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Nature of quantum jumps
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Recent experiments have found abrupt changes in the intensity of laser light scattered off single ions
and atoms. These abrupt changes have been interpreted as resulting from Bohr’s “quantum jumps” of
the ion or atom from one state to another. In Bohr’s description, such quantum jumps are not predicted
by the Schrédinger equation and are introduced by additional postulates into quantum theory. We con-
sider here an alternative explanation of these experiments using only properties of solutions of the
Schrédinger equation and avoiding Bohr’s added postulate.

PACS number(s): 32.90.+a, 32.80.Pj, 42.50.Wm, 03.65.Bz

I. INTRODUCTION

A number of experiments on trapped single ions or
atoms have been performed in recent years [1,2]. Moni-
toring the intensity of scattered laser light off of such sys-
tems has shown abrupt changes (see Fig. 1) that have
been cited as evidence of ‘“quantum jumps” between
states of the scattered ion or atom [3]. The existence of
such jumps was required by Bohr in his theory of the
atom. He assumed that an atom remained in an atomic
eigenstate until it made an instantaneous jump to another
state with the emission or absorption of a photon. Since
these jumps do not appear to occur in solutions of the
Schrédinger equation, something similar to Bohr’s idea
has been added as an extra postulate in modern quantum
mechanics. The question arises whether an explanation
of these jumps can be found to result from a solution of
the Schrodinger equation alone without additional postu-
lates. The interpretation of one of these experiments
given below shows that the answer is “yes.”

The linearity of the Schrodinger equation will play an
essential role in this analysis. von Neumann [4] based his
“theory of measurement” on this linearity. We shall
make use of some of his work as developed by London
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FIG. 1. A typical trace of the light scattered off of a Ba™ ion
involving the 62S,,,-62P,,, transition in the experiments re-
ported by Nagourney, Sandberg, and Dehmelt [1]. It shows
“quantum jumps” after the hollow cathode lamp is turned on.
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and Bauer and by Wigner [4] to demonstrate properties
of the solutions of the Schrodinger equation. It will be
apparent that an understanding of the property of equa-
tion linearity provides sufficient information to allow a
qualitative description of the wave function from which
the form of the experimental results can be understood.
For this purpose, it is unnecessary to find a detailed solu-
tion of the Schrodinger equation.

To illustrate this method of attack, we shall consider
an experiment by Nagourney, Sandberg, and Dehmelt
[1]. They scattered laser light off of a trapped Ba™ ion to
obtain the plot of intensity versus time shown in Fig. 1.
In order to tie this experiment in with the previous work
in Ref. [4], we shall analyze a simple model based on the
Stern-Gerlach experiment that has all the essential
characteristics needed to produce quantum jumps. It will
become clear that an intensity plot such as that in Fig. 1
is to be expected from a straightforward solution of the
Schrodinger equation describing the scattering of light off
of aBa™ ion.

In order to understand the use of equation linearity in
von Neumann’s work, the reader is advised to study the
writings of London and Bauer and of Wigner [4]. They
make a thorough analysis of the Stern-Gerlach measure-
ment of the spin component of an atom. A summary of
their approach is presented here in Sec. I with the addi-
tion to the apparatus of a detection device that measures
the amplitude of the wave function. In Sec. IIT a se-
quence of Stern-Gerlach devices is considered. The
Stern-Gerlach apparatus is slightly modified in order to
make the analysis of the sequence similar to that of the
measurements of Nagourney, Sandberg, and Dehmelt [1].
In Sec. IV an examination of the Ba™ scattering experi-
ments shows that an intensity plot like that in Fig. 1 is to
be expected from a solution of the Schrddinger equation.
Some implications of the elimination of Bohr’s postulate
from the interpretation of quantum phenomena are dis-
cussed in Sec. V.

