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Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy
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In this paper we explore theoretically and experimentally the effect of fluctuations in the instantaneous

frequency of a pulsed laser on the shape and position of two-photon transition spectra. The usual pro-
cedure of characterizing a pulsed laser by its frequency energy spectrum is insufhcient for precision mea-

surements. The nonlinear nature of the two-photon transition produces a systematic shift of the atomic

spectrum with respect to the laser frequency spectrum that is dependent on the phase evolution of the

laser pulse. In fact, any nonlinear process (e.g., second-harmonic generation) may result in displaced or
distorted spectra. We also find that Fabry-Perot filtering a laser pulse can result in large frequency

chirps. We use an optical heterodyne technique to measure the instantaneous frequency of our excimer-

pumped dye-laser system to an uncertainty of 1.3 MHz and determine the effect of the inherent frequen-

cy chirps of this system on a two-photon transition. We conclude that with this technique, precision
nonlinear spectroscopy to the level of 1 MHz may be achieved with pulsed lasers.

PACS number(s): 42.60.Gd

I. INTRODUCTION

In an increasing number of applications with pulsed
lasers, the interpretation of an experiment can be limited
by the fact that these laser sources are generally not
Fourier-transform limited and can have complex spectral
character. Examples of such applications include pre-
cision spectroscopy, coherent transient spectroscopy, and
stimulated Raman spectroscopy. In the most demanding
applications, researchers work hard to avoid pulsed
lasers. The highest-resolution laser spectroscopy is done
with cw lasers, and in experiments where the "pulse" as-
pect of the laser sources is essential, a cw laser was sud-
denly gated on with an acousto-optic or electro-optic
modulator, or the frequency of the relevant transition
was quickly switched, etc. Unfortunately, there are many
applications where pulsed lasers are unavoidable. In
much of the ultraviolet, vacuum ultraviolet, and infrared
range of the spectrum, good cw laser sources do not exist.
Also, in applications where the oscillator strengths are
too weak to be sufficiently excited with cw sources, the
imperfect pulsed laser is all that we have.

Pulsed lasers are usually characterized in terms of their
temporal and spectral intensity profiles. Any frequency
fluctuations appear as a spectral broadening of the laser
output, which is expressed by the degree to which the
laser is not Fourier-transform limited. Apart from pi-
cosecond and femtosecond lasers where the pulses can ac-
tually be very close to the Fourier-transform limit, most
lasers fall short of achieving the minimum uncertainty in
Evict. As a concrete example, suppose a narrowband
pulsed laser is constructed by amplifying a cw laser with
a series of traveling-wave amplifiers. The process of am-
plifying a pulsed laser inherently involves rapid changes
in the gain. Thus the index of refraction of the amplify-
ing medium is rapidly modulated, resulting in fluctua-
tions of the laser frequency within a single pulse. Mea-
surement of the spectral broadening that results from the

induced frequency modulation does not tell us the instan-
taneous frequency (the time derivative of the instantane-
ous phase of the complex amplitude) of the pulse. This
additional information is essential to thoroughly predict
or interpret the results of several types of experiments.
This fact was recognized and discussed by Wieman and
Hansch [l], and was the principle uncertainty in their
measurement of the hydrogen 1SLamb shift.

Any spectroscopic measurement involving processes
that are higher order in the laser-field interaction will be
sensitive to the time development of the laser frequency.
These include measurements made at saturating intensi-
ties, multiphoton transitions, harmonic generation, and
parametric down conversion. In addition, this informa-
tion is needed in spectroscopic experiments where some
temporal piece of the laser pulse is more effective in pro-
ducing signal, or when there is some degree of time reso-
lution within one pulse, such as when atomic states are
rapidly decaying. This will emphasize one portion of the
laser pulse over another, making the knowledge of the in-
stantaneous frequency versus time essential.

In this paper, we will explore theoretically the effect of
fluctuations in the instantaneous frequency Fit) of a
pulsed laser on the shape and position of two-photon
transitions. Because of the simplicity of eliminating
first-order Doppler shifts, this transition is of particular
interest in the field of precision spectroscopy, as evi-
denced by recent pulsed measurements of the 1S-2S two-
photon transition in hydrogen, positronium, and muoni-
um [l —6]. We will show that the detailed spectral behav-
ior of the laser source must be known before a reliable
high-resolution measurement can be made.

We experimentally measure the instantaneous frequen-
cy behavior of our excimer-pumped dye-laser system and
determine the effect of the inherent frequency chirps of
this system on a two-photon transition. In addition, we
have experimentally investigated the effect of filtering this
pulsed laser with a Fabry-Perot filter, since this technique
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to reduce the laser bandwidth has been widely used in
precision pulsed ineasurements [3,4,6]. In the case of hy-
drogen, there is a discrepancy between the pulsed mea-
surement and the subsequent continuous-wave measure-
ments [7,8]. We propose an approximate correction to
the pulsed hydrogen measurement that brings that result
into good agreement with the theoretical result.

II. TWO-PHOTON SPECTRA
WITH NON-FOURIER- TRANSFORM-LIMITED

PULSES

In the pulsed spectroscopy of transitions that are first
order in the atom-field interaction (i.e., one-photon tran-
sitions}, the experimental line shape is easily predicted; it
is just the convolution of the atomic line shape and the
spectral intensity (or power spectrum) of the incident ra-
diation. The power spectrum I(co) is proportional to
I fE(t)e ' 'dtI, where E(t) is the complex instantane-
ous electric field of the laser [9]. This is typically mea-
sured using a high-resolution interferometer (an optical
spectrum analyzer), which may be calibrated with an op-
tical frequency reference such as a molecular-vapor line.
Since the line shape is readily predicted, there is no arnbi-
guity in measuring the atomic transition frequency.

When the observed transition is second order (or
higher} in the atom-field interaction (i.e., a two-photon
transition), the spectral intensity of the incident laser is
no longer sufficient information to predict the shape of
the observed spectrum. The result is ambiguity in deter-
mining the atomic transition frequency.

To ascertain the effect of frequency chirps on the two-
photon line shape, we have numerically solved the equa-
tions of motion for the interaction picture atomic ampli-
tude coefficients. These were obtained from the results of
the conventional second-order, semiclassical calculation
of this transition. In the electric dipole approximation,
the Hamiltonian is

BJ=d; E(r, t }

and

V b(t) eao

2A

2
d,„.E(r, t )d„b.E(r, t)

(3)

C.(t) = i hc—o, (t)C.(t) —V.',—(t)e '"'C, (t), (4a)

Cb(t) = i hcob—(t)Cb(t) —Vb—,(t)e'"'C, (t), (4b)

where the detuning 0=2' —co,b, co,b =co, —cob,

C, (t) =e ' c,(t), and V,'b(t) =e' 'V,b(t). These equa-
tions can be solved using a simple forward stepping in-
tegration routine to determine the line shape of the two-
photon transition.

A. Simplifying assumptions

Under certain conditions, which we will relax later,
these equations simplify considerably. If we assume that
there is no decay from the excited or ground states and
we assume that the intensity is sufficiently low that there
is a negligible Stark shift, the first term in the right-hand
sides of Eqs. (4a) and (4b) can be neglected. If we assume
additionally that the excitation time is sufficiently small
that there is negligible depopulation of the ground state,
then (4b) can also be neglected and we can set Cb(t) = l.
Thus

C.(t)= V,',(t)e——

and integrating, we find the final-state population after
the excitation [11]:

is the second-order interaction potential, fico, is the ener-

gy eigenvalue of the excited state Ia ), and I, is the de-
cay rate to other levels. jacob(t) is defined similarly to
b,co, (t).

