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Phase-space representation of amplitude-squared squeezing
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Phase-space pictures have proven to be useful in analyzing standard squeezing. Here such pictures are
developed for amplitude-squared squeezing, a form of higher-order squeezing. They are used to examine
amplitude-squared squeezing of the squeezed vacuum state and to suggest a method of producing
amplitude-squared squeezed states using a nonlinear interferometer. The phase-space representation of a
variable which is a mixture of the usual amplitude-squared squeezing variables is also discussed.

PACS number(s): 42.50.Dv, 03.65.Sq, 42.65.—k

I. INTRODUCTION

Phase-space pictures have proven to be a useful tech-
nique in the analysis of problems in quantum optics.
There have been two main approaches to the use of such
pictures. The first describes a single-mode field state by
means of a complex amplitude and an error box which
corresponds to the uncertainty of the amplitude. The
shape of the error box depends on the state. For exam-
ple, it is circular for a coherent state and it is elliptical for
a squeezed state. Pictures of this type have been used in
an analysis of interferometers by Caves [1] and in a study
of the validity of the parametric approximation by Caves
and Crouch [2]. A second approach, that of interference
in phase space, has been explored by Schleich and
Wheeler [3—5]. Here one examines the overlap between
phase-space regions corresponding to different quantum
states. The inner product of two states can be built up
from a knowledge of these overlaps. Development of
these techniques allowed Schleich and Wheeler to predict
oscillations in the photon-number distribution of
squeezed states. These techniques have also been extend-
ed to two modes and a four-dimensional phase space [6].

The phase space which we shall consider has the real
part of the mode amplitude on the x axis and the imagi-
nary part on the y axis. Quantum mechanically the com-
plex amplitude of a mode corresponds to the mode-
annihilation operator a and the real and imaginary parts
correspond to the operators

X, =(a +a)/2, X2=i(a —a)/2,

represented as a circular region. The circle is centered on
the point (x, ,xz) =((X, & (X2 & ) and has a radius of —,'.
The reason for this is as follows. The variable whose
"eigenstates" correspond to lines making an angle of
8+n /2 with the x, axis is

X(8)=(e' a +e ' a)/2=X&cos8+X2sin8 . (1.2)

The magnitude of the fluctuations of a state ~g& in the
direction at an angle 8 to the x& axis is given by

~(8)=
[ & Wl [X(8)]'I 0& —

& IIX(8)I@&'J'"
For a coherent state ~(8)=

—,
' for all values of 8 and this

leads to the circular error box of radius —,'. What this rep-
resentation is meant to describe is that the amplitude of
the state has a mean value of (a &=(X& &+i(Xz& but
fluctuates within the error box (see Fig. 1). As is well
known the complex amplitude cannot be specified pre-
cisely because the operators corresponding to its real and
imaginary parts do not commute [7]. In fact, the size of
the error box is constrained by the requirement that
kX] Lu. 2 4.

respectively. In this phase space, "eigenstates" of X, and

X2 are represented by lines parallel to the xz (y axis) and
the x, (x axis) axes, respectively. Note that in the
preceding sentence mode operators are written with capi-
tal letters and their corresponding c-number quantities
have been written with small letters. This convention
will be adhered to for the rest of this paper. The use of
quotation marks is to indicate that normalizable eigen-
states do not exist though states whose uncertainty is ar-
bitrarily small in either of these variables do.

As was mentioned previously a coherent state is

X)

FIG. 1. Phase-space representation of a coherent state. The
circular "error box" has a radius of —' and represents the uncer-

tainty in the complex field amplitude of the state.
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In this paper these techniques will be applied to
amplitude-squared squeezing, a form of higher-order
squeezing [8,9]. In this type of squeezing the fluctuations
of the square of the mode amplitude are smaller in some
directions in phase space than they can be for a classical
state. Amplitude-squared squeezing is an example of
su(1, 1) squeezing; the variables which describe it form a
representation of the su(1, 1) Lie algebra [10]. We shall
also consider phase-space representations for more gen-
eral types of su(1, 1) squeezing which are in fact, variants
of amplitude-squared squeezing. An illustration of how
these techniques can be used to suggest ways of produc-
ing amplitude-squared squeezed states, which makes use
of an idea due to Kitagawa and Yamamoto [11],will also
be presented.

