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Transitions induced by separatrix crossing
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We discuss the role of separatrix crossing in a classical Hamiltonian system for a description of transi-

tions in the corresponding quantum system. We develop a simple picture of resonant trapping of classi-
t-al states and its semiclassical analog. Its relevance is illustrated by numerical analysis and by pointing
out its verification in microwave excitation of highly excited hydrogen.
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I. INTRODUCTION

Recent experimental and theoretical research has cor-
roborated the long-standing idea that the description of
quantum-mechanical processes may be simplified by in-
voking generic features of the corresponding classical
motions; regular and stochastic flows are, of course, the
key notions.

Unfortunately, theoretical research had to be confined
to systems with but a few degrees of freedom. More pre-
cisely, the majority of all investigations focused on sys-
tems (like hydrogen atoins in strong magnetic fields) with
two essential degrees of freedom, or, even simpler, on
periodically driven one-dimensional systems with "1.5 de-
grees of freedom. " It is the latter that we shall adhere to
in this paper.

Before going into specifics, however, we first sketch in
a rather cursory manner the central points of the line of
arguments employed in setting up a quasiclassical
description of quantum transitions induced by the varia-
tion of external parameters, the problem we shall focus
on.

Suppose we are given a Hamiltonian Ho which, on the
classical level, defines an integrable system; the classical
phase space then is completely filled out by invariant tori
[1]. We now apply a perturbation to our system, i.e., we
consider the Hamiltonian

H =Ho+AH;„, ,

where the coupling strength A, varies in time: I,=A, ( t)
Now, when A, is slowly increased from zero, the system
will, in general, not remain integrable and resonances
that are bounded by separatrices appear in the classical
phase space. According to the Kol'mogorov-Arnol'd-
Moser (KAM) theorem [2], invariant tori still exist and
form a set with large measure, at least for small A, , and a
trajectory initially confined to an Ho torus with action I;
will tend to stay on a torus with almost the same action
when A, moves in time. However, this adiabatic invari-
ance of the action breaks down if a separatrix is crossed:
Separatrix crossing leads to a "jump" of the adiabatic in-

variant [3,4]. A classical state of our system (We define a
classical state as an ensemble of points in phase space
equally distributed on an invariant torus at A, =O.) has

been "captured" by a resonance and has changed its to-
pology. In a semiclassical approach to the corresponding
quantum system [5], eigenstates are obtained by quantiz-
ing invariant classical tori by the Bohr-Sommerfeld rules
or its generalizations, the Einstein-Brillouin-Keller
(EBK) conditions [6—8]. Thus, a classical transition from
an Ho torus with action I; to a state with final action If
reached by separatrix crossing "corresponds" to a transi-
tion in the quantum system.

An interesting phenomenon occurs if A, (t) has the form
of a smooth pulse. The initial torus is then caught and
subsequently released by the resonance. During the
release the caught manifold passes simultaneously the
two branches of the separatrix and thus, finally, escapes
to two different Ho tori, i.e., to two classical states.
Quantum mechanically speaking, the pulse has induced a
transition to a superposition of two stationary states;
their relative weights and the phase relation can be in-
ferred semiclassically. Clearly, this mechanism appears
in some sense analogous to transitions induced by "avoid-
ed" level degeneracies.

To make these analogies and connections more trans-
parent is the main purpose of the present work. But
keeping in mind Arnol'd's widely quoted statement that
dynamical systems with even only two degrees of freedom
lie beyond our present rnathernatics, it is obvious that this
is not an easy enterprise. Therefore, we do not aim at
mathematical rigor but rather try to make the physical
content of the above-sketched scenario as clear as possi-
ble. To this end, we shall proceed as follows. In the
second section, we give a more detailed description of the
essential mechanism, together with a numerical example
which clearly shows how "classical transitions" occur in

a generic system. In Sec. III we discuss recently pub-
lished experimental measurements from our point of view

and show that there is strong evidence for transitions in-

duced by separatrix crossing. The final section contains a
critical discussion of the mechanism presented above only
in an introductory, simplified, or even oversimplified ver-
sion.

