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Two-photon processes are usually treated using effective-Hamiltonian approaches. In this paper the

question of the validity of the effective Hamiltonian in the interaction of a single atom with a single-

mode radiation field is considered, and conditions under which effective and microscopic Hamiltonians

lead to identical results for the reduced density matrix for the field are derived. The conditions and limi-

tations for the validity of the effective Hamiltonian are elucidated by considering the population inver-

sion, photon distribution function, and squeezing in the two approaches.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

Two-photon processes in atomic systems are important
in quantum optics due to the high degree of correlation
between the emitted photons. This correlation may lead
to the generation of nonclassical states of the electromag-
netic field, such as squeezed states [1,2] and the violation
of other classical inequalities [3]. In case of a two-photon
laser, a rapid growth of field inside the cavity is predicted
[4]. Several authors have discussed the possibility of ob-
serving sub-Poissonian photon statistics in the
multiphoton-absorption processes [5]. Recently a two-
photon micromaser has been operated which offers a
chance to study, under controlled conditions, the interac-
tion of a single mode of the electromagnetic field with a
single atom [6].

For many years, the effective Hamiltonian approach
(EHA) has been used to describe the two-photon process-
es in quantum optics. It is shown by Zhu and Li [7] that
there are differences between results, depending on the di-
agonal elements of the reduced density matrix of the field
obtained using the EHA and the full microscopic Hamil-
tonian approach (FMHA). Alsing and Zubairy have
shown the collapses and revivals in the two-photon ab-
sorption process by adiabatically eliminating the inter-
mediate states [8]. By using the microscopic Hamiltoni-
an approach, some important work has been carried out.
Recently a theory of the two-photon correlated-emission
laser in a coherent superposition of the three-level atomic
states has been developed [9]. The phase-sensitive
amplification in a two-photon three-level atomic system
leading to noise-free amplification in one quadrature
component has also been studied [10]. A quantum theory
of a two-photon micromaser has also been developed
[11].

Recently there has been interest in studying the ques-
tion of the validity of the effective Hamiltonian approach.
For instance, Boone and Swain [12] have shown that the
approaches based on the EHA and FMHA lead to the
same equations for the diagonal elements of the field den-
sity matrix in a nondegenerate two-photon laser under
certain conditions. Under these conditions, however, the
off-diagonal elements of the reduced density matrix for

the field do not give the same results. Ashraf, Gea-
Banacloche and Zubairy [13] have presented similar re-
sults for a two-photon micromaser. However, it has been
claimed that the difference between the two approaches is
caused by the neglecting of the dynamic Stark shift in the
effective Hamiltonian. Consequently, a modified effective
Hamiltonian that includes the dynamic Stark shift
through the inclusion of Stark parameters for both the
atomic levels was proposed by Puri and Bullough [15],
Lugiato, Galatola, and Narducci [16],and others.

In this paper we have discussed the limitations of the
effective and the modified effective Hamiltonians. The
conditions have been determined under which the
effective Hamiltonians can be employed to study the de-
generate two-photon processes. In Sec. II, we derive the
probability amplitude equations for both the effective and
the full microscopic Hamiltonian. The comparison of
these two sets of equations under the conditions that the
three-level atom of the FMHA effectively reduce to a
two-level atom leads to an additional overall phase factor
in the FMHA. We have presented a comparative study
of the two approaches for the population inversion and
the photon distribution function. We have considered
the large-detuning limit for both the initial thermal and
the coherent fields. It is shown that, under certain condi-
tions, on atomic detuning and mean number of photons,
the two approaches lead to identical results for these
quantities. The role of the off-diagonal elements of the
reduced density matrix of the field can be seen in the case
of squeezing. We have compared the results for the vari-
ances in the two quadratures for the EHA and the
FMHA for the case of initial coherent field. It is shown
that, due to the presence of an additional overall phase
factor, different results for squeezing are obtained in gen-
eral in the two approaches. This clearly shows that the
effective Hamiltonian approach is inadequate for the
description of squeezing in the two-photon atom-field in-
teraction. This is caused by the neglecting of the dynam-
ic Stark shift in the EHA. In Sec. III, a modified [15,16]
effective Hamiltonian approach (MEHA) is considered,
which includes Stark parameters. We derive the proba-
bility amplitude equations for the MEHA and then com-
pare them with those obtained from the FMHA. The
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conditions have been determined under which this
modified effective Hamiltonian can be used to study the
quantities in which both diagonal and off-diagonal ele-
ments of the reduced density matrix are involved.

