o]. The ring side grows up with en-

larging propagation length; the kth ring radius can be
determined from Eq. (40):

pk =pc[in(z/2klo)]' (41)

where 1~k n. The fact that for z&lo the energy
transfer for the different parts of the beam occurs in
different ways shows that it is in principal impossible to
perform the complete energy transfer from the co& wave.
This result shows that even under idealized conditions
(b,ko =0 and b,j =0), which lead to a maximal conversion
rate rl(p) = 1 for the whole beam, the quantum conversion
efficiency W(z) will be less than unity.

Consider now the magnitude W(z). From Eqs. (32),
(39},and (41), we obtain

so' sn (x/p, )

goz 0 1+v cn x p
(42)

where go=g(p=O) is the gain value at the pump-beam
center. Since the function being integrated is periodic in
x, the W(z) dependence has an oscillatory character (Fig.
5). For z =la, 3lo, . . . , W(z) takes the value W„ that it
has at z~ao:

W„=g[211,(v', p) —n ]/n v . (43)

Here IIt(v', p) is a full elliptic integral of the third kind
with parameter p and characteristic v' =v/(v+ 1)
[23—25]. As seen from Fig. 5, W(z) reaches its maximum
W,„at the first maxima for z =—(1.2+0.2)lo. The
dependence of 8',„and 8'„on parameters p and v is
shown in Fig. 6. As in most cases considered, the conver-
sion efficiency is sufBciently low. The maximal conver-
sion 8',„-1can be expected in the narrow interval of
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FIG. 5. Quantum conversion efficiency W(zi for several
values of the parameters v and p: (a) p=0, (b) p=0.9, (c)
p =0.99, and (d) p =0.999. The curves correspond to the condi-
tions of Sec. VI (b =b;,. ).

FIG. 6. Quantum conversion-efficiency &dependence on the
value of the parameter p for different values of the parameter
v=0, 2, 5, 10,10 . (a) 8 I» and (b) 8'„.
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VII. SOLUTION
FOR THE PARTICULAR CASE I)0 20 &&I30

I, +I20 [(I20 Ilo} + 12I10I20]
vl=

2I,0(1—a) (49)

Here the gain g has a we11-known expression

g (P2 1 1)ik2 )1/2 (44)

where P= ,'y+—I,0I20 is the Parametric couPling
coefficient. The values S. (j= 1,2, 3,4) are readily ob-
tained. For instance, S3= I30—p /g, while S, 2 are
determined as roots of the following equation [see (22)]:

(S—Ii(1)(S I20)——a(S+hko/b) =0 . (45)

In the limit considered, ~S, 2~ && ~S3~; the parameters p
and v satisfy the relations v »1 and 1 —p « 1. Since the
function I(z) is periodic and symmetric with respect to
its extrema, we can analyze it within the semiperiod
O~z &l. Using the asymptotic representation of the
function sn(x/p), valid for p —+I [20—22], we obtain,
from Eq. (32),

S1~S3~sinh gzI(z)=
Si + ~S3~cosh gz

(46)

For the short propagation length, z « l,
=g '1n~S1/S3~, Eq. (46) takes a form similar to the
well-known expressions (see for instance [2—5]) which
have been obtained in the nondepleted-pump-beam ap-
proach:

l(z)=I20(P /g )sinh gz . (47)

The magnitude I, characterizes the saturation of the
conversion process. In most cases the relation l, =—l
holds, so that the nondepleted-pump-beam approach and
expression (47) are valid within the entire region 0 & z & l.
A significant difference occurs in the case of strong S&
and S2 magnitude convergence, i.e., ~S, —S2~ &I30. In
this situation l, & l and the nondepleted-pump approach
is valid for 0 & z & l, only; when z & 1, the magnitude I (z)
practically reaches its maximal value S& with the simul-
taneous saturation of the conversion process.

In order to consider the general dependence of local
conversion efficiency g on the medium and pump-field
parameters, we can obtain Si from Eq. (45) and substitute
it into the expression g=S1/I, o. Below we consider
three important particular cases.

(i} b =0 (passive Kerr medium). The conversion pro-
cess evolves with permanent wave-vector mismatch
kk =6kp ~ The magnitude g is defined as

The maximum rate g=1 can be achieved for a=O
only. With increasing a, the negative influence of the op-
tical Kerr effect arises, which leads to phase mismatch of
the interacting waves and, correspondingly, to decreased
conversion. However, in the case I2p » I]p the late of
decrease is negligible and g is close to unity, even at large
values of a.

(iii) b+0, b,ko= bI,0—. This is the optimal case (37),
when the average value of (bk ) is equal to zero. The
conversion efficiency in this case is maximal g=1, and
the amplification rate is equal to

g =P"t/1 aI,0/I20—. (50)

We see from (50) that process evolution is possible only
when I20 )aI,0. As follows from Eqs. (48 —50) the case
I2p » I,p is required to obtain the large rate of conver-
sion.