II. AMPLITUDE-SQUARED SQUEEZING

Amplitude-squared squeezing is described in terms of
the real and imaginary parts of the square of the field am-
plitude. These quantities correspond to the operators

Y =(at +a )/2=X

Yz=i( a —a )/2=X, X2+X2X, , (2.1)

and such a state is nonclassical.
Let us now proceed to the phase-space representation

of these variables. An "eigenstate" of Y& with eigenvalue

y& corresponds to the curvey& =x
&

—x2. This is a hyper-
bola with asymptotes x2 =+x &. This is pictured in Fig.
2. If y& &0, then the hyperbola intersects the x, axis at

respectively. These operators obey the uncertainty rela-
tion [8]

EY)b Y2 ~ (N+ —,
' ), (2.2)

where N =a a is the photon number. A state is said to
be amplitude-squared squeezed in the Y& direction if

(2.3)

x, =+Qy &, and if y, & 0, then it intersects the x 2 axis at

x2 =++~y &
~. An "eigenstate" of Yz with eigenvalue y2

corresponds to the hyperbola y2=2x&x2. Hyperbolas of
this form have the x, and x2 axes as asymptotes and lie
in the first and third quadrants if y2 & 0 and the second
and fourth quadrants if y2 (0. This is shown in Fig. 3.

The third operator which appears in the condition for
amplitude-squared squeezing is the number operator N.
In phase space an eigenstate of N with eigenvalue n is
represented as a circular band [4]. This is shown in Fig.
4. The band has a radius v'n+1/2 and a width of
I/2v'n. This follows from the fact that in terms of X,
and Xz, N is given by

N=X)+X2 —
—,
' . (2.4)

Therefore a number state ~n ) corresponds to the curve
x, +xz=n+ —,', which is a circle of radius &n+1/2.
However, unlike the eigenvalues of Y& or Y2 which are
continuous, the eigenvalues of N are discrete. On the
other hand, the union of all the phase-space representa-
tions of number states must fill phase space, because the
number states are complete, i.e., I=+„"O~n ) (n~, where
I is the identity operator. This means that the phase-
space representation of each number state must have a
finite area, which implies that each circle must have a
width. The spacing between circles is
5r„=v'(n + 1)+1/2 v'n + 1/2—= 1/2v'n for n ))1,
and we associate to each circle this width. That is, the
number state

~
n ) is represented by the circular band with

inner radius v'n + 1/2 —1/4v n and outer radius
&n+ I/2+1/4v'n. Each of these bands has an area of
m. and all of the bands taken together fill phase space.

Let us make use of these pictures to show that a
squeezed vacuum state is also an amplitude-squared-
squeezed state. A squeezed vacuum state is represented
by an elliptical region centered on the origin, i.e., the am-
plitude of this state has a mean value of zero and has a

X2

&0

X)

x,

FIG. 2. Representations of eigenstates of YI ~ The hyperbola
which intersects the x, axis corresponds to an eigenstate whose
eigenvalue is positive, and the hyperbola intersecting the x& axis
corresponds to one whose eigenvalue is negative.

FIG. 3. Representations of eigenstates of Y2. The hyperbola
which lies in the first and third quadrants corresponds to an
eigenstate whose eigenvalue is positive, and the hyperbola
which lies in the second and fourth quadrants corresponds to
one whose eigenvalue is negative.
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X2
X2

X, X,

FIG. 4. Phase-space representation of the number state ~n ).
It consists of a circular band with inner radius
&n + 1/2 —1/4&n and outer radius &n + 1/2+ 1/4&n .

FIG. 6. Overlap of squeezed vacuum state with Y& eigen-
states.

substantial probability of being found anywhere in the el-
lipse. Let us assume that the state is squeezed in the xz
direction which implies that hx, )hxz. Then the sem-
imajor axis of the ellipse has a length Ax &, the semiminor
axis has a length hxz, and hx, hxz = 4.