II. THE STERN-GERLACH EXPERIMENT

The Stern-Gerlach apparatus includes a magnet that
produces an inhomogeneous field through which the
wave function to be analyzed passes as shown in Fig. 2.
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FIG. 2. Stern-Gerlach apparatus where a neutron wave func-
tion passes through an inhomogeneous magnetic field and splits
into spin-up and spin-down components indicated by ¥, and 1,.
These components pass through coils in which currents are in-
duced by the neutron magnetic moment. These currents are
greatly amplified and information about their amplitudes is
stored in a recorder.

We shall take this wave function to be a neutron so that it
will, in general, separate into spin-up and spin-down
components that will be represented by ¥, and 1,. This
magnetic field has the effect of correlating the spin pro-
jections with the subsequent spatial displacements of the
two components of the neutron wave function.

After the wave-function components are given im-
pulses in opposite directions by the magnetic field, they
follow two divergent channels. A wire coil is wrapped
around a section of each of these channels in such a way
that the neutron wave component passing down that
channel will induce a current by means of its magnetic
moment. See Fig. 2. Each coil is connected to an
amplifier that provides a much increased output current.
The wave function for the coils and amplifiers will be
represented by Y. The initial wave function with no
current flowing is Y,. A subscript 1 indicates that a
current was induced by the i, neutron wave component
but not by the 3, component. A 2 indicates the state
with a current induced by the ¥, component alone.

The currents from the two amplifiers pass on into an
attached recording apparatus whose state is represented
by ¢. A subscript i labels the initial state with no current
recorded. A subscript 1 indicates that a current originat-
ing from a 9, was recorded alone while a subscript 2
shows the recording of the passage of a i, component
alone.

If the original neutron wave function incident on the
magnetic field involves only a ¥, component, then it will
proceed down its channel and be recorded as such. Be-
fore this neutron wave function reaches the magnetic
field, there will be no induced current in the coil so that
the wave function for the system will be

V,=¢x;¢; . (1

After the neutron wave function has passed through the
coil around the ¥, channel, and the currents have made
their recording, the wave function takes the form

V,o=vx1¢; . 2)

If, on the other hand, the original neutron wave func-
tion consists entirely of a ¥, component, the initial wave
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function for the system will be

¥, =1vx.:9; . (3)

The magnetic field will impart an impulse to the neutron
wave function in the opposite direction, and the wave
function will proceed down its channel and be so record-
ed. The final wave function will then be

Y, =1,X9, . (4)

In general, however, the initial neutron wave function
will be a superposition of a spin-down and a spin-up com-
ponent. The initial wave function for the system is then

V= +¥,)x:9; - (5)

Because of the linearity of the Schrodinger equation for
the system, the development of the system due to the in-
cident ¥, component as given by Eq. (1) will be unaffected
by the presence of the ¥, component and vice versa. Asa
result, the final wave function can be written as the sum
of the two final-state wave functions in Egs. (2) and (4).
Thus, in general,

V,=¢x1¢1 T Y229, - (6)

This superposition property is the characteristic of
quantum fields that distinguishes them from classical
fields and, as we shall see, produces solutions to the
Schrodinger equation that appear to have quantum
jumps. It is important to note that there are two recorder
states, one remembering a spin-up measurement result
and the other a spin-down measurement. There are no
recordings of both a spin-up and a spin-down state. Such
a result would require an initial wave function involving
two or more neutron coordinates. A classical field
behaves like a many-neutron wave function.

If first-order perturbation or semiclassical radiation
theory is used, the neutron wave component passing
through a coil will induce a current as though the mag-
netic moment were distributed over it in proportion to
|¥|2. Any portion of the neutron wave function will in-
duce a flow of charge in the coil whose magnitude is pro-
portional to f [|?d3x over this portion. Since the
current induced in the coil must be extremely small, the
amplification requirement on the amplifier circuits must
be very stringent. We shall conjecture that in order to
provide the amplification to produce a macroscopic
current from a single-quantum one, a circuit will have
properties similar to a Geiger counter in that the tiny
quantum current will precipitate a cascade of a macro-
scopic number of electrons. Such a cascade and the sub-
sequent recovery of the device requires a very small inter-
val of time and sends a pulse of current into the attached
amplification stages and finally into the recorder.