II. PROBABILITY AMPLITUDES
IN THE TWO-PHOTON JAYNES-CUMMINGS MODEL

We generalize the Jaynes-Cummings model to two-
photon processes in the degenerate case and obtain a
time-dependent solution for the probability amplitudes in
both the effective and the full microscopic Hamiltonian
approaches. %'e then derive the conditions under which
the two approaches lead to identical expressions for the
probability amplitudes within a phase factor. This addi-
tional phase factor is the result of the neglect of the dy-
namic Stark shift in the effective Hamiltonian. Then a
modified effective Hamiltonian is considered in which the
dynamic Stark shift is being taken care of. The necessary
conditions are determined under which even this
modified effective Hamiltonian could only be used to
study the two-photon degenerate processes.

A. Effective Hamiltonian approach

~f(t) ) =g [c,„(t)~a, n ) +c, „(t)~c, n )], (2)

where states ~a, n ) (a=a, c) represent the atom in state
~a) and the field in Fock state ~n ), and C, „(t) are the
corresponding probability amplitudes. It follows from
the time-dependent Schrodinger equation, by using Eqs.
(1) and (2), the probability amplitudes obey the following
first-order coupled differential equations:

We consider a single two-level atom interacting with a
single-mode radiation field. The atomic levels ~a) and
~c) are coupled through the two-photon coupling con-
stant A, , at exact resonance. The Hamiltonian in the in-
teraction picture, under the rotating-wave approximation
(RWA), is

H=fik(a la )&c ~+a

where a and a are the field annihilation and creation
operators, respectively.

The wave function for the combined atom-field system
1s

C, „+2(t)=cos[&(n +1)(n +2)At]C, „+z(0)

i s—in[&(n +1)(n +2)At]C, „(0) . (8)

These are the expressions for the probability amplitudes
using the EHA.

B. Full microscopic Hamiltonian approach

Next we consider a single three-level atom (see Fig. 1),
in a cascade configuration, interesting with the single-
mode radiation field. We assume exact two-photon reso-
nance, such that the intermediate level ~b) is detuned
from the exact one-photon resonance. The detuning is
given by

E=0—(co, —cob ) =(a&b —t0, )
—0, (9)

where 0 is the cavity resonant mode frequency and co„
cob, and co, are the frequencies associated with the atomic
levels ~a ), ~b ), and ~c ), respectively.

The full microscopic Hamiltonian in the interaction
picture is

H=figi [a~a ) (b
~
exp(

idt�
)+a (b ) (a

~

e—xp(id t)]
+A'gz[ (ab)(c( exp(ibt)+a )c)(b( exp( iht)], —

where g1 and gz are the one-photon coupling constants
for the transitions

~
a ) —

~
b ) and

~
b ) —

~
c ), respectively.

The combined atom-field wave function is given by

(f(t) ) =g [C, „(t))a,n )+C& „(t)[b,n )

+C, „(t)~c,n)] .

On varying 8 and P we can consider different situation;
for example, 8=0 means that the atom is initially in the
excited state, while 0=m. /2 means that the atom is in the
coherent superposition of states for a fixed value of P,
with P being the relative phase between atomic states ~a )
and ~c ).

A solution of Eqs. (3) and (4), subject to the boundary
condition (5), is given by

C, „(t)=cos[&(n + 1)(n +2)it ]C, „(0)

i—sin[v'(n +1)(n +2)At]C, „+2(0),

C, „(t)= i A&(n —+1)(n +2)C, „+2(t),

C, „+~(t)= i A&(n +1)(n—+2)C, „(t) .