These equations can be represented in the interaction
picture with quantities containing no optical frequencies:

where E(r, t)=gE(r, t)e ' ', 'g' is the polarization unit
vector of the incident field, and d,z

is the electric dipole
matrix element. The Schrodinger picture probability am-
plitudes, c,(t) for the excited state and cb(t) for the
ground state, are given by [10]

'2
i eao d,„gd„b g

p, (Q)= 2' „cob„+co

00 2
X E'(t)e '"'dt (6)

c, (t)= —i[co, +bco, (t)]c,(t) —V,b(t)cb(t)—(la)

and

(lb)

where

I g 8Qp
hco, (t)= i +—

2 2fi

Id.„.E'(r, t ) I'

I d,„E(r,t }I'-+
CO~„+CO

(2)

cb(t) = i [cob+hcob—(t)]cb(t) —Vb, (t)c, (t—),

The assumption here is that the excitation is of finite ex-
tent in time, and we measure the final-state population
after the excitation is over.

Under these conditions, p, (Q} is proportional to the
Fourier power spectrum of the squared electric field
E (t). However, without complete knowledge of E(t),
we may have simplistically predicted the line shape to be
the power spectrum of the incident radiation
I(co)=I JE(t)e '"'dtI . For example, if the center of
gravity (CG) of the incident radiation is found to be at a
frequency cop, the CG of the two-photon line shape might
be assumed to be found at 2coo. In general, however, E (t)
and E (t) do not have the same power spectrum, and the
CG (and peak} of the two-photon line shape may be shift-
ed with respect to the CG of the power spectrum of the
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incident radiation. The result would be an incorrect
identification of the atomic resonance frequency.

To demonstrate the magnitude of this effect, Fig. 1

shows the shift (hv) of the two-photon line center rela-
tive to the full two-photon transition frequency resulting
from excitation with a non-Fourier-transform-limited
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FIG. 1. Shift of the two-photon line center relative to the
two-photon transition frequency (open circles) resulting from
excitation with a non-Fourier-transform-limited pulse. As de-

scribed in Sec. II, we model the two-photon line shape as the
power spectrum of the square of the incident complex electric
field envelope E(t). The relative shift is found by comparing
the center of gravity of this line shape to the center of the in-

cident power spectrum. (a) The incident field has the Gaussian
intensity profile shown (solid curve). The frequency of the field

starts at +10 MHz detuning and then jumps abruptly to —10
MHz at some time r during the pulse. The shift is plotted as a
function of the time r at which the frequency jump occurs under
the pulse. Intuitively, the shift can be understood as follows.
The two-photon transition rate is proportional to I (t) (dashed
curve). Thus the line shape reflects the instantaneous frequency
of the pulse at time t weighted by I (t). The power spectrum of
the incident field weights the instantaneous frequency by I(t).
For example, if the frequency jump occurs at time r=6 ns, the
two-photon line shape will more heavily reflect the +10-MHz
frequency at the peak intensity than will the power spectrum of
the pulse. The result is that the center of gravity of the two-
photon line shape appears roughly 3 MHz below the two-
photon transition frequency. {b) The incident pulse has the ex-
perimentally measured intensity profile (solid line) of an
excimer-pumped dye-amplifier pulse. %'e show the shift assum-
ing the frequency jumps at time r, as described for (a). This
demonstrates that sudden steps in the intensity profile (i.e., the
rising edge of the pulse) do not produce shifts in the two-photon
spectra. A long trailing edge, however, can result in large shifts.

pulse. The shift is calculated as hv= v" —2v' where v' is
the center of the power spectrum of E (t) and v' is the
center of the power spectrum of E(t). In this way, the
arbitrary choice of the center frequency of the envelope
E (t) does not enter into the results.

In Fig. 1(a), the incident field has a Gaussian intensity
profile. The frequency of the field envelope starts at +10
MHz and then jumps abruptly to —10 MHz at a time r
during the pulse. Although this step-function frequency
chirp seems artificial, it clearly demonstrates the source
of the shift. In addition, if one filters a pulse in a Fabry-
Perot filter incorrectly, one obtains a chirp quite similar
to this step function.

The shift in Fig. 1 is plotted as a function of the time r
at which the frequency jumps under the pulse. When ~ is
much larger than the pulse width rp the frequency is
constant throughout the pulse; thus the spectrum of E(t)
is centered at v'=+10 MHz, the spectrum of E (t) is
centered at v" = +20 MHz, and the relative shift is there-
fore Av=v" —2v'=0. When the frequency jumps at the
center of the pulse (~=0), then v'= v" =0 and there is no
relative shift in the spectra of these two signals.

In the region where ~ is positive and on the order of ro,
the center of the power spectrum of both E(t) and E (t)
will be shifted to some positive frequency, as expected.
Note, however, that the squared field intensity profile
I (t)=~E (t)~ is &2 narrower than the field intensity
I(t)=~E(t)~ for our Gaussian pulse; consequently the
pulse energy of E (t) is concentrated at times less than ~
where the frequency of the squared field is +20 MHz.
Conversely, the field E (t) has a larger fraction of its ener-

gy times greater than r, where the frequency is —10
MHz. Thus the power spectrum of E (t) appears at a
frequency higher by hv.

Using the preceding arguments, it can be shown that if
the instantaneous frequency F(t)=P(t) is symmetric or
antisymmetric with respect to the peak of the Gaussian
pulse, there will be no shift of the two-photon line shape
relative to the spectrum of the exciting field. For exam-
ple, a linearly chirped Gaussian pulse will not produce a
shift in a two-photon line shape.

If the step-function chirp is imposed on a measured,
pulse-amplified dye-laser intensity profile instead of a
Gaussian intensity profile, the relative shift in the CG of
the power spectrum of E(t) and E (t) is strongly asym-
metric, as shown in Fig. 1(b). The large shifts associated
with frequency chirps under the long, low-intensity tail of
a pulse result because the relative energy under the long
tail is greatly decreased when the field is squared. The
relative energy under the sharp feature remains roughly
unchanged, resulting in only small shifts in the spectrum.
A limiting case is a square pulse, which will not produce
any shifts of the sort we have been discussing since its
shape does not change when the field is squared.

B. Real atomic systems

The constraints used to obtain (6) are fairly restrictive
in real atomic systems and experimental situations. If
these restrictions are not satisfied then Eqs. (4) must be
used to obtain the two-photon line shape. There may be
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a contribution to the shift from each of the terms that
were eliminated from Eq. (4). We will discuss each of
these contributions. We will not, however, discuss in-
teractions between these various terms, which may not be
additive in the shift they produce.

If the presence of ground-state decay (as in positroni-
um) results in a natural linewidth of I „, then the two-
photon line shape is given by

2 b —iQtp(Q) ~ E; (t)e ' e '"'dt

Equation (7) is obtained by substituting an exponentially
decaying factor for the ground-state amplitude Cb(t) in

(4a). The effect of the decaying exponential inside the in-
tegral is clear. Since the rate of population transfer to
the excited state is proportional to the ground-state popu-
lation, a decreasing ground-state population will make
the trailing edge of the pulse less important to the result-
ing line shape. In the limit that the ground-state lifetime
is much shorter than the excitation pulse, only the fre-
quency of the excitation pulse at the time when the
ground state is present will determine the center frequen-
cy of the measured atomic line. The decaying exponen-
tial is just a weighting factor that rejects this fact. The
center of the measured line will therefore be different
than if there were no atomic decay.