After the amplification device has recovered, it is ready
to repeat its cycle. If a single-quantum wave function in-
teracts with the device for a period much longer than the
recovery time, then the cascade cycle will repeat over and
over. For example, if a Geiger counter is set up to record
the y rays from radioactive nuclei, a number of years
may be required for a nucleus to emit a y-ray wave while
a Geiger counter and its control circuit can cycle in a
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small fraction of a second. However, we know that a
single-quantum state will be recognized by a recorder by
a single isolated event (a single click in an attached speak-
er). It must be true, therefore, that different states of the
recorder are associated with different Geiger-counter cy-
cles. Each state recognizes only one cycle at some partic-
ular time. The large number of clicks that we ordinarily
hear from a Geiger counter detecting y rays must be
from a large number of different y-ray wave functions
emitted by many nuclei.

We may imagine the required amplification for our
Stern-Gerlach experiment to be provided by a single-
cycle multivibrator. In this circuit, a very small charge
on the initial condensor of the circuit is required to
trigger a cycle with a relatively large charge output. This
output is passed on to the recorder to produce a state
with a memory of an event at this time. We assume that
the multivibrator cycle time is negligible, but significant
time is required to build sufficient charge on the initial
condensor to initiate a cycle. We assume that this cycle
time is much smaller than the time required for the neu-
tron wave function to pass through the coil.

During the buildup time of the charge on the initial
multivibrator condensor for one cycle, a required quanti-
ty of magnetic moment will pass through the center of
the coil. After one multivibrator cycle, a second portion
of the neutron wave function will begin to build up the
condensor charge until another cycle occurs. Thus we
can think of the neutron wave-function component as be-
ing chopped up into a superposition of packets, each with
the same magnetic moment or, equivalently, the same
value of [ |4|?d*x. Each packet will be associated with
its own recorder state.

If we solve the Schrodinger equation backwards in
time, we can identify each of these packets in the initial
neutron wave function before it enters the magnetic field.
Thus, in analogy to Eq. (4), the initial wave function of
the system takes the form

V=3 X% » 7
s, t

where s is 1 or 2 to indicate the spin component, and ¢
numbers the packets in order as they pass the center of a
coil.

Each of the packets 9, can be followed through the
apparatus to produce a term in the system wave function
of the form v, x,, ¢, where ¢, represents a recorder state
that remembers a signal from the s channel generated by
the pulse numbered . Since the Schrodinger equation for
the system is linear, the final wave function of the system
can be constructed by adding together the solutions asso-
ciated with the packets to produce

\I’f: 2 ¢51Xst¢st . (8)
st

Again it is important to remember that each recorder
state ¢, remembers only one signal pulse, that induced
by the neutron wave packet in channel s numbered t.

The apparatus described above has the kind of ele-
ments essential to the prediction of the abrupt changes in
intensity appearing in Fig. 1 as a consequence of proper-
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ties of the Schrodinger equation as we shall see in the fol-
lowing sections. However, the question may now be
asked, “Is there any other experimental evidence for the
decomposition of a neutron wave function into packets
associated with recorder states?” The answer is ‘“yes” in
that the above apparatus will lead to the accepted postu-
late of quantum mechanics that declares that the proba-
bility of obtaining a given spin projection result is pro-
portional to f ||2d3x over the component of the wave
function with that spin projection. This postulate is in
agreement with experiment.