(3)
It follows from the time-dependent Schrodinger equa-

We assume that, at the initial time t =0, atom and field
are decoupled, i.e.,

C, „(0)=C, C„(0),

C, „+2(0)=C,C„+2(0),

where C„(0) is the amplitude of the initial field, and

II

(
(I

[
b&

C, =cos(8/2),

C, =sin(8/2) exp( —i P ) .
(6)

)c&

FIG. 1. Schematic diagram of the three-level atom interact-

ing with the single-mode radiation field.
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tion that the probability amplitudes obey the following
first-order coupled differential equations:

C, „(t)= i—g, Cb „+,(t)&(n+1) exp( ib—t),
Cb „+,(t) = ig—, C, „(t)&(n + 1)exp(ib, t)

ig—2C, „+2(t)V(n +2) exp(iht ),
C, „+2(t)= ig—2Cb „+,(t)&(n +2) exp( ih—t) .

(13)

(14)

C, „(0)=C,C„(0),

Cb „+,(0)=0,
C, „+2(0)= C~ C +2(0) .

(15)

Equations (12)—(14) can be solved subject to the initial
condition (15), and the resulting expressions, for the
probability amplitudes are

We solve these differential equations by assuming, as ear-
lier in the case of the EHA, that the atom and the field
are decoupled at t=0 and the atom is present in a
coherent superposition of states ~a ) and

~
c ) only, i.e.,

g&=gz=g ~ (23)

which is an inherent property of the effective Hamiltoni-
an. In order to facilitate the comparison between the two
approaches we introduce an effective two-photon cou-
pling constant

2

(24)

and

e„= (2n +3) .4A,
(25)

The Rabi frequency A„[cf.Eq. (20)] is given in terms of e
by the relation

A =—(1+e )'~
n 2 n (26)

C. Comparison of the EHA mth the FMHA

Now we determine the conditions under which the
probability amplitudes obtained from the FMHA
effectively reduce to those obtained from the EHA.

We consider a special case by taking

C. „(t)=

y„C, „+2(0),

g)(n+1)
y„+1 C. „(O)

Ana„

g, g2&(n +1)(n +2)+
Ana„

(16) (27)

In order to retain the leading terms under the large-
detuning limit, e„«1, in the expansion

2
&n + ~ ~ ~

8

v'n +1
Cb „+)(t)= ig) — ri„c,„(0)

n

v n+2
ig&

— ri„c,„+2(0),
n

(17)

which appears as an argument of trigonometric functions
in Eqs. (16)—(18), we need to satisfy the condition

2
~n 5—A,t «m' . (28)

We assume that C„(0) is a sharply peaked function of n

about n =n. We also assume

C, „+2(t)= c, „(o)
g, g2&(n +1)(n +2)

A„a„

gz(n +2)+, y„+1 C, „+,(0),
Ana„

(18)

n))1 . (29)

We can then replace n+1, n+2, and (2n+3)/2 by
&(n+1)(n+2) in Eqs. (16)—(18). The inequality (28)
then reduces to

where 4n

7T
(30)

a„=[gf (n +1)+gz(n +2)]'~
1/2

Q2
A„= +a„

y„= An cosAn t+i—sinAn t —An exp i—t

X exp —i—t
2

g„=sinAnt exp i—t

(19)

(20)

(21)

(22)

which depends on the interaction time. This condition
imposes a condition on the detuning for a particular
choice of the photon number n and the interaction time
A,t. For small values of A,t, the large-detuning limit
c„«1dictates another condition, i.e., 6/A, ))4(2n+3).
This condition, however, becomes redundant when
t) m ln Equ. ation. s (16)—(18) for the probability ampli-

tudes, under conditions (29) and (30), become

C, „(t)= exp[i&(n + 1)(n +2)A t ]

X [ cos[&(n +1)(n +2)At]C, „(0)

Here A„ is the Rabi frequency. Equations (16)—(18) give
the probability amplitudes in the FMHA.