We now want to find hy, , and Ayz. We do this by ex-
amining the overlap of the elliptical region with the hy-
perbolas representing the eigenstates of Y& and Yz. The
hyperbolas which correspond to Y& eigenstates and
which intersect the ellipse range in value from

y, = —(b,xz) to y, =(b,x& ) . This is illustrated in Fig. 5.
Consequently we set

equation for the ellipse (actually the boundary of the el-

liptical region) is

(x, /b, x, ) +(xz/b, xz) =I . (2.6)

(x, /bx, ) +(yz/2x&bxz) =I . (2.7)

If we now note that Ax, hxz= 4 and also set u =x&/bx&
the above equation becomes

The equation for the Yz hyperbola corresponding to the
eigenvalue yz is yz =2x, xz, and solving this equation and
Eq. (2.6) simultaneously to find the intersection points
gives

u —u +4y&=0. (2.8)

hy, =(hx, ) +(bxz) (2.5)

X2

(0, hx2)
v~ = (~~)2

(hx, 0)

X)

y) = -(Lb(2)

FIG. 5. Overlap of squeezed vacuum state with Y& eigen-

states.

The situation for hyz is more complicated. We again
want to find the hyperbolas which represent Yz eigen-
states and which overlap with the ellipse (see Fig. 6). The

Equation (2.8) has real solutions for u, corresponding to
intersection points between the hyperbola and the ellipse,
if

1 —16yz~O, (2.9)

so that the hyperbola intersects the ellipse if —
4 yz ~ 4.

Therefore we set Ayz =
—,'.

Finally, we must determine the mean value of X. The
"radius" of the ellipse in the x, direction is bx, , and in

the xz direction it is Axz. For the mean value we can
take (b,x, +b,xz)' . As Eq. (2.4) demonstrates, the
square of the radial coordinate, r =(x f +xz )'~, is equal
to n +—,'. Therefore, for the mean value of N+ —,

' we take
the square of the average radius which is Ax&+Ex'.
With hx

&
hxz =

4 this quantity has a minimum value of —,
'

which occurs when hx, =
—,'. We now note that this irn-

plies that (hyz ) =—' is less than the mean value of N +—,
'

so that the state is amplitude-squared squeezed.
Let us now compare the values for difFerent quantities

which we have found from phase-space methods to the
actual values of those quantities calculated by standard
operator techniques. For a squeezed vacuum state with
an uncertainty in X& of ~~ and an uncertainty in Xz of
~z we find
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(b, Yi) =&2[(~i) +(~2} ], b, Y~=l/v2

(N+ ,' &—=(~} +(~ ) (2.10)

where

L, (r, n)=e "(n+ —,')', Lz(r, n}=e"(n+ —,
')' (3.7)

The value of (N+ —,
'

& agrees with its phases-space de-

rived value and the values of 5Y, and 6Y2 are off by a
factor of &2. The phase-space pictures, therefore, do not
give exact values for the above quantities, but, consider-
ing that the methods are somewhat crude, the answers
that they do give are not far off. What recommends their
use is that by providing an easy way to visualize the fluc-

tuation behavior of quantum states in the variables Yi,
Y2, and N, the phase-space representations provide a
greater understanding of what properties a state must
have to have in order to have small fluctuations in these
variables. In particular, we see that for large Ex' the el-

liptical region representing the squeezed vacuum will

overlap with a large number of N eigenstates but with

only a small subset of the hyperbolas representing Y2

eigenstates. The result is amplitude-squared squeezing.

III. MIXED VARIABLES

=cosh(2r}NI+sinh(2r}Y»„+sinh (r}, (3.2)

where N;„and Y&;„arethe number and Y& operators for
the input mode. Therefore, by measuring the photon
number at the output, one is measuring the variable [the
c-number contribution in Eq. (3.2) has been dropped]

Let us suppose that we are measuring the photon num-

ber at the output of a degenerate parametric amplifier. If
the input mode is described by the annihilation operator
a;„and its adjoint a;„,then the annihilation operator for
the output mode, a,

„„

is given by

a,„,=cosh(r)a;„+e' sinh(r)a~„, (3.1)

where the parameters r and 8 depend on the pump
strength and phase and also on the interaction time. For
simplicity let us consider the case 8=0. The output num-

ber operator is then

"out out out

1=xi/[e "(n+ —,'k —,')]+xz/[e '/(n+ —,'+ —,')], (3.8)

where the upper signs indicate the outer boundary and

the lower signs the inner boundary of the band. The
band has an area equal to m. .