To show this, we consider the result of applying repeat-
ed identical incident neutron wave functions to the
Stern-Gerlach apparatus. The initial state of the system,
when the second neutron wave function ‘%’ is incident, is
the product of the wave function in Eq. (8) and that of
the incident neutron, namely,

\1,5_2):],}(2) 2 d{illilxsltl(ﬁsltl 9)
she!

where superscripts (1) or (2) have been placed on labels
and wave functions on the right side of the equation to
indicate that they are associated with the first or second
neutron wave function, respectively. As noted above, the
linearity of the Schrodinger equation allows us to solve
for each term in the last equation separately as the
second neutron wave function proceeds through the ap-
paratus. This second neutron wave function will be bro-
ken up into packets in the same way that the first one
was, and each state of the recorder will remember two
signals, each induced by one of the packets from each
wave function. Thus the wave function of the system
after the second neutron wave function has passed
through will be of the form

‘I’(f2)= 222 1/’222i2 2 dj(sl‘:lxx't's2tz¢s't‘s212 : (10)

st sl,tl

After n neutron wave functions have passed through
the apparatus, the system wave function is

n
\I’(fm: z H l/}ir’)t’xs‘tl,...,s"t""sslt',...,s"t" :

shel, o, shnr=1
(11)

Each recorder state remembers n signals, each one in-
duced by one packet from each neutron wave function.
The sequences of recorder measurements labeling the
recorder states are those that would be drawn from an
ensemble whose elements are the combinations of s and z.
As noted above, all of the combinations of s and ¢ origi-
nate from packets with equal values of [ |¢|’d*x. For
this ensemble, the probability of obtaining a given value
of s is proportional to the number of elements of the en-
semble with that value of s and, therefore, to the sum of
J 191%d*x over all of the packets in the component of the
neutron wave function with the value s. This is another
way of saying that the probability of obtaining s is pro-
portional to [ |#|?d°x over the entire component of the
wave function with the label s. This is, as noted above, a
postulate of quantum mechanics and is consistent with



4928

many experiments. Thus the assumption that the
measuring apparatus decomposes the wave function into
packets of the neutron wave function of equal values of
J |1¥|*d°x is consistent with experiment. We shall see in
the next two sections how it leads to an explanation of
the jumps in Fig. 1.

III. REPEATED STERN-GERLACH
MEASUREMENTS WITH TRANSITIONS

The analysis of a Stern-Gerlach device can be used to
understand how an intensity plot like Fig. 1 can result
from the scattering of light off of a single ion. For this
purpose we shall consider a sequence of identical neutron
spin measurements, each measurement, with one excep-
tion, being like that described in the preceding section.
These Stern-Gerlach devices are connected one after the
other in the manner shown in Figs. 3 and 4. The neu-
tron detection coils, however, will be located only on the
¥, channels. Each successive device will be placed so
that the ¢, wave function from the preceding apparatus
will enter its magnetic field to be analyzed as shown in
Fig. 3. However, this state will not be represented by ¢,
alone because the currents induced in the detector coils
of the first apparatus will react back on the neutron to ro-
tate the spin by a small amount. Thus, although the
wave function entering each coil consists of 1, alone, the
one leaving will have a small admixture of ;.

These sets of apparatus can be numbered in order
starting from the one entered by the original neutron
wave function as indicated by the numbers in Fig. 4.
This order number will be represented by the letter 7.
The wave function entering the first device will be from a
coil identical to the others into which is also introduced a
pure 1, wave function. Thus the wave function entering
each of the Stern-Gerlach devices will consist principally
of ¢, but with a small admixture of 1.

It will be assumed that the amplifiers are so effective

Recorder
——

FIG. 3. A sequence of identical Stern-Gerlach devices are
connected as shown. The ¥, component from the magnet of one
feeds into its detection coil. The coil admixes a small amount of
¥, component by rotating the spin. The amplifier requires a
given amount of energy to actuate one of its stages. This re-
quired energy is supplied by packets of the neutron wave func-
tion so that each packet (four are shown) is associated with a
recorder state. The resulting wave function then passes through
the magnetic field of the next device, and the ¥, component is
separated out. The ¥, component (shown with four nested
packets) then passes into the next coil and is again divided into
packets (three shown), each associated with one of the recorder
states.