II. TRANSITIONS DUE TO SEPARATRIX CROSSING-
A NUMERICAL STUDY OF THE GENERIC CASE

To begin with, we consider a classical integrable Ham-

iltonian system with Hamiltonian function Ho. The
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phase space [(p,x)] then is completely stratified into tori
which are invariant under the flow generated by Ho [1].
In the case of only one degree of freedom, the invariant
tori are topologically equivalent to circles. If we then
add a perturbation AH;„, to such a system with one de-
gree of freedom, it remains integrable if the perturbation
does not depend on time. But since we are interested in
the generic, nonintegrable case, we choose a periodically
time-dependent perturbation, i.e., we consider a system
with "1.5 degrees of freedom. "

For a periodically time-dependent quantum system, the
Floquet states and the quasienergies adopt the role which
stationary states and energies play in time-independent
systems. In the same way that stationary states can semi-
classically be calculated by torus quantization, Floquet
states can be obtained by quantizing time-periodic vortex
tubes [9] in the extended phase space [(p,x, t) }.Thus, in
order to transfer the cursory discussion of the preceding
section to the present case, the invariant tori have to be
replaced by vortex tubes which, for periodically driven
one-dimensional systems, are easy to visualize in Poincare
surfaces of section.

Let us assume that the perturbation kH;„, (t) intro-
duces a resonance bounded by a separatrix in the classical
phase space, as indicated schematically in Fig. 1(a). Now
we let the coupling strength A, slowly increase in time,
that is, we consider a smooth function A(t)= A(t/. T, )— ,

with A,(0) equal to zero and T, being a "large" interval of
time. As initial conditions we choose an ensemble of tra-
jectories which is confined to a torus I; at t =0 with the
individual trajectories uniformly distributed in the angle
variable. We further assume that the initial action I; is,
after semiclassical quantization according to the Bohr-
Sommerfeld rules, associated to an eigenstate of the quan-
turn system.

By the principle of adiabatic invariance, the action
variable will remain approximately constant when A,

grows, which means that the trajectories remain close to
vortex tubes with action I;. On the other hand, the area
of the resonance grows [2] when A, is increased. Hence,
there will be a critical moment t =t, when the separatrix
touches the tube with the initial action I; [Fig. 1(b)].

Whereas the trajectories have simply wound around
their tubes for t & t„ they now behave differently: If, for
t ~ t„ the coupling strength were kept constant at
A,, —:A, (t, ) and if all trajectories were located exactly on
the separatrix, they would finally slow down in the vicini-
ty of the hyperbolic periodic orbit h, since the period of
rotation diverges on the separatrix. However, for t=t,
the trajectories are actually found not on, but close to,
the separatrix. As soon as they have crossed the separa-
trix and come close to the hyperbolic periodic orbit, they
start to follow the Bow in the other direction of the unsta-
ble manifold and thereby also become associated to what
has been a different tube before. In fact, at A, =A,, two
formerly different tubes are coupled by h.

When A. is then increased beyond its critical value, the
area of the resonance still grows, and the two vortex
tubes that have been coupled at t =t„combine to one
"new" tube which is "captured" inside the separatrix

0&A&Ay

(b)

(c)
A&Ac

FIG. 1. Separatrix crossing in a periodically driven system
with one degree of freedom (schematically). (a) A perturbation
AH;„,(t) introduces a resonance in a surface of section, i.e., a
separatrix with a hyperbolic fixed point h and an elliptic fixed
point e. When A, is increased, the area of action enclosed by the
resonance (shaded) grows, whereas the trajectories stay close to
the vortex tube with the initial action I; (inner circle). The ar-
rows indicate the direction of the flow on the separatrix. (b)
The separatrix touches the tube that has evolved adiabatically
from the initial one: trajectories close to the separatrix start to
follow the flow in the other direction of the unstable manifold
(indicated by the broken arrow) and also become associated to a
tube of different action If. (c) As A, is increased further, the
tubes that have been coupled in (b) melt into one which is "cap-
tured" inside the separatrix. The trajectories are now found
close to this tube. (d) When A, is then decreased back to zero,
the separatrix crossing occurs a second time. After the pulse,
the action values of the trajectories are centered around I; and
If .. a "classical transition" has taken place.
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[Fig. 1(c}]. Denoting the action of the tube that has been
coupled to the original one by If, the action of the result-
ing tube after the separatrix crossing obviously is
I =If—I, , and the trajectories now are confined to vor-
tex tubes with actions approximately equal to I