In order to determine the condition for nonclassical be-

havior in Z(r) we first express [bZ(r)] in normally or-
dered form

[bZ(r}] =(:[Z(r}—(Z(r) &]:&+(Z(2r}&

+ [cosh(4r) —1]/4 . (3.9)

For a classical state the normally ordered expectation
value in the above equation is always greater than or
equal to zero. Therefore, a state is nonclassical if

[bZ(r)] ( (Z(2r) &+[cosh(4r) —1]/4 . (3.10)

Let us use phase-space methods in order to see what
properties a state must have to satisfy this condition.
Consider first the eigenstate of Z(r) with eigenvalue
n —[cosh(2r) —1]/2, ~f„&.As has been pointed out, this
state is represented by an elliptical band centered on the
ellipse with semiminor axis in the xi direction of length
L, (r, n) and semimajor axis in the x2 direction of length

This is the equation for an ellipse which has its semimajor
axis of length L2 in the x2 direction and its semiminor
axis of length L] in the x, direction. As in the case of
number states, the union of all the areas in phase space
which represent the eigenstates of Z(r) must fill phase
space. This follows from the completeness relation for
these states. Therefore the eigenstates of Z(r) corre-
spond to elliptical bands which are centered on the el-

lipses given in Eq. (3.6). This is pictured in Fig. 7. In
particular, the elliptical band in phase space correspond-
ing to the eigenstate of Z(r) with eigenvalue
n —[cosh(2r) —1]/2 lies between the ellipses whose equa-
tions are

Z(r) =cosh(2r)N+sinh(2r) Yi, (3.3)

for the input field. The eigenstates of Z(r) are squeezed
number states and are given explicitly by

~P„&=e "' ' '
~n& . (3.4)

The eigenvalue of Z(r) corresponding to this state is
n —sinh (r). The eigenstates

~ tP„&form a complete set.
What does such a variable correspond to in phase

space? In order to find out we begin by expressing Z(r)
in terms ofXi d X2

X)

Z(r)=e 'X2i+e ~X2z——,'cosh(2r) . (3.5)

Rephrasing this equation in terms of the phase-space
quantities x

&
and x2 and setting Z equal to its eigenvalue

n —[cosh(2r}—1]/2 gives

1=(x,/L, ) +(x~/Lq) (3.6) FIG. 7. Representation of an eigenstate of Z(r).
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e "(n +—') & m +—' & e "(n +—') (3.11)

In terms of values of z(2r), the phase-space c number
corresponding to the operator Z(2r), which is given by

z (2r) =m —[(cosh(4r) —1]l2,
this condition becomes

e "(n +—,
'

) ——,'cosh(4r)

&z(2r) &e "(n +—') ——'cosh(4r) .

(3.12)

(3.13)

If we use the value of z (2r) in the middle of this range for
the expectation value of Z(2r) we have

(Z(2r) ) =(n +—,
' )cosh(2r) —

—,'cosh(4r) . (3.14)

This is also the value of (Z(r)) which one obtains by
operator methods.

For the state ~g„)we have b,Z(r) =0. Substituting
this result and Eq. (3.14) into Eq. (3.10) tells us that the
state ~g„)is nonclassical if

[cosh(4r)+ 1]l4 & (n +—,
' )cosh(2r) . (3.15)

Therefore not all eigenstates of Z(r) satisfy Eq. (3.10); n

must be sufficiently large. Let us note that for r & 0 all of
the states ~P„)are nonclassical states. What Eq. (3.15)
states is that for the nonclassical behavior to manifest it-
self in the variable Z (r), n must be sufficiently large.

