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We present a theoretical study of the influence of laser-induced continuum structure on the third-
harmonic generation in atomic gases. We employ the density-matrix formalism including the spatiotem-
poral structure of laser pulses. The theoretical model is then applied to third-harmonic generation in

sodium experiments. Extensive numerical calculations using realistic atomic parameters in combination
with the parameters in actual experimental situations demonstrate the subtle interplay of various effects
and pinpoint causes of possible complications. We obtain good agreement with the few existing experi-
mental data.

PACS number(s): 32.80.—t, 42.65.Ky

I. INTRODUCTION

The scheme for laser-induced continuum structure
(LICS) in its simplest form is depicted in Fig. 1(a). It re-
quires two states (the ground and one bound excited
state, ~g ) and ~a ), respectively) of a one-electron atom,
and two lasers of frequencies co, and co& (with respective
intensities I

~
and I~). The frequencies are chosen so that

E +%co&-—E, +fico2, where E +%co& lies above the ion-
ization energy. In the absence of the second laser at co2,

we simply have ionization. If now the second laser is
present and co& is fixed, while co, is tuned around

E, +fico2 E, under ce—rtain circumstances (depending
on the states, the frequencies, and the intensities) a reso-
nantlike peak, possibly exhibiting some asymmetry, will

appear if ionization is measured as a function of co&. For-
mal aspects of the theory of this effect have appeared in
numerous papers over the past ten years [1—4]. A quan-
titative study of the experiment by Heller et al [5] corre-.
sponding to the scheme of Fig. 1(a) has been published by
Dai and Lambropoulos [6], who have shown that the
complete temporal analysis [including additional cou-
plings shown by dashed lines in Fig. 1(a)] combined with
realistic atomic parameters is necessary for even a quali-
tative understanding. Although only two atomic states
are involved in this scheme, a single rate (transition prob-
ability per unit time) involving a q parameter will usually
be inadequate, if not misleading, because of the other in-
teraction channels involved in the process. The formal
similarity of this process with autoionization has also
been amply discussed [1—6], hence the alternative term
"autoionizinglike" often used instead of LICS.

More complicated schemes involving LICS, where at
least one of the transitions requires more than one pho-
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FIG. 1. (a) The simplest illustration for laser-induced contin-
uum structure (LICS). ~g) and ~a) are the ground and bound
excited states, respectively. (b) Energy levels of Na involved
and the relevant couplings. The dashed lines represent the cou-
pling between state 2 and 4 through virtual discrete states.
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non, such as the one depicted in Fig. 1(b), poses a much
more demanding theoretical problem. Not only do multi-
phonon transitions involve more than the two states
chosen for the coupling with the two lasers, but some of
these states may themselves be strongly coupled to the
whole process. In that case, the relevant states must also
be explicitly included in the time-dependent density-
matrix analysis. Further complexity is created by the in-
creased number of paths that participate in this case,
shown by dashed lines in Fig. 1(b). The importance of
such paths has been noted by Feldmann et al. [7] and do-
cumented quantitatively by Dai and Lambropoulos [6].
The higher intensity normally required for observations
of this (multiphoton) version of LICS may itself introduce
unwanted effects by emphasizing certain channels of ion-
ization. As one consequence of significant ionization of
the focal volume, there is a depletion of the number of
atoms which participate in the third-harmonic generation
(THG) process. Consequently, the time dependence of
the overall process plays an even more decisive role on
the shape, if not the very occurrence, of the structure
(resonance) and practically rules out any single-rate ap-
proximations. Depending on the duration of the pulse,
ionization may be complete in the central part of the fo-
cal region, which then makes integration over the spatial
distribution of the lasers intensities necessary, as is
indeed the case in this work.