After the coupling strength has reached its maximal
value, we let A, slowly decrease again. At A, =i,„ the
separatrix crossing occurs a second time, and the trajec-
tories are distributed from I to the two tubes with ac-
tions I; and If. This situation is then adiabatically trans-
ported to A, =O [see Fig. 1(d)].

Now, according to our assumptions, the initially "pop-
ulated" torus I; is semiclassically associated to a quantum
eigenstate of Ho, and we stipulate also that the final torus

If correspond to an eigenstate. In this case, the
correspondence principle strongly suggests that the clas-
sical transition from I; to If should have its counterpart
in quantum mechanics.

However, in the discussion above we have ignored the
effect of stochastic motion: In a near-integrable system, a
resonance is not simply bounded by a separatrix but rath-
er by a stochastic layer originating from homoclinic tan-
gles close to hyperbolic periodic orbits. Nevertheless, the
following numerical example will show that, despite all
complications, our schematic discussion remains valid
also in the case of partly stochastic motion. We take a
system with "1.5 degrees of freedom, " namely, a periodi-
cally driven one-dimensional Morse oscillator, the Hamil-
tonian of which can be written as

p2
H (r)= +D[1—exp( —PX)] +AXcosQ~ .

2m

Scaling the variables according to

(2.1)

p =P/&2rnD

cot =Q~

(2.2)

with

mco=Q
2DP

1/2

(2.3)

the Hamiltonian can be expressed in dimensionless quan-
tities to read

This number will be relevant when we discuss the
correspondence of classical and quantum mechanics.

As is well known, for X=O the Bohr-Sommerfeld
quantization yields the exact quantum-mechanical energy
eigenvalues of the unperturbed Morse oscillator

—lp2+ 1(1 e
—x)2

2
(2.8)

For a fixed nonvanishing value of k, the Hamiltonian
(2.4) depends periodically on time and the Floquet states
can be calculated semiclassically by vortex-tube quantiza-
tion [9]. The association of quantum-mechanical Floquet
states of a driven Morse oscillator to classical vortex
tubes has been illustrated numerically in Ref. [11].

Figure 2 shows a surface of section of the system (2.4)
taken at integer multiples of T=2~/co for X=0.02712
and co=0.8868 which has been plotted in action-angle
variables (I,8) of the unperturbed oscillator (2.8). The
dominating structure seen in this figure is the elliptic is-
land that has originated from the principal (1:1) reso-
nance, together with a surrounding stochastic layer. This
is a realization of the abstract situation discussed before.
If the ratio of the external frequency co and the internal
frequency dHoldI is 1:1 and if A, is small enough, then
the Poincare-Birkhoff theorem guarantees the existence
of one stable (elliptic) and one unstable (hyperbolic)
periodic orbit, which appear as elliptic and hyperbolic
fixed points in a surface of section [cf. the schematic
drawing in Fig. 1(a)]. When k is increased, the area of
the regular island around the elliptic fixed point grows;
on the other hand, apparently stochastic motion due to
homoclinic tangles at the hyperbolic fixed points also be-
comes more pronounced.

Let us now turn to the case of a continuously varying
coupling strength A,(t) which we specify as

A, (t) =A, ,„sin, O~ t ~ T, .
T.