In the presence of excited-state decay, the situation is
somewhat different. Using Eq. (4a), and making the sub-

(I, j2)t
stitution C,'(t)=C, (t)e ', we find that at some mea-
surement time ~ after the excitation, the excited-state
population is

+(i 2~2)t
p, (Q, r )0-e ' E (t)e ' e ' 'dt

oo

In the case where the final-state population is measured
at some time r after the excitation pulse (e.g. , if atoms
in the excited state are photoionized by a second laser
pulse), the situation is similar to that described above. In
this case, however, the excited state is decaying, so that
before the excited state is photoionized, a larger fraction
of transitions that occurred early in the excitation pulse
will have decayed than those that occurred later in the
pulse. Thus the frequencies of the trailing edge of the ex-
citation pulse will be more significant in determining the
line shape, and the measured line center will again be
different than if there were no atomic decay present. If
detection of excited-state population is achieved by field
quenching or collisional transfer, where the transition
rate is measured rather than the total transferred popula-
tion, there is no relative shift in the line center caused by
excited-state decay.

Another important case occurs when the photoioniza-
tion of the excited state is due to the pulse that is driving
the two-photon transition. If the photoionization rate is
much higher than the excited-state decay rate, there will
be no effect on the line shape due to excited-state decay,
just as for detection for field quenching. However, if the
photoionizing rate is comparable to the decay rate, there
will be a shift induced by decay of the excited state. Even
if there is no excited-state decay, there is another source
of shift. Because the photoionization rate is intensity
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FIG. 2. Effects of high-intensity driving fields on the two-

photon line center and line shape. The driving pulse is an asym-

metric Gaussian-like pulse with a linear frequency chirp (see

text). The terms contributing to ac Stark effect are turned off to
show only the effect of the frequency chirp in the coherent in-

teraction between the ground and excited states. (a) The addi-

tional shift in the peak {open circles) and center of gravity (filled

circles) of the two-photon line is shown as a function of peak in-

tensity of the driving field. Also shown (solid line) is the final

excited-state population after the pulse. (b) The two-photon line

shape is shown at four peak intensities of the driving field:

ID=1.0, 10, 15, and 20M&/cm .

dependent, detected atoms will most likely have been ion-
ized during the most intense part of the driving (and pho-
toionizing) pulse. This deemphasizes the transitions that
occur in the trailing edge of the pulse, making the fre-
quency of the pulse at the trailing edge less important.
This effect has a complicated dependence on the driving
pulse and the photoionization cross section and so must
be modeled for the experiment under consideration.

A final situation we will discuss is the case where there
is no decay of the excited or ground states, and the transi-
tion is driven with an intense laser pulse, such that the
final-state population approaches one. To study this be-
havior we use a model laser pulse whose steep rising edge

y(t to)
goes as e ' and whose slower falling edge goes as

—y(t —to)
e ' . The pulse is given a linear chirp making the
pulse width roughly two times the Fourier-transform lim-
it. The final excited-state population is then found by nu-
merically integrating the full equations of motion for the
two-photon transition driven by this pulse. The first
terms on the right-hand sides of Eqs. (4a) and (4b), those
contributing to the ac Stark effect, are set to zero to
separate this shift in the line from that due to saturation.
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The line shape and center of gravity of the line are found
for a range of intensities resulting in final excited-state
populations near one.

Figure 2(a) shows the shift imposed on the line center
as a function of peak intensity. Since the pulse we are us-
ing is asymmetric and has a frequency chirp, we expect a
shift at low intensity due to the presence of E (t) in the
interaction Hamiltonian. This shift (-20 MHz) is sub-
tracted off to make clear the additional shift due solely to
the coherent interaction between the ground and excited
states at high intensity. The total transition probability is
also shown in Fig. 2(a).

As the transition probability approaches one, this addi-
tional shift tends to increase with intensity until after the
peak transition probability has reached one. At even
higher intensities the behavior becomes more complicat-
ed, and since for precision measurements it is rarely irn-

portant to use such intense fields, we do not include these
points. We can give an estimate of these high-intensity
effects on the two-photon line center, but have been un-
able to explain them intuitively. The effect of high inten-
sity on the line shape of positronium is shown in Fig. 2(b).
In an actual experiment, however, the line shape is most
likely an average over those shown, suitably weighted for
a Gaussian transverse intensity profile.

III. MEASUREMENT
OF PULSED LASER ELECTRIC FIELD

order modes. If even-order contributions to the phase
front variations are large enough to be a problem, then a
nonconfocal cavity can be used as long as higher-order
modes are sufficiently spaced from the TEMpp mode not
to pass power from the wings of the pulsed laser spec-
trum. If spatial frequency variations are a problem in an
application with no Fabry-Perot filter, the measurement
techniques presented in this paper are applicable to mak-
ing an appropriate characterization of the laser field.

The instantaneous electric field of a pulsed laser can be
measured, including its phase relative to a reference laser,
by heterodyning the pulsed laser and the reference laser.
The two laser fields are combined at a beam splitter, and
a detector placed in some small region of the resulting
wave. If we consider all quantities to be those found at
the center of the detector, then the cycle-averaged inten-
sity

I ~ ~E~(t)+E~sE(t)+E,„e'"m '~ (9)

where the incident pulsed laser electric field is given by

Ez(t)=)Re[E&(t)e '], the electric field noise in the
pulsed laser due to amplified spontaneous emission (ASE)
is E~sE(t)=(Re[EAsE(t)e ], and the electric field of

'~~O ~m "
the reference laser is E,„(t)=(Re[E,„(t)e " ].
The angular frequency ~p is some appropriately chosen
center frequency, and co is the offset between the cw
reference wave and Np.

For the purposes of discussion, we have previously as-
surned several analytical forms for the frequency behav-
ior of a pulse (i.e., a step function or a linear chirp). In an
actual precision measurement, however, this is not a
sufficient approximation to a real laser pulse; one must
measure the frequency behavior of the laser used. In gen-
eral, pulsed lasers have spatial variation of both the mag-
nitude and phase of the wave front that deviates from an
ideal Gaussian.

For example, frequency differences of 10—20 MHz at
opposite transverse locations on the beam have been ob-
served with our laser, corresponding to an angular rota-
tion of the propagation direction at the laser output. In
principle, to fully characterize a pulsed laser source, one
must map the complex electric field at various transverse
locations of the beam.

One can see that spatial variations of the instantaneous
laser frequency need to be determined for nonlinear spec-
troscopy for the same reason that temporal variations
must be determined; the spatially averaged optical spec-
trum is not the same as the spatially averaged nonlinear
atomic response. However, a precision measurement will
generally involve filtering the pulsed laser with a Fabry-
Perot resonator, greatly reducing the problem of spatial
incoherence of the pulsed laser.