Consider now the quantum conversion efficiency W
(the magnitude which is really measured in the experi-
ment}. We see from Eqs. (44) and (46) that the FWM
process evolves effectively only for small wave-vector
mismatch, ~bko~ &P. In a real experimental situation,
the intensity distribution over the beam transverse cross
section is nonuniform. We must account for the fact that
bko and p are both functions of the radial distance p.
Therefore p(p) & ~b, ko(p) ~

holds for the whole beam cross
section only in the case of a passive Kerr medium, i.e., for
~b; ~

&y. In this case the quantum conversion efficiency
is determined by corresponding curves in Figs. 5 and 6,
normalized to the value g.

In the case of an active Kerr medium, ~b; ~
)y, the

quantum conversion efficiency is sharply reduced, since
the FWM process evolves effectively only within a small
region, where the condition p(p) & ~bko(p)~ may hold.
The relative area of this region, normalized to the beam
area, is denoted as 5. Then the value of the QCE may be
estimated by the curves of Figs. 5 and 6, normalized to
the value 5g, where g is the average value of the local CE
r) =11(p) in this small pump-beam region.

Now we estimate 5 for the case ~b, ~ &&g, supposing
that the transverse-intensity distribution of the pump
beam has the form (40). The angles 8~ are chosen in such
a way that b,ko(p) becomes zero at the center of the

pump beam. Then, taking into account Eq. (19a), we ob-
tain

Iio+I2o [(Iio I2o} +4I 10I20~ko/~ ]
71=

2I,p

(48)

«1 . (51)

++I10I205-
Iio(bii+b12 b13 —b14)+I—20(b21+b22 b23 b24 }

Maximum conversion efficiency is reached under com-
plete phase matching b kp =0.

(ii) b&0, hk0=0. The FWM process develops with
the increase of the wave-vector mismatch, which becomes
equal to b,k (1)= —bS1 at the point of maximum conver-
sion. The rate of conversion is characterized by the larg-
est magnitude of the amplification rate g =P:

It follows from Eqs. (48)—(51) that in the case
~ b;, ~

)y, a high QCE can be achieved if two condi-
tions are simultaneously met: I2p »I~p and

Ib2, +b22 —b23 b24IV I20«+VI,0. In this case the
condition P& ~b,ko(p)~ holds over the whole beam cross
section, i.e, 5-1. Moreover, the choice of initial wave-
vector mismatch in the form of Eq. (37) leads to a local
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spond to the optimal conditions of Sec. VII.

FIG. 8. W(z) dependence in the case I3p))I&p, I2p for
Ilo /I2o =0, 0.6, 0.9, 0.99, 0.999.

CE q(p)-1 for the whole beam area. The curves W(z}
characterizing this case are shown in Fig. 7. Construct-
ing these curves, we took into account that the parame-
ters p and v are coupled by the relation v
=1 p=I3O—/IN. It is seen in Fig. 7 that even for the
most oPtimal condition the case I,p zp » I3p is character-
ized by a relatively low QCE ( W & 0.3).

Another opportunity to optimize the conversion pro-
cess (for ~b, ~

&&y) arises, if the two following conditions
hold: I2p » I&p and p2p »p&p, where pjp is the radius of
beam co . When these conditions simultaneously hold,
the variations of Ako(p) over the cross section of beam co,

are negligible. Thus, by varying the input beam angles
8J., one can optimize the fulfillment of Eq. (37), which au-

tomatically will extend to the whole e&-beam cross sec-
tion. In this case the CE is maximal and the value W(z)
can be estimated according with the corresponding
curves of Fig. 7.

where the phase-matching condition gI3o &)
~ Iko~ is per-

formed well enough over the entire pump-beam cross sec-
tion. As follows from (19a), this condition is performed
in the case y)& ~b3&+b32 b33 b34~ only. In the oppo-
site case, where y «

~ b3, +b32
—

b33 b34 ~,
—the CE

sharply falls and W can be estimated using the
curves of Fig. 8, with the corrected 5 value
5 g/~b3] +b3z b33 b34 ~

&& 1 (see Sec. VII). In the
limit yI3c «

~
b,ko ~, Eq. (32) takes the form

I (z)=I,o(y IzoI3p/Eke )tanh b,koz . (55)

The FWM evolution in the regime of (55) is characterized
by the extremely low local CE (rj=y I20I3p/Ako (&1).
In this case the QCE can be also optimized, if the linear
wave-vector mismatch is taken as hkL =0. However,
even with such an optimization, the value of W remains
very low. Thus, for W„ from Eq. (55) with (40}, one ob-
tains

VIII SOLUTION FOR CASK I30 &&IM s I20
W~ =y Izo/(b3&+b3z —b33 b34) I3p &(1 (56)

We consider first the case of large co3-wave intensity so
that yI30»(1+a)~hko~. Then we have S, =IN,
Sp =Izp and S3 = —I30/( 1 —a). Substituting the values
v=O and p =I,p/I2O into Eq. (32), we obtain