(2.9}

We then fix a set of 1000 initial values which are charac-
terized by a common action ID=0.022 64 and uniformly
distributed in the angle variable 8 at t =0. In order to in-
vestigate the time evolution of this ensemble under the
infiuence of a pulse (2.9), we integrate the equations of

H (t)= —,'p +—,'(1 —e ") +Ax coscot

with a scaled coupling strength A, given by

A

2DP

Note that the classical action scales with a factor
1/2

2mD
2

(2.4)

(2.5)

(2.6)

. ~

0 3-'~

0. 2—

0. 0 -3 1 0 1

a =22.082% . (2.7)

under the transformation (2.2). For instance, for a Morse
oscillator with parameters describing an 0—H bond [10]
one finds FIG. 2. Poincare surface of section for the driven Morse os-

cillator (2.4), taken at integer multiples of T=2m/co. The pa-
rameters are A, =0.02712 and co =0.8868.
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FIG. 3. Time evolution of an ensemble of trajectories with common initial action Io =0.022 64 under the influence of a pulse (2.9)
with length T =105T. (a) Ensemble at t =30T. (b) t =40T. (c) t =50T. The separatrix crossing has taken place. (d) t =60T. (e)
t =T0T. The second separatrix crossing occurs. (f) t =80T. (g) Ensemble after the pulse at t = T, .
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motion numerically. We choose the parameters
T, =105T, co=0.8868, and A, ,„=0.02727 so that Fig. 2
visualizes the structure of the phase space at t =50T
close to the moment of maximal coupling strength.

The reason for the particular choice of Io and co is that
for a Morse oscillator modeling an 0—H bond [see (2.7)]
the initial action Io semiclassically yields the quantum-
mechanical ground state and the frequency ~ allows for a
"four-photon-transition" from the ground state with en-
ergy Eo to the fourth excited state with energy E4, i.e.,
we have E4 —Eo =4fico.

Figure 3(a) shows the ensemble after 30 periods, a situ-
ation which roughly corresponds to Fig. 1(a). Up to now,
the time evolution has been almost adiabatic. All
members of the ensemble approximately lie on a curve
which represents a vortex tube of the instantaneous sys-
tem, i.e., of a Morse oscillator drive with constant ampli-
tude A, 3QT —A,(30T). Conservation of action means that
this (possibly only approximately defined) vortex tube is
still characterized by an action equal to Io with respect to
the (approximate) action-angle variables at A, =A.3cr. But
as Fig. 3(a), as well as the following figures, is plotted in
action-angle variables defined at A, =O, conservation of ac-
tion is not immediately visible.

Ten periods later [see Fig. 3(b)] the effect of the princi-
pal resonance begins to show. The bending of the ensem-
ble that can be observed at the right margin indicates the
influence of the hyperbolic fixed point located at
I=0.084, 8=re. This situation matches Fig. 1(b) of our
schematic discussion.

Again ten periods later [Fig. 3(c)], when A, =A, ,„, the
separatrix crossing has taken place; the ensemble approx-
imately lies on a vortex tube "inside" the resonance, as in
Fig. 1(c).

After 60 periods [Fig. 3(d)], the coupling strength A, is
decreasing again. The ensemble still encircles the reso-
nance, showing a pronounced influence of homoclinic
points.

The second separatrix crossing occurs at t =70T [Fig.
3(e)], and ten periods later [Fig. 3(f)] the ensemble ap-
parently has divided into two parts.

Finally, at the end of the pulse [Fig. 3(g)] we find the
actions of the individual trajectories centered around two
values: the action Io of the initial state and the action
I~ =0.2031.

At this stage of discussion, an important remark is ap-
propriate. The manifold on which all initial values of our
model calculation lie is a circle in the phase space and,
strictly speaking, this manifold remains a circle under the
Hamiltonian flow. But the initial circle is stretched and
folded so strongly [see, in particular, Fig. 3(c)] that it is
almost impossible to recognize the fact that after the
pulse all ensemble points still lie on a circle in the topo-
logical sense; it appears more effective to describe the re-
sulting ensemble in terms of two disjoint sets. In this
sense, a "classical transition" has taken place. This point
of view is clearly vindicated by Fig. 4 which shows a his-
togram of the final actions of all trajectories.