This can be demonstrated as follows: A linear spatial
variation of the laser frequency is the dominant contribu-
tion in our system due to the transverse dye pumping
geometry. Since this variation is odd with respect to in-
version through the optic axis of a mode-matched filter
cavity, this disturbance will not be transmitted by a con-
focal Fabry-Perot cavity tuned to resonance on the even-

A. Experimental apparatus

In the current experimental setup (Fig. 3), a Coherent
699-21 actively stabilized, continuous-wave (cw}, ring dye
laser serves as a frequency stable ( —1 MHz rms} source
of 486-nm radiation. This wavelength is used since the
original intent of this experiment was to excite the 1S-2S
two-photon transition in Ps. The cw laser is used for
three primary purposes: a reference beam for the hetero-
dyning, an injection seed beam for up to four stages of a
modified Lambda-Physik pulsed dye amplifier, and an op-
tical reference to frequency lock a Fabry-Perot filter cavi-
ty to the center of the pulsed amplifier output. A FM
locking scheme is used to stabilize the filter cavity to 0.5
MHz [12,13]. The amplifier is pumped with 20-ns,
-400-mJ pulses from a Lambda-Physik excimer laser.

We have overcome several severe difficulties encoun-
tered with the simple arrangement of beam splitting the
cw laser for each of these functions. When the pulsed
amplifier fires, there is a light pulse (-50 pJ) that back
propagates along the seed beam. If this radiation is al-
lowed to enter the cw ring laser, it causes the laser to re-
verse the lasing direction for some period of time (-0.1

s) sufficient for the servo loops of the active stabilization
to lose lock, or for the laser to mode hop. We remove
most of this back-propagating pulse by focusing the seed
beam through a pinhole sufficiently large that 90% of the
laser power is passed; the seed beam is then recollimated,
sent through a Brewster prism, and sent into the pulsed
amplifier. The pulse returning along the seed beam is
thus dispersed in the prism, and the large portion of this
pulse that is amplified spontaneous emission, with its
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FIG. 3. Experimental setup. Acousto-optic modulator
AOM2 switches the cw laser into a 2.3-m Herriot cell (HC) opti-
cal delay line (85 ns) to serve as the cw optical frequency refer-
ence for heterodyning. AOM1 switches the laser into another
optical delay line to serve as the seed beam for the excimer-
pumped dye amplifier. The pulsed beam is spatially filtered (SF)
and mode matched into a Fabry-Perot filter cavity. The filtered
pulses are sent onto the fast photodiode with the reference beam
and the interference signal is digitized. The filter cavity is stabi-
lized to an off-axis cw beam using a FM locking technique. An
electro-optic modulator (EOM) generates the 6-MHz optical
sidebands used in the cavity locking scheme.

large wavelength spread, cannot pass through the
pinhole.

Due to light scattered from the seed beam by optics
and dust in the amplifier that is subsequently amplified
backwards through the amplifier, there is a large corn-
ponent of light in this pulse at the seed frequency that
passes back through the pinhole ( —& 10 p J). Thus even
with this technique a sufficient amount of pulsed light
reaches the ring laser to produce a significant distur-
bance, as evidenced by occasional dropouts in the ring
laser output of up to 1 ps duration after the pulsed laser
fires. More often the ring laser output exhibits large os-
cillations at the longitudinal mode spacing (180 MHz) for
roughly the same duration. This is presumably due to
transient excitation of adjacent longitudinal modes when
the back-propagating pulse from the amplifier enters the
ring laser.

To eliminate this problem, the seed beam is extracted
from the ring laser output with a 40-MHz tunable
acousto-optic modulator (AOM1). Since the seed beam
only needs to be on for the duration of the excimer pump
pulse, switching AOM1 on and then rapidly off allows us
to divert 80%%uo of the cw laser beam into the seed beam,
then close the optical path in time that the back-
propagating pulse cannot enter the ring laser. A 2.3-m,
12-pass Herriott cell [14] delay line (85 ns) is placed in
the light path between AOM1 and the pulsed amplifier to
allow for the 50-ns (90% to 10%) turnoff' time of our
AOM. This is sufficient to eliminate dropouts in the ring
laser, although because of the nonideal turnoff charac-
teristics of the AOM, it does not entirely eliminate tran-
sient oscillations. A Herriott cell is used since it allows
for long optical delays with negligible diffraction loss.

Because of stray pulsed light, and to some extent the

residual transient oscillations, it is necessary to extract
the heterodyning beam from the cw source prior to the
firing of the pulsed amplifier. This is accomplished with
another acousto-optic modulator (AOM2), driven by a
crystal controlled 110-MHz rf source, placed before
AOM1. AOM2 is double passed to produce a —220-
MHz shift with respect to the carrier. This is sent into a
140-ns delay line (2.3-m, 20-pass Herriott cell), and then
through additional AO modulator s to produce the
desired beat frequency with the pulsed laser. Since we
use one Herriott cell for both of the delay lines discussed,
the heterodyning beam must be focused through a
pinhole to remove a small amount of scattered light in
the Herriott cell due to the back-propagating ASE in the
seed beam. AOM2 is turned on one microsecond before
the pulsed amplifier fires to fill up the heterodyning beam
delay line. It is turned off 100 ns before the amplifier
fires, to allow the light to pass through AOM1 into the
seed beam.

The 70-mJ amplified pulses are propagated -6 m to
the spatial Fourier plane [15] of the final amplifier stage
output and passed through an aperature to remove high
spatial frequency components of the beam. The filter,
which passes roughly 80% of the beam energy, primarily
serves to protect a filter cavity from beam hot spots.

The pulsed beam is then attenuated and sent collinear-
ly with the reference beam onto a 2-6Hz bandwidth sil-
icon photodiode detector. The photodiode is ac coupled
to a pulse optimized rf amplifier to yield 30-dB gain be-
tween 100 kHz and 750 MHz. The output of the detector
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FIG. 4. (a) Typical heterodyne signal of an excimer-pumped
dyne-amplifier pulse. Solid circles show digitized points. (b) A
double-sided fast-Fourier transform of heterodyne signal shows
the peak at dc associated with the pulse intensity term, and

peaks at +380 MHz associated with the interference terms.
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amplifier is digitized by a Tektronix DSA 602 digital os-
cilloscope (2 Gsample/s sampling rate, 5.9 eff'ective bits
at 400 MHz) and the resulting digitized signal is
transferred to a computer for processing. A typical digi-
tized heterodyne signal at 380 MHz is shown in Fig. 4(a).

The intensity of the cw reference beam is constant over
the time scale of 20—100 ns, thus this term does not ap-
pear in our amplified signal. Amplified spontaneous
emission accounts for roughly 10% of the integrated
pulse energy for typical alignment of the pulsed amplifier.
However, since it is spectrally broad (10 nm}, its spectral
intensity is at the 10 to 10 level below the amplified
signal, and its contribution to interference terms is negli-
gible compared to other noise sources. We will refine our
definition of Ez(t) given in (4): Ez(t) is that component of
the pulsed electric field that contributes to the interfer-
ence signal of the pulsed and cw light within the band-
width of our detection scheme, and E~sa(t) is the com-
ponent that contributes only a low-frequency intensity
term I ~sa( t }.

B. Electric Seld reconstruction algorithm

From (9), the expression for the digitized signal is

V=I (r)+I„sa(r)+2iE, (r)i iE,„icos/(r)

where P(t) is the phase of the pulsed light relative to the
reference field. This signal contains three unknown quan-
tities associated with the pulse. It is not possible in gen-
eral to extract the required phase and intensity informa-
tion from this signal. However, with a sufficiently high
beat note, certain assumptions can be made about the
three time-dependent terms in (10), and all of the infor-
rnation required to extract the instantaneous phase of a
pulse can be obtained with a single detector.