A further dimension of complexity is involved in the
theoretical formalism of this paper. It arises from the
simultaneous presence of THG which appears above a
certain number density (gas pressure). Part of the ques-
tion is whether THG will be affected by LICS, how
much, and in what direction; will it increase or decrease?
In fact, the initial motivation for investigations of THG
under LICS was, and still is, the expectation that the
yield of THG may thus be increased. To the best of our
knowledge, the only observation of these effects, namely
resonantlike structure and enhancement of THG under
LICS, has been reported some years ago by Pavlov and
co-workers [8,9]. The theoretical interpretation of their
data relied on a transition probability (including the use
of a susceptibility), which although adequate for their
conditions, can neither address more general situations
nor provide any clue as to the expected presence or ab-
sence of structure in THG under different conditions.
Some theoretical work on the relation between THG and
laser-induced continuum resonances in atomic lithium
has also been published by Ritchie [10].

The problem addressed in this work combines in one
context resonant and nonresonant multiphoton transi-
tions, LICS, and THG. For relatively higher intensities
and longer pulse durations, we must also deal with the
spatiotemporal aspects of the interaction. As we shall see
later on, certain spatial overlap considerations play a
pivotal role in that case.

Even without LICS, the treatment of THG in this
problem is not straightforward as it involves a two-
photon resonance. That alone, would require a density-
matrix analysis, as has been extensively discussed [11] in
the past. The interest in two-photon resonant THG some
fifteen years ago stemmed from the enhancement provid-

ed by the atomic resonance whose shift and ionization
also set the ultimate limitation of that benefit [11]. In
principle, LICS also provides enhancement through a res-
onance induced artificially by a second laser via the con-
tinuum. It has its own ultimate limitations, set mainly by
the intensity of the second laser. These two resonant
enhancements can in fact coexist, if co2 is chosen ap-
propriately. Whether the net effect of such coexistence is
more or less than the sum of its parts will depend on the
circumstances created by the parameters in a given im-
plementation.

The initial motivation for this came from the experi-
mental results of Baldwin et al. , [12] whose purpose was
to reproduce and extend the results of Refs. [8,9]. That,
however, turned out not to be feasible under the condi-
tions of their experiment, which employed a laser of rath-
er long pulse duration of 25 ns. This has played a crucial
role in the outcome due to the saturation of ionization re-
sulting from such long-time exposure of the atom to the
field for intensities that are necessary for LICS. We have
thus chosen to center our specific calculations around pa-
rameters pertaining to that situation as well as to that of
Refs. [8,9]. This has provided an interesting and valu-
able illustration of the constraints imposed upon intensity
when the pulse is long. The resulting saturation does
then necessitate integration over and sensitivity to the in-
tegration volume which has proven to be a major concern
in our results.

In Sec. II we develop the formal theory incorporating
all of the effects discussed above. Using this formalism,
we perform calculations, some of which pertain to the
data of Refs. [8,9]. Our results are discussed in Sec. III
with a summary and conclusions given in Section IV. All
atomic parameters entering our equations have been cal-
culated for this purpose using single-channel quantum-
defect theory with programs we have developed over the
years. From the experience we have gained through the
application of these techniques to a variety of problems
and atoms, including sodium, we consider the accuracy
of these parameters to be more than sufficient for our
purposes here.

II. THEORY

The energy levels involved in our problem are shown in
Fig. 1(b).

There are two lasers involved in the experiments, lasers
1 and 2. The third-harmonic signal generated by laser 1

is measured. Our goal is to calculate the third-harmonic
spectrum under various experimental conditions.