It is of interest now to note that I& is almost exactly
equal to the action I4 =0.2038 which semiclassically cor-

I I I I
I 1

100—

0. 0 0. 1

, . ~ Ilk,

0. 2

FIG. 4. Histogram of the final action values of the trajec-
tories after the pulse [see Fig. 3(g)]. The arrows indicate the ac-
tions which semiclassically yield the bound states of a
quantum-mechanical Morse oscillator modeling an 0—H bond.

responds to the fourth excited state of an 0—H Morse
oscillator. Hence, one is led to expect that for this partic-
ular example the classical transition corresponds to a
transition from the ground state to the fourth excited
state in the quantum system.

Indeed, this expectation is confirmed by quantum-
mechanical calculations which model the dynamics of
molecular vibrations interacting with a resonant, short
laser pulse [10,12]. The interpretation of the transitions
found in these studies has been formulated in terms of
"splitting" of a wave function, adiabatic evolution, and
interference of Floquet states [12,13]. If the laser fre-
quency is chosen such that the initial and final states are
"resonant, " their instantaneous quasienergies are degen-
erate at the initial stage of the pulse. Hence, the wave
function of the initial state splits into a superposition of
two Floquet states; both parts of the wave function then
evolve adiabatically until they interfere at the end of the
pulse. Obviously, the violation of adiabaticity caused by
the degeneracy of quasienergies is matched in classical
mechanics by the intrinsic nonadiabaticity at the moment
of separatrix crossing.

To finish the discussion of the model calculations, we
illustrate the role of the pulse length T, and show in Fig.
5 both the fraction p+ of trajectories which have a final
action close to I4 and the rms deviation from the mean
final action of that fraction as functions of T, . The oscil-
lations of p+ are caused by the fact that the individual
trajectories circle around the elliptic periodic orbit as
long as they are "inside" the resonance. The increasing
sharpness of the final distribution observed for T, & 100T
indicates increasingly adiabatic behavior, the fact that
the rms deviation does not decrease further for T, ) 100T
but rather becomes approximately stationary stems from
the stochastic part of the dynamics. In essence, the basic
transition mechanism determined solely by the 1:1 reso-
nance is valid in the whole range 100T~ T, ~ 300T plot-
ted in Fig. 5.

Let us finally discuss the question under which condi-
tions classical transitions involve actions I, and I2 which
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1 . p nance. Contrary to what might be expected by perturba-
tive arguments, this line of reasoning implies that for
transitions induced by pulses it is not the "one-photon
transition" which is the most effective, but rather the op-
timal frequency satisfies

E2 E,—=(n2 n,—)fico; (2.13)

0
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i.e., the difference in quantum number should be equal to
the "number of absorbed photons. " It is interesting to
note that indications for this phenomenon have been seen
in Ref. [10].

III. EVIDENCES FROM EXPERIMENTAL DATA—
MICROWAVE EXPERIMENTS REEXAMINED

FIG. 5. Fraction p+ of trajectories with a final action close
to I4 (solid line) and rms deviation cr from the mean action of
that fraction (dotted line) as functions of the pulse length T, .

actually both correspond to quantum-mechanical eigen-
states ~n, ) and ~n2) (we assume n2) n, ) of a system de-
scribed by a Hamiltonian H. Let Ik=R(nk+ —,') and

Ek=H(Ik} for k =1,2. Then, for m =nt n—&,
—choose

the frequency co such that E2 E]=marco and define I„,
by

BH(I„,)
=CO .I (2.10)

The assumption that H (I) can be quadratically approxi-
mated around I =I„,(in the case of the Morse oscillator
H actually is a quadratic function of I) then yields

I„,=—,'(I, +It)
H '"(t)=Ho+A(t)x sining, t,

where co denotes the microwave frequency and

(3.1)