If we rewrite (10) in the following (time domain} form:

V=I&(t)+Ez(t)E,'„e ™+E~'(t)E,„e

where Iz(t) =I~(t)+I~st(t}, it becomes clear how to ex-
tract the electric field of the pulse. Under the assumption
that the beat note is at a sufficiently high frequency that
the frequency components of the interference terms are
well separated in the Fourier domain from those associat-
ed with the intensity profile, the Fourier transform of this
signal consists of the three distinct terms, as shown in
Fig. 4(b) for the case of a measured beat note for our
dye-laser system. The term centered at the origin is asso-
ciated with the pulse intensity. The positive frequency
component of the interference term, corresponding to the
second term in (11), is centered at +co, and the negative
frequency component of the interference term, corre-
sponding to the third term in (11),is centered at —co . If
the beat frequency co is sufBciently large that there is lit-
tle overlap between these terms in the frequency domain,
the second term in (11)may be extracted with a bandpass
filter of half-width co /2, centered at +co

The filter can be one of several types. A rectangular
filter maximizes the information content of the filtered
signal, but introduces characteristic sidelobes in the time
domain, making interpretation of the time domain results

difficult. A Blackman filter, given by
2 2

m
f'(co) = 1 —co-

Eco
(12)

can also be used. This filter reduces the amplitude of the
first sidelobe in the time domain to parts in 10 but still
has the advantage of having well-defined cutoff frequen-
cies.

This leaves approximately the following signal:

V=E (t)E;„e ™. (13)

Since E,*„is constant in time, it represents only an overall
phase, which is not of interest here, and an amplitude
scale, which may be normalized if necessary by measur-
ing the pulsed and cw laser intensities. The complex ex-
ponential factor serves only to shift the spectrum of the
signal by +co . This offset is eliminated by shifting the
spectrum down in frequency to place its measured center
of gravity at the origin. We now have determined the
complex electric field envelope which completely charac-
terizes the laser pulse. The squared magnitude of the
complex envelope gives the pulsed laser intensity profile,
and the arc tangent of the ratio of the imaginary and real
components gives the phase as a function of time; the
derivative of the phase then gives the instantaneous fre-
quency versus time F (t).

C. Testing the algorithm

The ultimate test of this entire measurement technique
would be to characterize a pulsed laser as described and
predict a line shape for a simple experiment involving
nonlinear spectroscopy. In lieu of this ideal, we have tak-
en several steps to test the measurement and reconstruc-
tion algorithm. As described in Sec. V, we have been able
to reproduce the effects of filtering our laser pulses in a
Fabry-Perot filter. In addition, we have taken advantage
of the similarity of our laser system to that used by Hil-
dum et al. [3] to calculate a two-photon line shape and
shift in good agreement with that found in their work.

To better understand the sources and magnitude of er-
ror in the frequency reconstruction process, the pro-
cedure was tested numerically. At the simplest level, it
was determined that the procedure recovers the frequen-
cy versus time of a Gaussian pulse with various frequency
chirps. The linear chirp of a simulated chirped Gaussian
pulse is reconstructed exactly within the numerical limits
of the computer. For this case, however, the low-
frequency intensity terms are very well separated from
the interference term at co, and the conditions for the
exact reconstruction of the instantaneous frequency of
the pulse are met. Experimentally, however, it is difficult
to precisely meet these requirements.

The experimentally measured intensity profile I,„(t)of
a pulse from our pulsed amplifier is shown in Fig. 1(b); its
corresponding Fourier transform is shown in Fig. 5. It
can be seen that there are high-frequency components in
this intensity profile throughout the bandwidth of the
detection system. For the excirner-pumped dye-amplifier
system used here, these high-frequency components may
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FIG. 5. Fast-Fourier transform of the experimentally mea-
sured intensity profile of an excimer-pumped dye-amplifier
pulse. The intensity profile is shown in Fig. 1(b).
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be dominantly associated with the sharp rising edge of
the pulse. Thus the primary source of error in this recon-
struction process is the overlap of the high-frequency

components of the intensity profile with the beat note fre-
quency components. Thus our heterodyne technique will
work much better with a smooth laser intensity profile
(e.g. , a Gaussian pulse), since there are fewer high-
frequency components to overlap with the interference
term.

We determine the degree to which these laser intensity
fluctuations affect our instantaneous frequency measure-
rnent in the following way. We numerically simulated
the heterodyne beat note that we would measure with an
exactly Fourier-transform-limited laser pulse with the
same intensity profile as that of our excimer-pumped
laser:

V,„„,„=I,„~,(t)+ [I,„~,(t) ]'~ cosco t

=I,„p,(t)+ —,'(I,„p, )' (t)e

(14)

The procedure described above was then used to recon-
struct the frequency versus time of this pulse. Ideally,
the reconstruction of this pulse should yield a constant
instantaneous frequency. The results are shown in Fig.
6(b) for a beat frequency co =380 MHz and bandpass
half-width co /2. Except for the large deviations at the
rising and trailing edges, there is a deviation from a con-
stant intantaneous frequency that fluctuates to +2 MHz
throughout the phase.

To demonstrate that this deviation is caused by fre-
quency components of the intensity term at the beat fre-
quency, the first term in (14) is removed. The frequency
reconstruction then appears as in Fig. 6(c). The noise at
the rising and trailing edges persists. However, between
the 10% intensity points the deviation is less than +0.5
MHz from the ideal constant frequency. We believe that
the deviation at the rising and trailing edges of the pulse
is due to weak sidelobes introduced in the time domain
by our frequency domain filtering process.

In conclusion, we have determined that the total level
of noise, or error, in our heterodyne frequency measure-

ments is roughly +2 MHz, or roughly 1.3 MHz rms, be-
tween the 10% intensity points. Figure 7 shows the typi-
cal F(t) of several laser pulses for several beat frequen-
cies. The zero frequency of these curves is referenced to
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FIG. 7. Reconstructed instantaneous frequency vs time of an

excimer-pumped dye-amplifier pulse measured with three
different beat frequencies: 220, 280, and 380 MHz. Zero fre-

quency is referenced to the center of gravity of the spectrum of
each pulse. The intensity curve is the reconstructed intensity

profile of the 380-MHz pulse.

Tl f71e (r) S)
FIG. 6. (a) Reconstructed instantaneous intensity. For com-

parison, Fig. 1(b) shows an experimentally measured intensity
profile. (b) Frequency vs time of a synthesized heterodyne sig-
nal: Vsynth lexpt ~ t ~+ (Iexpt ~ (t)cosset t. This demonstrates the
error in the frequency reconstruction (+2 MHz between the
10% intensity points) introduced by the overlap of intensity
profile frequency components (Fig. 4) with the interference
term. If there were no overlap, the result would be a constant
zero frequency. (c) shows the frequency reconstruction with no
intensity term added into the synthesized beat note. . The noise
at the rising and trailing edges of the pulse is due to the filtering

process used in the algorithm.
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the center of gravity of the spectrum of the pulse. The
20-MHz frequency excursions found in these measure-
ments are independent of beat frequency and are thus not
associated with a particular feature in the noise spectrum.
These features are presumed to be real.

IV. EXPERIMENTAL RESULTS

There are several interesting features of the pulsed
amplifier output that we will discuss. We have not at-
tempted to systematically characterize the spectral be-
havior of our pulsed dye-amplifier laser under a number
of different conditions. Rather we present only a few pre-
liminary measurements.