I (z) =I,osn (gz/p),

where the amplification rate g is defined as

g = &+QI20I30

(52)

(53)

We should note that the hkp value does not appear in ex-
pressions (52) and (53). This means that large values of
W can be obtained. Thus, for I,p&0. 5I2p, expression
(52) can be replaced by an approximate
I=I&osin (nz/21). Integrating this expression over the
pump-beam cross section and taking into account (40},
we obtain

We see from Eqs. (55) and (56) that the parts of the beam
cross section where the condition yI30 & ~6kp~ does not
hold do not participate in the process of energy conver-
sion. The CE optimization in the case I3p» I]p Ipp is
therefore reduced either to the proper choice of the
medium parameters and pump frequencies, for
which y& ~b3&+b3$ b33 b3$~, or to the co3-beam radius
enlarging, in comparison with the radius of the beams

~, z. In both cases the hkp value exchange over the co&-

beam cross section becomes negligibly small. If, now,
condition (37) is applied, the W(z) dependence is deter-
mined by the curves of Fig. 8.

In conclusion, the condition I3p &&I&p I2p allows use of
the nondepleted-pump-beam approach with respect to
the co3 beam. Therefore expression (52) is equivalent to
the corresponding expression of [1], where the three-
wave-mixing process has been considered, cu', +co2 c03.

W(z) =
—,'+sin(nz/lo)(4vrz/10) . (54) IX. CONCLUSION

The W(z) dependence for varying p parameters is
shown in Fig. 8. It is readily seen that the CE increases
when I~p~Ipp ~ We note that Eqs. (52)—(54) and the re-
sulting curves (Fig. 8) are obtained for the optimal case,

Our analysis of the FWM-process optimization shows
that the ideal conditions for effective conversion are
suf6ciently wide pump beam with uniform intensity dis-
tribution over its transverse cross section (dI~oldp=O)
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Varying the input value of the wave-vector mismatch
Ako, one can reach the maximal rate of conversion
W-1. Surprisingly, the intensity-induced Kerr effect
does not disturb the optimization procedure. However,
there are significant difficulties in obtaining such a beam
profile.

A nonuniform beam profile reduces the rate of conver-
sion [see Eq. (40), for example]. Nevertheless, in such
conditions the optimization procedure is also possible.
The first step of the optimization is to create the condi-
tion under which one can neglect the variation of Ako
value over the e&-beam cross section. Here two ap-
proaches are possible. One consists of a choice of the
medium parameters or pump frequencies, under which

y»lb2, +b2z —
b23 b24l, —if the case I2o»Ito»I3o

is considered, or y » ~b»+b32 —
b33 b34~, if I3o

&)I~o I20 ~ Another approach is much simpler. In the
case of Izo » I,o » I3o(I3o » I2o I,o), it is enough to
make the co&- (co3-) beam radius much wider than the co, -

beam radius. Then the exchange of hko over the co,-

beam cross section will be negligibly small. The second
step of optimization is reduced to variation of the Ako
value in accordance with the optimization requirement
(37).

The above analysis is for near-ideal conditions. One
should note that phenomena such as pump divergency,
its time limitation, and nonuniform medium, which
would lead to some reduction of the QCE and to W(z)
oscillation smoothing, were not taken into account. Con-

sequently, the transverse-intensity distribution will also
be smoothed (see Fig. 4). We should note also that the
transverse-field-profile influence is considered in the sim-

pliest way in order to be able to analyze the solutions. A
more proper approach is based on including the perpen-
dicular derivatives [30,31].

The formulation developed here is used for a successful
description of various types of FWM processes. Thus,
after a trivial transformation, Eqs. (21) and (26) describe
the third-harmonic-generation process ~4=co, +co2+cu3.
A similar formalism can be used in the case of resonant
interaction with atomic vapors. In this case expansion (1)
is not valid and the Hamiltonian of the system should be
represented by NfiQ, where N is the medium density and
0 is the quasienergy of a dressed atom (or molecule) in an
external field, that is, the Stark shift of an atomic ground
state [32,33].

The theory developed here has a very wide field of ap-
plication. First of all, it includes any short-pulsed-wave
interaction through the medium g' ' susceptibility either
in the gas or solid phase or propagational effects in

waveguides and fibers, etc. Recently, one of authors
(B.G.) has started a study of the optimization of third-
harmonic-generation (THG) conversion in an alkali-
metal vapor. The dramatic increase of THG efficiency

(up to 60%%uo) is based on the predictions of our theory, al-
lowing one to eliminate the negative influence of the opti-
cal Kerr effect known as a most severe effect limiting the
growth of conversion. More detailed theoretical calcula-
tions are on the way.

In conclusion, we note that Eq. (21) and all preceding
expressions are still valid, when the linear refractive in-
dices n (to ) are strongly distinguished from unity. This
case is reduced to that considered above by simple substi-
tution: q~b, kL and I ~I =cn(coj) EJ ~ cosQJ I2Mco~
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