Highly excited hydrogen atoms exposed to pulsed mi-
crowave radiation [14,15] are quite attractive systems for
an experimental study of the perturbative and nonpertur-
bative dynamics of periodically driven quantum systems,
mainly because all relevant parameters can be accurately
controlled. In particular, there are recent measurements
performed with an experimental setup where highly ex-
cited hydrogen atoms were exposed to both a pulse of mi-
crowaves and an additional static electric field, with the
microwave field being linearly polarized in the static-field
direction [14]. The strength F, of the static field was
chosen to be even higher than that of the microwave
field, so that the atoms are strongly elongated in one
direction and behave essentially as driven one-
dimensional systems that can be described by a Hamil-
tonian

or, equivalently,

(I2 —I„,) =(I„, I ) ) . — (2.12)
H = +V(x) Fx—0 S (3.2)

If we further assume that the area of the principal 1:1res-
onance located at I=I„,grows symmetrically to higher
and lower actions I when the coupling strength A, is in-
creased (which is a reasonable assumption as long as A,

does not become excessively high), trajectories with ini-
tial action I& or I2 will enter the resonance at the same
value of A, . This fact implies that the final action values
of an ensemble with common initial action I =I& are
centered around I& and I2. A classical transition from I,
to I2 takes place.

These considerations are also interesting from a
different point of view: An important question in the
study of atoms or molecules interacting with short laser
pulses is how to choose the laser frequency in order to
achieve a certain transition with the highest possible
efficiency. Now, classically it is the principal 1:1 reso-
nance which favors a transition by separatrix crossing
most strongly, in the sense that is covers the largest area
in phase space at a given value of the coupling strength.
Hence, assuming that the classical-quantum correspon-
dence holds, a transition from a quantum state ~n, ) to

~
n z ) is favored most if the frequency is chosen such that

both states are classically coupled by the principal reso-

with

1 x)0
V(x) =

x&0. (3.3)

It is interesting to note that in this case also the classical
internal frequency

BHO

aI (3.4)

can be adjusted by suitably tuning the static field F, . To
first order in F„one has

1Q= —3nF, ,
n

(3.5)

where the classical action I has been replaced by the
quantum number n. We remark that a proper treatment
of the Stark effect in hydrogen [16] leads to the same ex-
pression for high quantum numbers, if one considers only
those parabolic substates which are polarized most
strongly in the direction of the static field.

The shape function A, ( t } in (3.1) and, hence, the time
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scale T, is fixed by the fact that in the experiments under
consideration [14] a fast beam of excited atoms trans-
verses a rectangular waveguide operated in the TEIp
mode and the atoms experience essentially a half-sine-
wave envelope

(3.6)

exclude a possible role of localization phenomena [18) in
building up a nonresonant background.

In a similar manner, one can also analyze the other
measurements published in Ref. [14]. To obtain the data
of Fig. 1(a), the initial state again was n, =72 and the
same static field F, =6.25 V/cm was used together with a
microwave field of frequency co/2~= 18.00 0Hz. The in-
itial state closest to the main resonance then is n „,=69:

which is slightly modified near t =0 and t =T, by the
influence of the entrance and exit holes on the field distri-
bution in the waveguide. This modification may be of im-
portance because the smoothness of the actual shape
function, that is, the number of vanishing derivatives at
the end points, determines both in classical and quantum
mechanics the magnitude of nonadiabatic effects [17].

From Eq. (3.5) it follows immediately that the "scaled
frequency, "i.e., the winding number y, is given by

n cur=
1 —3n F,

(3.7)

Therefore, y is larger than n co, which is the scaled fre-
quency in the case of a vanishing static field.