It has long been known that the spectrum of the pulsed
amplifier output is not centered at the seed beam frequen-
cy. For our laser system, this is typically offset by as
much as 25 —45 MHz to the blue, depending on a number
of factors including amplifier alignment and the number
of amplifier stages. This shift is irrelevant to the previous
discussion on the two-photon transition since the spec-
trum of the pulsed light may be easily measured using an
optical spectrum analyzer. For purposes of making this
measurement, the heterodyning technique offers one ad-
vantage over using a spectrum analyzer. The spectrum of
individual pulses may be determined, as opposed to the
average spectrum of an ensemble of pulses. The pulse-
to-pulse jitter of the center frequency of the pulse spec-
trum relative to the seed beam is found to be nearly
1 MHz rms.

This jitter may be important if there is any correlation
between frequency jitter and amplitude jitter. Such a
correlation may be significant in a precision pulsed mea-
surement since even if the individual pulses are Fourier-
transforrn limited, the center of the two-photon spectrum
would not correspond to the center of the average pulse
spectrum. This effect is not significant at the 1-MHz lev-
el since the pulse-to-pulse frequency jitter is —1 MHz
rms and the intensity jitter is —10%%uo. Even with perfect
correlation this leads to a shift on the order of —100
kHz.

We have measured the complex electric field envelope
E(t) of our laser pulses under several experimental situa-
tions. The frequency behavior of these pulses was
characterized by determining the relative shift between
the spectral intensity profile of E(t) and that of E~(t), as
discussed in Sec. II. To determine the pulse-to-pulse
reproducibility of this "E shift, " the shift was deter-
mined for a series of ten nearly consecutive pulses. The
jitter in the E shift was roughly 3 MHz rms. The aver-
age intensity and frequency behavior of these ten pulses
was determined by averaging the reconstructed intensity
and frequency versus time of each pulse. An "average
pulse" was created using the resulting intensity and fre-
quency variations. The E shift of the "average pulse"
was found to be within 1 MHz of the mean E shift of the
individual pulses. We estimate that at the 1-MHz level it
is necessary only to determine the average frequency be-
havior of the pulsed laser for any given set of experimen-
tal conditions: pump power, amplifier alignment, number
of stages, laser wavelength. After "retweaking" the

amplifier alignment, the frequency behavior changes by a
significant amount.

The explanation of the shift of the laser spectrum from
the seed frequency, and of frequency chirps within the
pulse, has been based on the argument that fluctuations
in the gain medium of the amplifier lead to index-of-
refraction fluctuations. The time derivative of the index
of refraction leads to a Doppler-like frequency shift. One
consequence of this argument is that the magnitude of
the shift and chirps should have some dependence on the
position of the laser frequency under the gain curve of
the gain medium, but we have not made an estimate of
the expected size of the effect. We have looked for the
dependence of both the center frequency and the E shift
of the pulses on the laser wavelength, but no statistically
significant correlation was found.

V. EFFECT OF FABRY-PEROT FILTER
ON LINE SHAPE AND SHIFT

It has been implicitly assumed in the literature of the
field of precision laser spectroscopy that the phase noise
inherent in pulse arnplification can be removed from a
laser pulse using a narrow optical bandpass filter such as
a Fabry-Perot filter. The optical pulse builds up the
filter-cavity resonance, which subsequently rings down
with the characteristic decay time of the cavity, produc-
ing a light pulse that may be spectrally much narrower
than the unfiltered pulse. The assumption has been that
the light emitted by the filter cavity during this process is
suf6ciently Fourier-transform limited that a precision
measurement will not be disturbed. This is an erroneous
assumption: the process of filtering a laser pulse can itself
introduce a large error into a precision frequency mea-
surernent.

The transfer function of a Fabry-Perot filter is given as
[16]

&(~)= (15)

where R is the intensity reflectivity of each cavity mirror,
rR&=2L /e is the cavity round-trip time, and co is angular
frequency. Given an arbitrary incident field envelope, the
transmitted electric field envelope may be calculated nu-
merically using the transfer function (15). The instan-
taneous frequency characteristics of the transmitted pulse
can then be determined from the phase of the transmitted
field. This is done for an incident field given by a three
times Fourier-transform-limited Gaussian pulse with a
linear chirp. The frequency and amplitude behavior of
the transmitted pulse is shown in Fig. 8.

The transmitted field is clearly not Fourier-transform
limited, and in fact contains a large frequency chirp on
the leading edge of the pulse. The frequency subsequent-
ly oscillates as it approaches the resonant frequency of
the filter cavity. In light of the previous discussion of the
effects of frequency chirps on the two-photon line shape,
we see that if this pulse were used to excite this transi-
tion, the low frequency at the peak intensity of the pulse
would be relatively enhanced, shifting the line to the blue
in the resulting spectrum. This frequency behavior is
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clearly not desirable for precision spectroscopy. The
leading edge of the filtered pulse can be removed with a
Pockel cell so that the portion of the filtered light with
the most troublesome frequency chirps is eliminated.
However, Fig. 8 shows that it would be necessary to re-
move Inost of the peak of the filtered pulse to significantly
reduce this effect.

We have experimentally measured the instantaneous
frequency of a pulsed laser filtered by a Fabry-Perot reso-
nator. The pulsed laser is approximately mode matched
to the TEMOO mode of a confocal cavity of length L =75
cm (r„=5 ns) and a finesse of approximately 40
(reflectivity of 92.5%). This gives a free spectral range of
200 MHz and a bandwidth of 5 MHz. The actual band-
width of the filter with our pulsed laser was nearly
8 MHz, indicating excitation of high-order transverse
modes due to inexact mode matching. The high-order
transverse modes are not precisely degenerate due to
spherical abberation and slight nonconfocality of the
resonator. The resonator was locked to an off-axis cw
beam using a frequency modulation technique. The
pulsed output of the resonator is attenuated and directed
with the reference laser onto the detector. The resonator
can be removed to measure the unfiltered laser pulse as
well.

Figure 9 shows the resulting signal and its Fourier
transform for a filtered pulse. The intensity (filled circles)
and instantaneous frequency (open circles) of the filtered
pulse were extracted by the described algorithm and are
shown in Fig. 10. To test the frequency measurement
technique we digitally filter the measured electric field of
an unfiltered laser pulse with the filter represented in (15),
and compare this with the measured electric field of the
Fabry-Perot filtered laser pulse. The digitally filtered
pulse is also shown in Fig. 10 (solid lines), and can be seen
to be nearly identical to the optically filtered pulse.