+i sin[@ (n +1)(n +2)At]C, „+2(0)],
(31)
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Cc,n+2(f)= ex "+1)(n+2gt
(32)

X(cos[v' „+"+1)(n+2)gt C;n+p(0)

"+1)(n +2)gt' «., „(0)

(33)

We obbserve that the rop g heatomin the

atom effectivel r

(33
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tion inversion versus dimensionless time to see the
difference between the EHA and the FMHA for n =0.1.

be obtained from the two approaches for large values of
n, under condition (30).

2. Photon distribution function

The photon distribution function gives the probability
of finding n photons at any time t. In the photon distri-
bution function only the diagonal elements for the re-
duced density matrix of the field are involved. Hence the
additional overall phase factor cancels out. It is evident
that only the trace over atomic variables is carried out in
Eq. (37). The conditions (29) and (30) are therefore
modified by replacing n by n. This modification does not
play any role in the case of initial coherent field for larger
values of n. As in the case of such distributions, the con-
tribution given by small values of n is negligibly small.
Hence we get identical results from both approaches un-
der condition (30). However, for smaller values of n, the
small values of n attain considerable weightage in initial
photon distribution. The two approaches therefore yield
significantly different results for small values of n.

In the case of an initial thermal field, different results
are obtained from the two approaches for small values of
n, and even for large values of n. This can be observed in
Figs. 4(a) and 4(b), where P(n) is plotted versus n for
n =10, for the EHA and FMHA, respectively. This can
be explained by considering the fact that the thermal dis-
tribution peaks at n =0. The maximum contribution
therefore comes from small values of n, where the
modified condition (29) is violated. Identical results will

ha &La2 )—,',
where

(gg )2 1(2&gta)+1+&g2)+&gt2))

(35)

(ba, )'=-,'(2&a to )+1—&0') —&at') )

+-'&a —at&'.

(36)

(37)

A state of the field is said to be squeezed when one of the
quadratures a

&
or a2 satisfies

(ha;) (-,', i =1,2. (38)

The quantities &a ), &a ), &a+a ), and &a —a ) in
Eqs. (39) and (40) contain off-diagonal elements of the re-

0.30

3. Squeezing

One of the major reasons for the recent interest in mul-
tiphoton processes is due to the high degree of correla-
tion between the pairs of photons that result in squeezing.
We introduce two Hermitian conjugate operators
a&=(a+a )/2 and a&=(a —a )/2i obeying the uncer-
tainly relation

0.20

0.15
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P(n) 0. 10
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(b)

60
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0.00 '
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FIG. 4. P(n) vs n, at A,t =1 for 0=0, for initial thermal field
with n =10 (a) in the EHA, and (b) in the FMHA, for
6/1, =1X10'.

FIG. 5. (ha& ) vs A, t, for 8=0, for initial coherent field with
n =50, in high resolution about A,t =n. (a) in the EHA, and (b) in
the FMHA, for 5/A, =5 X 10'.
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duced density matrix of the field. In the case of the initial
coherent field, n is taken to be large in order to satisfy
condition (29). The behavior of (b,a, ) vs A,t in the EHA
is presented in Fig. S(a). The corresponding curve in the
FMHA, in accordance with condition (30), i.e.,
b, /A, =50000, is shown in Fig. 5(b). The square of the
variance in the other quadrature, i.e., (b,az), in both ap-
proaches is plotted versus A, t in Fig. 7. It is clear from
Fig. 5(a), 5(b), and (7) that both approaches, in general,
exhibit drastically different results, which we may expect
because of the additional overall phase factor in the
FMHA.

These results, however, can be explained by consider-
ing the fact that the additional overall phase factor
exp[i&(n +1}(n+2)At] approaches 1 for n »1, for all
those values of Atth, at are an integral multiple of m.