This tells us what kind of state will satisfy the condi-

L2(r, n). We need to calculate the expectation value of
Z(2r), and in doing so it is useful to have a representa-
tion of the eigenstates of this variable. In phase space the
eigenstate of Z(2r) with eigenvalue m + [cosh(4r) —1]/2
is an elliptical band centered on the ellipse with semimi-
nor axis in the x, direction of length L, (2r, m ) and sem-
imajor axis in the x2 direction of length L2(2r, m). The
ellipses will overlap if L2(2r, m)~L2(r, n) and

L, (2r, m) &L, (r, n) (see Fig. 8), i.e., if

tion in Eq. (3.10). The region which corresponds to it in
phase space must first overlap with a small number of the
ellipses given by Eq. (3.6). This guarantees that b,Z(r)
will be small. It is also necessary that the ellipses with
which it does overlap have values of n which satisfy Eq.
(3.15), i.e., the ellipses must be sufficiently large.

IV. NONLINEAR INTERFEROMETER

I= cuba a +A, ( a a ) (4.1)

and the resulting time evolution operator is U(t) =e
The coupling constant A, is proportional to the third-
order nonlinear susceptibility of the material. The time
evolution described by U(t) is relatively simple because

A Kerr medium changes the phase-fluctuation proper-
ties of the light which passes through it. A coherent state
at the input will be changed into what is called a general-
ized coherent state at the output. In phase space the cir-
cular region which describes the coherent state is elongat-
ed into a crescent. If the crescent is displaced so that it
overlaps a relatively small number of the circles
representing number states, then the resulting state has
sub-Poissonian photon statistics. Kitigawa and
Yamamoto showed that this elongation followed by a dis-
placement can be accomplished by a Mach-Zehnder in-
terferometer with a Kerr medium in one leg (see Fig. 9)
[11].

Here we want to use the same device to produce an
amplitude-squared squeezed state. In doing so the
phase-space representation will serve as a guide. The
basic idea is to again create the crescent by means of the
Kerr medium, but this time to displace and rotate it so
that it overlaps a small subset of the hyperbolas
representing the eigenstates of Y, . This will produce a
state which is amplitude-squared squeezed in Y&. It
should be noted that it is possible to create a state with a
small amount of amplitude-squared squeezing using a
Kerr medium alone [12).

A single mode in a Kerr medium is described by the
Hamiltonian

/0&

Kerr medium

Z(I')

X)

FIG. 8. Overlap of an eigenstate of Z(r) and an eigenstate of
Z(2r). The eigenstates are elliptical bands but have been drawn
as ellipses for simplicity.

FIG. 9. Mach-Zehnder interferometer with a Kerr medium

in one of the two legs. The boxes labeled by angles represent
linear media which shift the phase of the light by the designated

angle.
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0 commutes with the photon-number operator. As a re-
sult, the action of U(t) does not charge the photon statis-
tics of a state but does modify its phase properties.

The interferometer which we wish to consider is shown
in Fig. 9. A coherent state ~a) is introduced into one of
the input ports. Part of it is transmitted and goes directly
to the second beam splitter after a phase shift of y. The
rest passes through the Kerr medium before arriving at
beam splitter no. 2. The light from one of the output
ports is passed through a linear medium which shifts the
phase of the light by 8. After emerging from the second
phase shifter the state of the light is [11]

~%,„,) =R(8)D(g)U(t)~a, ) . (4.2)

Here R (8} is the rotation operator R (8}=exp(i8a a),
D(g) is the displacement operator D (g) =exp(ga —Pa ),
and U(t) describes the evolution of the state in the Kerr
medium (t is the time it takes the light to pass through
the medium). The state ~a, ) is a coherent state whose
amplitude is a&=(1—R&)'~ a where R& is the reflectivity
of the first beam splitter. The displacement parameter g
is given by g=(1 Rz)' e—'+QR&a where R2 is the
reQectivity of the second beam splitter. In deriving Eq.
(4.2) it has been assutned that 1 —R 2 « 1 and
laV'R

& I
» I.