An interesting feature in these results must be pointed
out. When these data were taken, the spectral peak of
the unfiltered laser pulse (as read directly from the
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FIG. 9. (a) Typical heterodyne signal of Fabry-Perot filtered
dye-amplifier pulse. Digitized points (not shown) are at 0.5-ns
intervals. The feature at the end of the signal is due to the cw
reference beam being turned off. (b) The fast-Fourier transform
of the heterodyne signal shows the intensity term at dc and the
interference term at 280 MHz. The small feature at 560 MHz is
due to slight saturation of the detector.
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FIG. 10. Reconstructed instantaneous intensity and frequen-

cy vs time of Fabry-Perot filtered pulses. The filled and open
circles show the intensity and frequency, respectively, of a laser

pulse that is experimentally Fabry-Perot filtered, and then

heterodyned and digitized. The solid lines show the intensity

and frequency of an amplified laser pulse that is heterodyned
and digitized, and then filtered numerically with the Fabry-
Perot transfer function. The solid lines are not a fit to the cir-
cled points. The real and numerical filters are onset +13 MHz
from the peak frequency of the unfiltered light.
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FIG. 11. Effect of filtering a Fourier-transform-limited

Gaussian pulse with an offset between the spectral peak of the
pulse and the peak of the Fabry-Perot filter. The spectral width
of the pulse and filter are 27 and 5 MHz FWHM, respectively.
(a) The solid curve is the center of gravity (CG) of the filtered
light relative to the filter center. Also shown is the shift pro-
duced in the two-photon line center when the filtered light is
used directly to drive the transition (dashed curve), and when
the filtered light is doubled using second-harmonic generation
before driving the transition (dotted curve). (b) The instantane-
ous intensity and frequency of the filtered pulse is shown for a
filter offset of 16 MHz. Note that at the peak of the pulse, the
frequency is at +3.5 MHz. A two-photon transition will
respond to this pulse as if it were at a higher average frequency
than its spectral peak, requiring a negative detuning to get a
peak atomic response.

Fourier transform of the interference signal) was roughly
13 MHz to the red of the center of the Fabry-Perot filter.
This is because the acousto-optic modulator that gates
the seed beam was set at —42 MHz, overcompensating
for the roughly +30-MHz center frequency shift the
pulsed amplifier imparts during amplification. The result
of this 13-MHz frequency offset is the large frequency
chirp that appears near the peak intensity of the filtered
pulse.

We have numerically investigated this effect for the
case of a Fourier-transform-limited Gaussian pulse. The
frequency behavior shown in Fig. 11(b) is determined by
multiplying a Gaussian frequency spectrum by the
Fabry-Perot transfer function (15) placed off center by
v0=12 MHz. The explanation for this chirp is straight-
forward. At times less than the round-trip time of the
cavity, there is no interference, so the transmitted light
pulse must begin at the center frequency of the driving

15
N
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field. At long times, after the driving pulse has died
away, the resonator is ringing down at its natural reso-
nance frequency. Since these are different frequencies
when the filter is placed off center, there must be a chirp
in the transmitted pulse. The zero frequency here is
referenced to the center of gravity of the spectrum of the
transmitted pulse.

The effect of this chirp is significant in a two-photon
transition. It is clear that the instantaneous frequency at
the peak intensity (temporally) of the pulse is well above
the center frequency of the resonator (given by the long
exponential tail of the transmitted pulse). As a result, the
two-photon transition responds to the pulse as though it
were at a higher frequency than indicated by its power
spectrum. The resulting shift in the CG of the two-
photon line shape from the CG of the incident field is
shown in Fig. 11(a) (dashed curve) as a function of the
relative offset vo of the Fabry-Perot filter. The shift down
is due solely to the presence of E in the interaction po-
tential. All of the simplifying assumptions discussed in
Sec. II A are in place.

A. EfFect of harmonic generation

The process of frequency doubling the pulsed laser by
second-harmonic generation (SHG) may also leave the
spectroscopist vulnerable to the deleterious effect of fre-
quency chirps. This is relevant since a prime motivation
for employing pulsed lasers for spectroscopy is the rela-
tive ease of producing coherent ultraviolet radiation by
SHG. In the limit that the bandwidth of the pulse is
sufficiently narrow that phase-matching and dispersion
effects can be neglected, the electric field of light pro-
duced by SHG is proportional to the square of the driv-
ing electric field. Again, in view of the previous discus-
sion on the effect of the E in the interaction potential of
a two-photon transition, it is clear that SHG will produce
similar shifts in the center of gravity of the doubled light
that must be taken into consideration, even when the
transition under study is a one-photon transition.

When the observed transition is second order in the
atom-field interaction, the line shape is proportional to
the power spectrum of E (t) and the effect of frequency
chirps is greatly enhanced. Figure 11(a) (dotted curve)
also shows the shift in the two-photon line for the case of
the off-center filtering of the Gaussian pulse (discussed
above), where the exciting laser pulse has first been fre-
quency doubled. These shifts are still referenced to the
center of gravity of the filtered, undoubled pulse, and the
frequency scale is twice that of the doubled light. The
shifts shown in Fig. 11(a) indicate the problems inherent
in an experiment where the metrology is done on the fun-
damental frequency, while the spectroscopy involves a
sum or a higher harmonic of this light. We will further
discuss this point later.

B. Correction to a pulsed measurement
of the hydrogen 1s-2s interval

This discussion is relevant to a recent pulsed measure-
ment of the 1s-2s two-photon transition in hydrogen
which is in disagreement with theory and other (cw) mea-
surements by roughly —18 MHz [3]. In that experiment,
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an excimer-pumped (10-ns pulse width) dye amplifier was
seeded with a stabilized ring laser operating near 486 nm.
The seed beam was used to frequency lock a Fabry-Perot
resonator (rR&=1.5 ns, finesse of 40) that served to
reduce the 180-MHz width of the amplified pulse to —15
MHz. The filtered pulse was then frequency doubled to
generate the 243-nm light used to excite the hydrogen
two-photon transition. In that experiment, no attempt
was made to place the filter at the center of gravity of the
amplified laser pulse.

We have modeled the 10-ns dye-laser pulses by multi-

plying the time scale of the measured electric field of our
20-ns laser pulses by a factor 2, increasing the frequency
width to -70 MHz. The relative shift between the
filter-cavity locking beam and the transmitted pulse was
measured in the hydrogen experiment to be approximate-
ly 4 MHz to the blue, giving an indication of the relative
shift between the filter cavity and the unfiltered laser
pulse. When we displace our model pulse by -30 MHz
to the blue of our digital filter, the CG of the upper half
of the transmitted pulse is 3.5 MHz to the blue of the
filter-cavity center frequency, in good agreement with the
4-MHz blue shift in the CG of the upper half of the laser
spectrum measured in the hydrogen experiment.

The electric field of the digitally filtered model pulse is
then squared to find the electric field of the doubled pulse
and then squared again to obtain the two-photon line
shape. This model predicts a shift of the line by —5

MHz in the blue, and thus a shift of —20(+10) MHz in

the measured 1s-2s splitting, nicely accounting for the ob-
served —18(+5)-MHz discrepancy. The error bars on
our correction reflect our lack of knowledge about the ac-
tual pulses used in this experiment. Our predicted line

shape is shown in Fig. 12 superimposed on an experimen-
tal line obtained in the hydrogen experiment. Note that
the predicted line shape has the same tai1 toward red as
the experimental line. The experimental line is slightly
broader than the predicted line, indicating the presence
of power broadening not included in our model.

In the positronium experiment [4] the filter was cen-
tered with respect to the pulsed light, and the corrections

are on the order of 1 —2 MHz. In the muonium experi-
ment [5], the light was not filtered with a Fabry-Perot in-
terferometer.

VI. DISCUSSION

As compared to our current error estimate of 1.3 MHz
rms, we believe it is not reasonable to expect an accuracy
of better than 0.1 MHz rms in the instantaneous frequen-
cy measurement with the current experimental setup.
There are several routes one may take to achieve this im-
proved accuracy. The leakage of the pulsed laser intensi-
ty term into the interference term is a dominant source of
error in the present measurement. Note also that the
magnitude of the frequency components of the intensity
term decrease rapidly between 10 and 500 MHz, and ap-
pears to level off at —40 dB at higher frequencies. Al-
though at present the spectrum of the pulsed dye-laser in-
tensity is unknown at frequencies greater than 1 GHz, it
is likely that a beat note at 1 GHz would result in im-
proved accuracy.