In actual experiments, the shift of the scaled frequency
due to the static field can be quite strong. For instance,
in the situation of Fig. 1(c) of Ref. [14] the measurements
were carried out at co/2~=13. 00 GHz with F, =6.25
V/cm and a microwave amplitude A, ,„of merely 3.44
V/cm; the interaction time T, was roughly 100 mi-

crowave cycles. For this particular example and n; =72,
we have (in atomic units) n; co=0 737 [14.] compared to
y=0. 818. In addition, one finds

74
75
76
77

0.899
0.942
0.987
1.035

Whereas the state closest to the classical principal 1:1
resonance (y=1) is n„,=80 if no static field is present,
we now have n„,=76. The experimental data displayed
in Fig. 1(c) of Ref. [14] show a pronounced double peak,
one maximum of excitation probability after the interac-
tion being found at the initial state n; =72=(n„,—4), the
other maximum at n =f8 =0(n„, 4+). Thus, the experi-
mental result shares the main feature of our model calcu-
lations discussed in Sec. II. After a state initially close to
a prominent classical resonance has interacted with an
external periodic field whose amplitude changes continu-
ously in time, the final population of states is a distribu-
tion with two maxima which lie symmetrically around
the position of the resonance. It appears safe to conclude
that the measurements summarized in Fig. 1(c) of Ref.
[14] refiect the effect of classical separatrix crossing on a
quantum system, that is, the effect of prominent classical
resonances capturing and releasing states. For the time
scales involved this mechanism is dominated by regular
motion and stochasticity generated by hornoclinic points
is only of secondary importance. Nonetheless, we do not

68
69
70
71
72

0.933
0.980
1.028
1.079
1.132

IV. DISCUSSION

In the preceding sections we developed a simple pic-
ture of resonant trapping of classical states and its semi-
classical analog in quantum systems; we illustrated its
relevance by a numerical analysis of a simple periodically

In this case, the initial state n,. =72 is located "above"
the center of the classical resonance and, hence, one has
to expect a deexitation to lower states. This is precisely
what has been observed: the experimental data show a
maximum at n =66. Note that (72 —69)= (69—66).

Finally, under the conditions of Fig. 1(b) of Ref. [14]
the initial state itself is close to y = 1. In such a case, nei-
ther excitation nor deexcitation is favored classically and,
indeed, experimentally one finds only one maximum of
the final population probability at exactly n; =72.

From a purely quantum-mechanical point of view [19],
it is the structure of the quasienergy spectrum that deter-
mines which transitions are favored. For highly excited
hydrogen atoms, the effect of the modes operation which
maps the unperturbed energy eigenvalues at A, =O into
the Brillouin zone is easy to oversee. The classical-
quantum correspondence is manifested by the fact that,
for small m, the eigenvalues of states (n„, rn) and-
(n„,+m) are mapped close to each other such that
Landau-Zener transitions among these states are possible
when the microwave amplitude varies. For a numerical
example of such a situation, see Figs. 6 and 7 of Ref. [19].
In the situation discussed there, one has n„,=75, n; =72
and favored transitions to nf =78 and nf =79, so that the
characteristic relation (nf —n„„)= (n „,—n; ) again holds.

To summarize, the presence of the static field does not
alter the basic mechanism, but it allows one to shift the
location of the resonance @=1 in the classical phase
space such that it lies close to various invariant manifolds
which, after semiclassical quantization, correspond to
different initial states; prominent experimentally
discovered regularities find a natural explanation by
merely observing the classical resonance being located
"below, " "above, " or "close to" the initial state. This
simple fact may help to interpret the results of future ex-
periments aimed at a deeper understanding of the
classical-quantum correspondence for time-dependent
phenomena.
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driven system and, finally, pointed out its experimental
verification.

There are, however, a few serious objections that may
cast considerable doubt on the general validity of this
simple picture. We shall try in the following to specify
more clearly the conditions under which, nonetheless, a
semiclassical translation of separatrix crossing of classical
states (i.e., of ensembles of phase space points distributed
on initial manifolds) explains prominent features of
quantum-mechanical processes.

In particular, the following remarks seem to be of im-
portance.