Let us now consider the values we want to choose for 8
and g. After emerging from the Kerr medium the light is
in the state U ( t)

~ a, ) . In phase space this state corre-
sponds to a crescent whose center is located at

(a, ~ [U(t)] 'aU(t) ~a, )

8=(co+A, )t+ ~a, ~
sin(2At) —8 (4.5}

X( —2a, +pe ), (4.6)

where g represents a small correction, and leave our
choice of 8 unchanged. We shall now calculate
(5Y, ) —(N+ —,

' ) for ~%,„,) and minimize the result
with respect to g.

The calculation is straightforward and so only the

x,

This sequence of a displacement followed by a rotation
will put the center of the crescent approximately where
we want it. In order to improve the result we choose in-
stead for the displacement

g=e '"+ "exp[ i—[a, ~
sin(2At)]

Xexp( —
[a&~ ][I—cos(4A, t)]

+i sin(2kt)]) . (4.3) (a)

g'= —2a&e ' + "exp[ i ~a&~ sin(2At)], —

and for the angle of rotation

(4.4)

If we assume that we are in the regime where A, t ~a& ~
&&1,

which we shall do for the rest of this section, then
~a&~ [1 cos(4k t )]—-=1. Therefore the center point of the
crescent is a distance of

~ a, ~
from the origin and at an an-

gle of 8 (to+A)t ——
~a&~ sin, (2A,t) from the x& axis,

where a, =~a, ~exp(i8 ). The crescent has a radius of
curvature approximately equal to ~a, ~. The hyperbola
y &

=x,&
—x z has a radius of curvature at the point

( —Qy„O)of Qy, . This suggests that we should dis-
place and rotate the crescent so that its center is at the
point ( —

~a& ~, 0), and so that it lines up with the hyperbo-
la ~a, ~

=x f —x 2 which passes through this point. In this
way the crescent should overlap with a small subset of
the hyperbolas y& =x& —xz, and, thereby, the quantum
state represented by the displace and rotated crescent
should have a ( 6Y, }2 small enough for it to be
amplitude-squared squeezed. This is illustrated in Fig.
10.

These considerations suggest that we take for the dis-
placement

X2

x,

FIG. 10. (a) Phase-space representation of the state of the
light after it has emerged from the Kerr medium. (b) After
passing through the second beam splitter and the phase shifter
the crescent has been displaced and rotated so that it lines up
with a Y& eigenstate.
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+8y(y +yx )], (4.7)

where y=2(~a, ~At) . Minimizing this with respect to x
and y we find that

(AY, )
—(N+ ,' ) = —

~a—t~ +O(~a, ), (4.8)

so that the state is amplitude-squared squeezed. There-
fore phase-space pictures have led to an alternative
method of producing amplitude-squared squeezed states.

essential parts will be summarized here. In order to
make the final result simpler we can make use of the re-
sults of Kitagawa and Yamamoto [11]. They found that
they could obtai~ the highest level of sub-Poissonian pho-
ton statistics using a nonlinear interferometer if
At =0 (1/~a, ~

). We shall assume that this condition is

satisfied here and only the highest-order terms will be
kept. Setting g=x + iy we find that

(~ Y, )2 —(N+-,' &
= la, I'[ —la, l(«ty+967"x)

and it was found that phase-space representations of their
"eigenstates" are curves. In particular, we examined the
amplitude-squared squeezing variables Y& and Y2, whose
eigenstates correspond to hyperbolas, and a variable
Z(r), which is a linear combination of Y, and the num-
ber operator, whose eigenstates are elliptical bands.

Once one has a representation of the eigenstates of a
variable one can then try to construct states whose Auc-

tuations in that variable are below the classically allowed
level. Such a state should correspond to a region in phase
space which overlaps with only a small set of the curves
representing eigenstates. This procedure led us to a
method for producing amplitude-squared squeezing by
using a Mach-Zehnder interferometer with a nonlinear
element.

With standard squeezing, phase-space representations
have served as both a tool for understanding and a guide
to thinking. What has been shown here is that they can
play a similar role for higher-order squeezing.

V. CONCLUSION

The phase-space representations of "eigenstates" of
variables which are Hermitian linear combinations of
single-mode creation and annihilation operators are
straight lines. Here Hermitian operators quadratic in the
creation and annihilation operators have been considered,
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