It is probable that the excimer laser contains intensity
noise at even higher frequencies due to mode beating un-
der its relatively large bandwidth. Although the dynam-
ics of the excited-state population of the dye amplifier
will tend to wash out these high frequencies, the advan-
tages of going to a beat note even higher than 1 GHz are
as yet unclear.

One straightforward way around the problem is to use
a pump laser with a smooth temporal pulse. For exam-
ple, a Nd: YAG (where YAG denotes yttrium aluminum
garnet) laser seeded with a cw diode pumped Nd:YAG
oscillator has a roughly Gaussian temporal pulse with no
high-frequency components that would overlap with the
true heterodyne beat note.

The limited detection bandwidth of the interference
term is also a source of error. The bandwidth we were
able to achieve (380 MHz) could also be improved by us-

ing a higher beat note, bandpass filtering the interference
term electronically, and mixing the interference term
down to the center of the digitizer bandpass (500 MHz)
[17]. We could then take advantage of the full 1-GHz
bandwidth of the digitizer.

Another entirely different approach to the problem of
extracting phase information from a heterodyne signal is
to make a simultaneous measurement of the pulsed laser
intensity, in addition to the heterodyne signal already
measured. Recalling Eq. (11), we note that the measured
intensity can be used to subtract from the heterodyne sig-
nal the offending term I'(t). This contains both the sig-
nal intensity and ASE intensity whose high-frequency
components leak into the interference term to disturb the
phase measurement. The remainder of the algorithm
would be unchanged: bandpass filter the positive frequen-

cy part of the interference term to recover the complex
electric field envelope.

The simultaneous intensity and heterodyne measure-
ments can be made with two separate detectors with the
disadvantage of having to simultaneously digitize two
channels of signal, using up scarce and expensive sam-

pling rate. The measurement can also be done with a sin-

gle detector by delaying a piece of the pulsed light by



45 OPTICAL HETERODYNE MEASUREMENT OF PULSED. . . 4923

-50 ns and directing it onto the heterodyning detector
with its polarization rotated by 90' to prevent interfer-
ence with the cw reference beam.

The technique has the advantage that the intensity
terms may be removed regardless of the high-frequency
components present, making itself useful for cases of very
noisy intensity profiles. However, if the complex electric
field envelope is to be recovered by bandpass filtering the
positive frequency part of the interference term, the posi-
tive and negative parts must be spectrally well separated.
Since these contain the same high-frequency components
associated with the pulse intensity, this again requires a
high-frequency beat note, although it need only be half as
high as when the intensity term is not subtracted out.

The constraint may be removed entirely by attempting
to normalize the third term in (10) by the measured elec-
tric field magnitude (I~ )' (t). Of course, this is only pos-
sible if the measured quantity I~(t) is identical to I~(t)
and contains no contribution from I~sE(t). Toward this
end, the pulsed light can be passed through a monochro-
mator before it is heterodyned to remove the ASE inten-
sity term from both the heterodyne signal and the intensi-
ty measurement. The third term in (10) can then be nor-
malized by the measured electric field magnitude, leaving
cosP(t) The a. cr cosine of this quantity yields the relative
phase of the pulsed light, the derivative of which is the
instantaneous frequency.

There are several disadvantages with this technique
that must be discussed. First, it is very sensitive to the
response of the two detectors both at low frequencies,
where the intensity terms lie, and at higher frequencies
around the interference term. This is accentuated by the
fact that at the rising and trailing edges of the pulse, nor-
malizing the third term in (10) requires dividing one small
signal by another small signal, both of which have limited
accuracy. Thus the complex transfer function (or im-
pulse response) of the detector(s) must be precisely mea-
sured either to verify that it is sufficiently constant or to
enable us to deconvolve the impulse response from the
signal.

The technique also requires that the pulsed laser beam
be well spatially filtered since any spatial inhomogeneity
in the beam will mean that the detector measuring the
pulse intensity and the detector measuring the hetero-
dyne signal may not see the same part of the pulsed
beam. The resulting instantaneous frequency measure-
ment would thus be erroneous. Although this require-
ment is still valid for the present experimental situation,
the measured electric field is accurate at the point mea-
sured, but may not represent the electric field at other
transverse locations on the pulsed beam.

VII. CONCLUDING REMARKS

We have theoretically investigated the effect of fre-
quency chirps on a two-photon transition and found that
the line shape of this transition is strongly dependent on
the spectral character of the excitation pulse. In particu-
lar, the line shape and line center of the two-photon spec-
trum are not equivalent to the spectral shape of the excit-
ing laser pulse. Thus detailed knowledge of the complex
electric field of the laser pulse is necessary to make pre-

cise wavelength measurements using pulsed spectroscopy
for nonlinear transitions. We have determined the extent
of this effect for several simple cases, including the case
of our own seeded pulsed dye-amplifier system. With this
model, we have proposed an explanation for the
discrepancy with theory of a recent pulsed measurement
in hydrogen.

We have demonstrated an experimental and signal pro-
cessing technique to determine the instantaneous electric
field of a seeded pulsed dye amplifier (and have deter-
mined some interesting features in this system). The
technique should be directly applicable to many other
pulsed laser systems used in spectroscopic measurements,
although there are some constraints. Primarily, the
Fourier components of the laser pulse must lie in a
sufficiently narrow frequency band that when the pulse is
heterodyned with a reference laser, all the frequency
components of interest can be detected and digitized in a
single shot. For practical purposes, this limits the laser
bandwidth to several hundred megahertz, such as in our
laser system where 90% of the laser is within 100 MHz.
However, it is conceivable, with state-of-the-art digitizer
technology, to extend the measurable laser bandwidth
limit to 1 GHz or higher.

The present work has implications on the application
of cw lasers to precision spectroscopy and to cw atomic
clocks. Precision measurements with cw lasers often in-
volve both nonlinear (e.g., two-photon) transitions [7,8]
and/or the generation of the clock frequency by sum fre-
quency mixing or harmonic generation [18]. In addition,
the previous frequency up conversion of the Cs standard
to the methane line at 3.39 pm required a cascade of non-
linear devices [19], and a recently proposed method of
visible frequency division [20] will require a cascade of
nonlinear devices to generate frequencies of the form
f3

=(f &
+f2 ) /2. The main result of this paper can be

simply put: if there is a correlation between the frequency
chirp and the intensity fluctuations of the laser or mi-
crowave source, there will be a shift in the centroid of the
nonlinear response with respect to the centroid of the fre-
quency spectrum. For a laser frequency based on a non-
linear interaction, this correlation can occur in a natural
way. For example, if the doubling crystal phase match-
ing not centered with respect to the input frequency or if
there is an offset between the buildup cavity center fre-
quency and the frequency of the injected light, frequency
excursions of the second harmonic will be automatically
correlated to amplitude fluctuations. The use of the
second-harmonic frequency in ultraprecise spectroscopy
will cause an error in the measurement unless accounted
for. This error may be small but still significant for appli-
cations such as cw atomic clocks where the measurement
precision is expected to reach parts in 10' .
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