(i) A system with more than only one degree of free-
dom will, in general, not remain integrable when the per-
turbation A,H;„, is switched on. The set of preserved in-
variant tori does then not fi11 out the complete phase
space, but rather forms a Cantor set. The question to
which extent the principle of adiabatic invariance can be
applied to such a situation is a diScult, and yet unsolved,
problem (see, however, the recent work by Dana and
Reinhardt [17]). In addition, the semiclassical quantiza-
tion by Bohr-Sommerfeld rules or its generalizations, the
EBK conditions, is obviously questionable because pre-
cisely the required tori may not exist.

(ii) If, during the variation of a control parameter A, ,
the action variables of a system with n degrees of freedom
remain constant, the winding numbers, i.e., the ratios of
the relevant n frequencies, change continuously. When-
ever a winding number hits a rational number, a reso-
nance appears in the classical phase space. Therefore,
when A, is varied by a finite amount, the system meets an
infinity of resonances.

(iii) In the generic case, a resonance in phase space is
bounded not simply by a separatrix but rather by a sto-
chastic layer with a certain extension. This stochastic
layer blurs the classical transition in the sense that it
leads to a less sharp distribution of final actions of the in-
dividual trajectories.

The basic transition mechanism proposed in this paper
is expected to survive in the generic case of mixed regular
and stochastic dynamics, if stochastic motion predom-
inates only in a small fraction of the relevant part of
phase space. That is, the still existing tori should occupy
a major part of phase space so that the application of
EBK-type quantization procedures makes sense at least
approximately and, furthermore, the stochastic layers
surrounding the resonances should not become too
broad. In this context the following observation provides
an interesting hint concerning the assumed regularity of
phase space for small and large coupling strength A, [cf.
(1.1)]. Using properly scaled variables we have shown
that, assuming Hamiltonian Ho describing anharmonic

oscillators, the classical phase space shows a remarkable
simple structure for strong driving forces. Stochastic
motion is confined to a well-defined full torus (doughnut)
surrounded by stable vortex tubes [20]. For small A, , the
familiar KAM regularity prevails. Thus, both regimes
are accessible for EBK quantization.

It appears that a more severe diSculty is connected
with (ii). Whereas we have assumed that it suffices to
take into account the effect of basically one isolated hy-
perbolic fixed point, it should be clear that each of the
infinitely many resonances which the system encounters
during the parameter variation introduces its own hyper-
bolic and elliptic fixed points, as shown by Poincare and
Birkhoff.

It is at this point that we have to observe the decisive
role played by the relative magnitude of time scales in-
volved: pulse length and inverse frequency of the driving
force versus internal time scales of the system. More
specifically, we argue as follow.

When specifying the exact way in which the parameter
A, varies in time, we necessarily have to introduce a cer-
tain characteristic time scale T, . On the other hand,
each resonance is characterized by its own intrinsic time
scale which may be defined, for instance, by the time it
takes to stretch the How in the direction of the unstable
manifold by a given factor. The condition for a certain
resonance to be "effective, " that is, the condition that it
actually induces a classical transition, obviously is that its
own intrinsic time scale be comparable with the interval
of time this very resonance is "seen" by the trajectories
when A, varies; this interval, in turn, is determined by T, .
In their study of adiabatic invariance in the standard
map, Dana and Reinhard [17]have estimated the typical
time scale associated with a resonance caused by a ration-
al winding number p/q and have found it to be an in-
creasing function of the denominator q. It is highly plau-
sible to assume that this result is valid also in the general
case. Hence, once the time scale T, is fixed, only a finite
number of potentially effective resonances remain, and,
under favorable conditions, it is possible that essentially
only one of them determines the final action distribution
[17]. It should be noted that this discussion of a purely
classical phenomenon parallels our introduction of a
coarse-graining procedure for the quasienergy spectrum
of a quantum system [21].

Certainly, there are many more questions, most of
which cannot be answered at the present time. Neverthe-
less, we hope to have illustrated the role of (primary) clas-
sical resonances for a description of transitions in the cor-
responding quantum system which are induced by the
time dependence of external parameters or, rather, by
short-pulsed interactions.

'Present address: Department of Physics, Center for Non-
linear Science, University of California, Santa Barbara,
California 93106.
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