A. A. BROYLES 45
Lo -1
e —3=
( 39 __U_\@k n - M\\\U EE;__—_U/\W
H \\\ 3 /7 \ ﬁ Se
4 \\ = h

FIG. 4. Each Stern-Gerlach device of the sequence is num-
bered (five devices are shown). The neutron wave function feed-
ing into the first device comes from a coil identical to the others
into which a 1, neutron wave function (indicated by a solid line)
is fed. The magnetic field of each device separates off the ¢,
component (indicated by a dashed line) leaving a v, component
to enter its coil. Each coil rotates the spin slightly to mix in
some ¥; component and the mixture then proceeds to the next
magnet.

that the coils draw a negligible amount of energy from
the neutron wave function. A similar statement holds for
the magnetic fields so that the energy of the complete
neutron wave function is approximately conserved as it
passes through the entire system of Stern-Gerlach de-
vices. This is equivalent to the conservation of [ |¥|%d’x
over this wave function since we assume an almost mono-
chromatic neutron wave function. All of the amplifiers
are attached to the same recorder that remembers the
channel and time of each arriving signal.

The amplifier in each device divides up the ¥, com-
ponent of the neutron wave function into packets of equal
size and associates each packet with a recorder state. As
noted above, the back magnetic field generated by each
coil will rotate the neutron spins by a small amount de-
creasing the ¢, component and creating a small ¥, com-
ponent. As a result, the next inhomogeneous magnetic
field will separate out a small amount from the main ¥,
neutron wave component. This erodes this component as
it passes through succeeding devices. Since all of the de-
vices are identical, each coil will reduce the [ |¢],|%d’x
for the wave function that enters it by the same factor
(1—f) while generating a ¥; component with

1w ldix=7 [ |y,1%d (12)

to be split off by the next magnet. See Fig. 4. After r de-
vices, the [ [t,|%d*x will be reduced by a factor (1—f)".
In the limit of large r and small f, this factor can be ap-
proximated by e ~/" since
lim (1—fr/n)"=e /7. (13)
n-— o

Since each device associates neutron wave packets with
recorder states, all with the same values of f [,|%d 3,

the number of packets generated by the rth coil will be
Nn=[11a%s [ [ gl e (14)

where 13" is the neutron wave component that enters the
coil of the rth device, and ¥4 is an elementary packet to
be associated with a recorder state.

If there are n devices in the sequence, the final wave
function of the system will consist of terms involving all
of the n ¥, neutron wave components separated out by



45 NATURE OF QUANTUM JUMPS

these devices as well as the final, attenuated 3, com-
ponent that passes out of the last one. The contribution
to the total wave function associated with the ¢, com-
ponent leaving the device numbered r will have the form

(r) —
V= E d}l,tl,.‘.,t’_lxl,tl,...,t’~l¢l,tl,...,t’_l
1 _”,trvl

i,
(15)

where t/ numbers the packets associated with recorder
states in the jth device. This component has passed
through the coils of all of the previous devices and be-
come a superposition of packets (each represented by
1[;“1 ____ ,r—1) that are associated with recorder states.

Although each of these ¥, neutron packets contributes
to a signal in each of the first » —1 coils, it has no interac-
tion with the remaining Stern-Gerlach devices. See Fig.
4. The associated recorder state remembers that it was in
the ), state in the device numbered » —1 and each of the
preceding devices, but will have no record of it for
greater r's. The recorder can represent each of its states
using a graph with a scale of r values on the horizontal
axis. It draws a horizontal line out to the value of r for
the device that emitted the associated neutron wave com-
ponent. A horizontal line one unit up vertically is then
plotted from this value of r to the final value n. Each
recorder state is then represented by a graph like that in
Fig. 5. Such a plot exhibits a jump from the 1, state to
the 1, state at . We shall see in the next section how an
intensity plot like that in Fig. 1 is related to such a graph.