Hence the phase factor does not play a significant role in
these particular values of At, th,us giving almost identical
results in the two approaches. When we move away from
these values we start getting a contribution from the
phase factor, see Figs. 6(a} and 6(b). The phase factor ap-
proaches —1 at those values of A,t that are an odd in-
tegral multiple of n /2, to give a maximum difference in
the behavior of two approaches. This argument is also
supported by the results for (ha2), where almost the re-
verse behavior is exhibited for the two approaches for

I

these values of A, t, see Fig. 7. We conclude from the
above discussion that effective Hamiltonian is valid under
certain conditions for the quantities in which diagonal
elements of the field density matrix are involved. But for
the quantities in which off-diagonal elements of the field
density matrix are involved, the effective Hamiltonian
need some modifications.

III. MODIFIED Era a:CTIVE HAMILTONIAN
APPROACH

The neglecting of the dynamic Stark shift in the
effective Hamiltonian leads to a different result for the
quantities in which the off-diagonal elements of the re-
duced density matrix are involved, such as squeezing.
Consequently, a modified effective Hamiltonian is pro-
posed [15] in which the dynamic Stark shift is taken care
of by the inclusion of Stark parameters, i.e.,

H=fiA(a'Ia &&cI+a 'Ic &&a~)

Piazza—

(P, (a & &a (+P2[c & &c I ), (39)

where p, and p2 are dynamic Stark-shift parameters for
atomic levels Ia & and Ic&, respectively. Corresponding
to this Hamiltonian, the solution of the probability ampli-
tude equations subject to condition (5) is

C, „(t)=exp(iV„t) [C, „(0)cos(Q„t )+(i/Q„)[(nP, —V„)C,„(0)—A&(n +1)(n +2)C, „+2(0)]sin(Q„t)],

C, „+2(t}=exp(iV„t)I C, „+2(0)cos(Q„t) (i /Q—„)[(nP,—V„)C,„+2(0)+A&(n + 1 )(n +2)C, „(0)]sin(Q„t)],
(40)

(41)

0.30Q

0.275

(Qa ~ ) 0 ~ 25Q
2

(a)
where

and

V„=—,
' [nP, +(n +2)P2],

Q„= ,'[(nP, —(n+2)P—2) +4k(n +1)(n +2)]'~

(42)

(43)

0.225—

0.200
2. 7

0.30

2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

Now we compare the probability amplitude equations
obtained from the MEHA with those corresponding to
the FMHA, i.e., Eqs. (16)—(18). The validity of the
modified effective Hamiltonian is determined by the con-

(ha~)
2

0.275

0.225—

(b)

(pa2) 2
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/
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FIG. 6. (Eal ) vs A, t, for 8=0, for initial coherent field with
n =50, in high resolution about A,t =m. (a) in the EHA, and (b) in
the FMHA, for 5/A, =SX10 .

FIG. 7. (b,a2) vs A, t, for 0=0, for initial coherent field with
n =50 (a) in the EHA, and (b) in the FMHA, for LL/A. =5 X 10 .
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ditions under which the MEHA and the FMHA give
identical results for the probability amplitude equations.
In the full microscopic Hamiltonian approach the Stark
parameters P, and Pz correspond to g f /b, and gz /5,
while the two-photon coupling constant A, is g, g2/4.
Equations (19)—(22) can be written as

5„
g„=sin —1+ t exp i—t

2 2 2

where

5„=(4/6)[(n+1)P, +(n +2)P~] .

(47)

(48)

a„=[(n +1)P,+(n +2)Pz]' b, '

A„=(I+a„)'"—,1/2 ~
(45)

Under the large-detuning limit, i.e., 5„«1, the Rabi
frequency A„can be expanded. In order to retain just
the leading terms in the trigonometric functions, we must
have

n . . 6 ny„=—cos —1+ t +i sin —1+ t
2 2 2 2 2 —[[(n+1)P,+(n+2)Pz]'jt «n . (49)

—exp i—t exp —i—t
2 2

(46) The probability amplitude equations from the FMHA
can be written as follows:

C. „(t)=
(n +1)P)

(n +1}P,+(n +2)Pz
( exp[i[(n+1)P&+(n+2)Pz]t j

—1}+1 C, „(0)

+ ( exp[i [(n + l)P&+(n +2)Pz]t j
—1) C, „+z(0),

A,&(n +1)(n +2)
(50)

(n + 1)Pi (n +2)Pq
C~ „+i(t) = —2 vl„C, „(0)—2 rl„Cc q+2(0), (51)

C, „+q(t)= ( exp[i [(n +1)P,+(n +2)Pz]t j
—1) C, „(0)A&(n +1)(n +2)

(n +2)Pz+ ( exp[i [(n +1)P,+(n +2)Pz]t j
—1)+1 C, „+z(0) .

n +1) &+(n +2 (52)

Since P& and Pz are of the same sign, then the large-
detuning limit (5„((1)confirms that

(n + 1)Pi (n +2)Pq «1,

where

g2
(54)

Condition (53) reduced to (30) for r = 1. However, if r+1

which means that C&„+&--0 (i.e., eff'ective two-level
atom). In the large-detuning limit, the one-photon Rabi
frequency for the dipole-allowed transitions is completely
suppressed by introducing detuning to the intermediate
level ~b ) with respect to cavity resonant mode Q. For
n »1, Eqs. (42) and (43) gives 0„=V„, which leads to
identical results from the MEHA and FMHA for the
probability amplitude equations. The condition (49), in
the limit n &&1, can also be written in terms of dimen-
sionless quantities as follows:

r 2
n (r +1)

At «—, (53)r iE
'

then we have an additional factor [(r +1)/r] on the
left-hand side with respect to inequality (30). It can be
seen from Eq. (54) that, for r =0 or 00, the three-level
atom reduces to a two-level atom coupled via the one-
photon process.

The MEHA can be used to study the quantities in
which both diagonal and off-diagonal elements of the
density matrix are involved. We would get identical re-
sults for population inversion, and the photon distribu-
tion function, as well as for squeezing from the two ap-
proaches under the above-mentioned conditions. It is im-
portant to note that, in the case of an initial thermal field,
the MEHA could only be used for large values of mean
number of photons n. But for small values of n, which
are of experimental interest [6,14] we cannot employ the
MEHA. In the case of an initial thermal field, (b,a& } is
plotted for n =0.1 for both the MEHA and FMHA, see
Fig. 8.

IV. SUMMARY

We have examined the validity of the effective Hamil-
tonian approach in the two-photon Jaynes-Cummings
model by comparing it with the results obtained from the
full microscopic Hamiltonian. The conditions have been



4958 A. H. TOOR AND M. S. ZUBAIRY
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FIG. 8. (ha, ) vs At for 8=m. /2, P=rr/2 in the case of initial thermal field with n=0 land. r=2.0 (a) in the MEHA, and (b) in
the FMHA, for 5/A, =10.

determined under which both Hamiltonian approaches
yield identical results for the probability amplitudes apart
from an additional overall phase factor. It has been
shown that the quantities in which only the diagonal ele-
ments of the reduced density matrix for the field are in-
volved, e.g. , population inversion and the photon distri-
bution function, identical results are obtained in the two
approaches under these conditions. The two approaches,
however, exhibit drastically difFerent behavior for the
variances of the quadrature components in which off-
diagonal elements of the reduced density matrix for the
field are involved, thus leading to substantially different
results for squeezing. The additional phase factor in the
FMHA arises from neglecting the dynamic Stark shift in
the EHA. We then consider a modified effective Hamil-
tonian in which the dynamic Stark shift is taken care of.

Our results clearly elucidate the conditions under which
the modified effective Hamiltonian approach may be em-
ployed in the study of various quantities of interest in the
two-photon atom-field interaction.

We have recently become aware of a paper by Barizis
and Nayyak [17], in which comparison was made be-
tween the results predicted by the FMHA and the
MEHA. Their results are, however, limited to relatively
small detunings, where the predictions of the two Hamil-
tonians are different.
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