In order to determine the polarization of the medium
in the presence of resonances, we need to know the
density-matrix elements, which can be obtained by solv-

ing the density-matrix equations of the four-level system
[Fig. 1(b)] under the following Hamiltonian:

H =H, +H'(r ),
where H, is the atomic Hamiltonian, H (t) is the dipole
interaction of the atom with the external electric field
defined by
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and

H'(t ) =I4 E(t ),

(3)

—
P;; = i—fi 'E(t ) g(P;,P,;

—P;.j2; )

(2) resonantly) coupled to the fields of Eq. (5):

where e is the electron charge (negative),
E(t)=E,(t)e, +E2(t)e2, with E, (t) and E2(t) being the
time-dependent electric-field amplitudes for lasers 1 and
2, respectively, and e1 and e2 the unit polarization vectors
of the two electric fields. When the two laser fields have
the same polarization, we can simply replace e, and c2 by
e, and write

+ X (Pil pii PilPk )
I

—+ 1m,j P,j = i—R E(t ) g(P, ,&Pk& P, k.
—
Pk&

.)
Bt k

+ X (j2ilplj PitPlj

E(t ) =E(t )e,
where

(4)
(8)

E(t)=s, (t)e '+ "s(t) e '+s2(t)e '+c2(t)e

(5)

+1~iI Pil l~ +(r ) g (Pikpkl Pikj2kl )
c}t k

(9)

iA p=[H—,p],at
(6)

which leads to the following set of equations for the ma-
trix elements involving the states strongly (near-

1

and Ej(t)(j=1,2) represents the time dependence (much
slower than the exponentials) due to the pulsed character
of the fields. In Eq. (5), we have not included the third-
harmonic field because it is relatively weak and can be as-
sumed not to alter the atomic system by reabsorption.
We do introduce that field later [see Eqs. (26) and (34)]
when we need the third-order response of the system and
after we have incorporated all necessary effects due to the
external fields E, and F2 (such as ionization, Rabi cou-
plings, LICS, etc.).

The equation of motion of the density matrix is

PII «i
I(n~&+ nco2)t

PIg

(10)

(n m) &(nl ™~2)t
Pi=

n, m

(12)

we first substitute Eq. (10) into Eq. (9), and neglecting
(BIBt )o;1 we obtain

where i,j,k =1,2, 3,4, represent the discrete bound ener-

gy levels 3S, 3P, 4D, and 5S, respectively, with l indicat-
ing the appropriate intermediate states, bound and free.

Introducing the matrix elements o„and 0;,(n, m)
through the expansions

(n —1,m) ~ e (n +1,m) ~ (n, m —1)+e (n, m +1)
~1+kl ~ ~1 kl ~ ~2+kl 2 kl

&~ii ='g Pik
A( n CO, +m CO2+ CO;1 )

(n —1,m)+ g (n+1, m)+ (n, m —1)+e&(n, m+1)

+ ~2+ik 2 +ik'
(13)

in, m)

k

(14)

fhe four energy levels in our system are well separated in energy, so the coupling between cr;1 and o'kl when ««an
be neglected. Then we can further simplify the above equation as

(n —1,m)~ e (n+1, m)~ (n, m —1)+ e (n, m+1)
E10';k ' + E, 1 0;k ' + E,2';k' C2 0;~

'

fi(nCO, +mCO2+CO;1 )

Substituting Eq. (14) together with Eqs. (10) and (11)
into Eqs. (7) and (8), and keeping only the lowest-order
resonant terms among the four resonantly coupled states,
we arrive at the following set of equations:

a—+y3 mid= Im(0'23Q2 o 34M34siEz )
Bt

—+y4 o44=lm(o34M34s, s2 ),
at

(17)

(18)

—o „=—Im(o, 2Q, ), (15) p2—+i 61+b1 g 12c}t I3 +6,

22 ™~ 12Q1 &23Q2 )
at

E= ——(cr22 —O. „)Q*,+—O, 3Q2, (19)
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r3 p'—+ i(5]+&2)+ +4b]
])t ' 2 P +(b]+62)

E

( g 23@] (7 ]202 CT ]4M34E]C2 )
2

(20)

+E
Bt

3(b, 1+&2) Y4+
2 3 2

+ 9b, +b2) 0'
14' p2+ [3(a,+a, ) /2 —&,]',

l
(g 240] g ]3M34e] s2), (21)