The question remains as to the probability of a jump
occurring at a given value of ». To answer this question,
we note that, if the number of devices gets very large, the
term in the final wave function associated with the ¥,
neutron state will become negligible, while the remainder

W,
2 r—>

FIG. 5. A plot identifying the sequence of signals from the
coils to the recorder that labels a typical recorder state. Each
¥, component separated off by the magnet of the device num-
bered r (see Fig. 4) is associateed with a recorder state register-
ing signals from all of the previous coils but none from the latter
coils. The plot is constructed by drawing a horizontal line on
the axis up to the r of separation and then a horizontal line at
unit height beyond. The associated neutron wave packet is in
state 1, for devices numbered smaller than r and in state 9, for
later devices. An apparent “quantum jump” between states is
evident.
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of the wave function will consist of the sum over 7 of the
¥, wave functions in the last equation. The recorder
states in this wave function form an ensemble. The prob-
ability of obtaining a particular plot like that in Fig. 5 is
proportional to the number of elements in this ensemble
(terms in the final wave function) with a jump at a given
value of r.

Since N (r) is the number of packets correlated with
recorder states by the equipment in the rth device, then it
is also the number of recorder states associated with a
plot with a “jump” at a greater value of . Thus the num-
ber of terms in the final wave function with a jump at r is

N(r+1)—N(r)ze_f’(ef—1)f~ofe_f’. (16)

Thus the probability of a jump occurring at a given value
of r decays, at least approximately, exponentially with r.
This is interpreted as the probability of the ion remaining
in ¥,. Nagourney, Sandberg, and Dehmelt [1] found that
the probability of a jump up in intensity after a given
time after a jump down also decayed exponentially with
that time.

IV. SCATTERING
FROM AN ISOLATED Ba* ION

Nagourney, Sandberg, and Dehmelt [1] have measured
the scattering of laser light of an isolated Ba™® ion. The
levels of the ion involved are shown in Fig. 6. Two laser
beams were scattered from the ion, and the transition in-
duced by them are marked with heavy lines. The scat-
tered light producing the transitions between the 625, ,,
and the 6P, , levels was monitored, and its intensity for
one experiment is plotted in Fig. 1. These two laser
beams provide a strong coupling between the levels
shown in heavy lines in Fig. 6 so that they are grouped
together and represented by the symbol ¢,.

Occasionally, a photon wave arrives at the ion from a
filtered barium hollow cathode lamp. This wave converts
the 9, wave function to a superposition of ¥; and an in-
creasing wave function for the 62P,, excited state as
shown by the dashed arrow on the left in Fig. 6. This ex-

/ Monitored

5251/2

FIG. 6. The level diagram of the Ba™ ion showing the group-
ing into ¥, (heavy lines) and into #, (the 52Ds,, level). The
slanted heavy lines indicate laser-induced transitions. The scat-
tered light from the 62S,,,-62P,,, levels was detected by a
photomultiplier tube. The forbidden transition from the 52Ds,,
to the 62S,,, provides the ¥, to ¥, leakage analogous to that
from the coils in Fig. 4.
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cited state loses amplitude with time as it radiates to an
increasing metastable 52D ,, wave function leaving a su-
perposition largely of the latter state and ;. The ampli-
tude of the wave function of the 52D;,, level (that we
shall call ¥,) decays slowly by a forbidden transition back
to ¥,. This forbidden transition corresponds to the tran-
sitions from ¥, to ¥, induced by the detector coils in the
model described in the last section. The superposition of
¥, and 3, produced by the light wave from the hollow
cathode lamp corresponds to the initial neutron wave
function that enters the first Stern-Gerlach device shown
in Fig. 4.

The model considered in the last section measures
J 14,]%d?x over the ¥, component of the neutron wave
function as it passes through successive devices while, in-
stead, Nagourney, Sandberg, and Dehmelt monitored ¥,
with passing time. See Fig. 6. For simplicity, we can
think of the atomic transitions as due to one electron in
the Hartree-Fock approximation. As the forbidden radi-
ative transition proceeds, f |¢2|2d 3x decreases exponen-
tially with time as it did in the Stern-Gerlach model as
the neutron wave function passed through successive de-
vices. The f |¢v|2d 3x over the entire wave function is
conserved so that the loss in [ |1,|d’x is equal to the in-
crease in f |¢,1%d3x with the result that the sum of the
two remains constant.

A photomultiplier tube and attached circuits detect the
scattered light wave from the transition between the
62S,,, and 6P, ,, states. Even though the wave trains
of the scattered laser light may be long, a state of the
photomultiplier tube records only one sharp pulse for
each photon wave train. We may ask when, in the long
wave train, the tube, circuits, and recorder choose the
particular instant to record the pulse. We have seen from
previous sections that they actually produce a large num-
ber of pulses and are recording a pulse at each instant of
time as the wave train passes into the tube, but they asso-
ciate each pulse at a given instant with its own recorder
state. In this way, the entire photon wave train is divided
into packets of equal energy, and each packet is associat-
ed with a recorder state remembering one pulse and its
arrival time ¢.

Each photon packet from a given photon wave train
scatters off of a small portion of the state i/, with a value
of f |1,12d *x equal to the value for each of the other por-
tions. In this way, a wave train breaks 1, up into equal
packets, each of which can be labeled by the recorded
time . A packet can then be represented by v,,. Al-
though a packet 1,;, can scatter a given photon wave
train only once, it can participate in the scattering of a
second wave train. The scattered wave from this second
photon wave train will again be broken up into equal
packets by the detection apparatus so that the 3, wave
function goes into packets ¥, .. associated with states
recording pulses at ¢! and 2.

As we have noted, there is a continual flow of
[ 191%d*x from the ¢, state to the ¢, state. If we solve
the Schrodinger equation for all times for each packet, we
will see a flow of packets through the forbidden transition
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from ¥, to ¥, as shown in Fig. 6. A packet starting in the
¥, state cannot contribute to the scattering of the laser
light, and therefore cannot affect the recorder, until it has
reached the 1, state. If the time at which the transition
takes place for a particular packet is r and there are n
photon wave trains being scattered, then it can be
represented by ¢r;,,,w”t,, where the times ¢!, ...,t" of
the recorded pulses are restricted to being greater than r.
It is the passage of one of these packets from state 3, to
¥, as predicted by the Schrodinger equation that pro-
duces the upward jumps in the scattered intensity shown
in Fig. 1.

After a long time, the wave function of the system will
have the form

=3 3 ¥,

.....

.,t"X:l,.‘.,t"gb:‘,.‘.,t" : (17

If the n-photon wave trains are identical and exactly
overlap, then the recorded states will have pulse arrival
times distributed uniformly at random following the time
r and no recordings prior to this time. If the density of
light pulses in time is plotted for each recorded state, the
result will look like Fig. 5. As noted above, this accounts
for the upward jumps in intensity shown in Fig. 1.

The rate of flow of [ |¢/|%d*x from ¢, to ¥, decreases
exponentially with time for the same reason that the rate
of jumps decreases with r as shown in Eq. (16). The rate
of decay of this exponential with time is the lifetime of
¥,. Thus the distribution of time intervals at background
intensity of length r in Fig. 1 is proportional to this same
exponential. This was the finding of Nagourney, Sand-
berg, and Dehmelt [1].

Nagourney, Sandberg, and Dehmelt [1] noted that the
frequency of the downward jumps increased when the in-
tensity of the barium hollow cathode lamp was increased.
This is because its wave trains provided a path from the
1, state to the 1, state. Thus a packet that was part of
state ¥;, where it could participate in the scattering of the
monitored laser light, could be boosted up to state 1,
where it could not scatter. As a result the recorded state
associated with it would show no light pulses after the
transition time so that its light intensity plot would drop
to background.

From Fig. 1, it is clear that the scattered intensity has
the same value and remains at that value after each up-
ward jump until a downward jump occurs. This is be-
cause the detecting-recording apparatus always selects
portions of ¥, that have equal amounts of f [4,]%d*x and,
therefore, the same light-scattering capacity.

V. DISCUSSION

We have seen that Fig. 1, a plot of the intensity of light
scattered off of a single Bat ion, can be explained in
terms of solutions of the Schrdédinger equation without
adding additional assumptions to the theory. It is neces-
sary, however, to assume that a solution of the
Schrodinger equation would show that the apparatus that
converts the tiny electrical currents induced by single-
quantum wave functions to recordable macroscopic
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currents must associate macroscopic recorded states with
packets of equal values of [[#|’d’x in the original
single-quantum wave function. This is presumably the
result of an amplification process like that in a Geiger
counter where a small amount of the single-quantum
wave function produces the signal for a recorder state.
The analysis of such experiments makes use of the linear-
ity of the Schrodinger equation. This analysis can be
made in a standardized form [4] making use of wave
functions for the system, the apparatus, and the recorder
or the observer.

The assumption that the detecting equipment for
single-quantum events must break up the wave function
into a superposition of equal packets, each to be associat-
ed with a recorded macroscopic state, should be subject-
ed to more direct experimental test. It may be possible to
experimentally chop the single-quantum wave function
into pieces smaller than the equal packets suggested
above and thereby find their size. For example, the in-
cident laser beam whose scattering is monitored could be
reduced in length until the scattered wave has a length of
the order of the size of a pulse generated by the detection.
This would affect the rate of detection in a characteristic
manner. A determination of the parameters on which
this packet size depends should further verify their ex-
istence. Similar information might be obtained from a
study of the structure of the jumps like those in Fig. 1
since each is the result of the transition of a packet from
one atomic state to another. Under some conditions, the
recorder and apparatus are replaced by a human
observer’s brain and eyes or ears. In such cases, it would
be useful to identify and understand the operation of the
biological elements that provide the generation of an elec-
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tron cascade by a small charge to produce the
amplification from a current at the quantum level to the
macroscopic level.

The elimination of the need for Bohr’s postulate from
quantum theory has much broader implications than
those for single-ion experiments. The “collapse of the
wave function” is very similar to Bohr’s quantum jump.
Everett [5] showed that postulating such a “collapse” can
be avoided if many states of an observer’s brain are al-
lowed. The introduction of particles into quantum
mechanics also becomes superfluous since localized parti-
cle phenomena can be explained in terms of fields (wave
functions). For example, Rutherford’s a-particle experi-
ments where point scintillations appeared on a screen
even though the wave function extended over a large re-
gion of space are explained in the above manner in Ref.
[6]. A similar explanation of the sharp clicks produced
by Geiger counters from photon waves with considerable
spatial extent is presented in Ref. [7]. These explanations
involve dividing the space over which a single-quantum
wave function ranges into very small regions and associ-
ating each portion of the wave function, contained in
each small region of space, with different observer states.
An observer is then only aware of one localized region
which he interprets as a click or a scintillation.
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FIG. 2. Stern-Gerlach apparatus where a neutron wave func-
tion passes through an inhomogeneous magnetic field and splits
into spin-up and spin-down components indicated by ¢, and ¥,.
These components pass through coils in which currents are in-
duced by the neutron magnetic moment. These currents are
greatly amplified and information about their amplitudes is
stored in a recorder.



FIG. 3. A sequence of identical Stern-Gerlach devices are
connected as shown. The i, component from the magnet of one
feeds into its detection coil. The coil admixes a small amount of
Y, component by rotating the spin. The amplifier requires a
given amount of energy to actuate one of its stages. This re-
quired energy is supplied by packets of the neutron wave func-
tion so that each packet (four are shown) is associated with a
recorder state. The resulting wave function then passes through
the magnetic field of the next device, and the 1, component is
separated out. The i, component (shown with four nested
packets) then passes into the next coil and is again divided into
packets (three shown), each associated with one of the recorder
states.