2

r3 p'
+i52+ +b, O23

Bt 2 p+5,

a +l
Bt

5, +362 +
2 3 2

+ 4b, +b2) P'+ [(b,]+352)/2 —&3]'
024

l
( g ]4II ] +~34~2 g23M34 el s2 }

2

61+A2 X3+X4+
2 3 2

+(b, +b2) &34
p2+ [(b,]+A2)/2 —&3]

l

2
(g44M34e] e2 g33M34E] e2 g24~2

2

l
(g 33 g22)+2 (&]3~] g24 34']S2 }

2 2

(22}

through (virtual) discrete states, with fico3] and RB3, being
the energy differences between 4D and the bound and
free intermediate states, respectively. Im(M34 )

=26 (2m@3,p, 4)lz z +„ is the imaginary part of the
e 3 I

two-photon effective dipole moment between 4D and 5S,
resulting from the resonant coupling through the contin-
uum. 5, =co, —co2, is the detuning of co, from the reso-
nance between 3S and 3P, with co21 being the resonance
between 3S and 3P. 52=~, —832 is the detuning of ~1
from the resonance between 3P and 4D, with

6032 being the resonance between 3P and 4D.
b, 3

= t02
—co,4I E z +z„ is the detuning of co2 from

the resonance between 5S and the continuum state
which lies at 3co1 above the 3S state.
r]=2])2 (2m)(le2I I]]4],lz z +3&„)is the three-phonon

ionization width of 3S by the absorption of 3co2 photons.
r3=2W 2(2~)(IE]l'I]M„I',=,, +r...+ le2I'I]u3, la, =g, +g., )

is the sum of the ionization widths of 4D, induced by co1

and co2, separately r4=. 2]]t (2m. )(le]l lp4, lz z +&„
+ l&2 I I]]44, IE,=@ +]] } is the sum of the ionization

widths of 5S, and also induced by co, and co2, separately.
The laser bandwidths are also included with 2b1 and

2b2 representing the full width at half maximum of the
two lasers respectively. As has been discussed in Ref.
[13], a cutofF frequency p needs to be included to elitni-
nate the consequences introduced by the long wings of
the Lorenzian line shape, such as unphysical incoherent
populations of the intermediate states far from resonance.

All levels of the atomic system undergo ac Stark shifts
under the influence of both external fields. The four lev-
els included in the density matrix do not contribute to
such shifts because their effect on each other is included
in the density-matrix equations. After having ascertained
(through calculations) that the ac Stark shifts due to all
other atomic levels are negligible, we have omitted them
from the equations.

The solution of Eqs. (15)—(24) under prescribed laser
pulses provides the state of the atomic system as a func-
tion of time.

The generation of the third-harmonic wave is due to
the nonlinear polarizability of the atomic medium. In the
density matrix formalism, the polarizability per atom is
defined by

I'(z, t ):—Tr[p(z, t )]]4]

where 0,=2' JM12c1 is the Rabi frequency between 3S
and 3P, 02=2% 'p23c2 is the Rabi frequency between 3P
and 4D, and Re(M34 ) =2' [g,p3]jl]4/(6) 3] co2)

+P jdco, p3, p,4/(co3, +co])] is the real part of the
effective two-photon dipole moment between 4D and 5S,
including the coupling through the continuum as well as

= X X (Papll+Pllpa }+X Pllpll (25)

Had we included the third harmonic field

E3(t)=s3e ' in Eqs. (7) and (8), instead of Eq. (13), we
would have had

(n —1,m)+ e (n+1,m)+ (n, m —1)+ e (n, m+1)+ (n —3, m)+ e (n+3, m)

(n, m)
~ 1~ ik ~1 ~ik ~2~ ik 2 ~ik ~3Oik

gll g Pkl ]]1(nCu]+ ma)2+CO;1 )
(26)
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From classical electrodynamics we have the following
definition for the linear polarizability due to E, :

t(cu)t —k lz)P (z, t)=[y'(co])+iy"(co])]s ]e
' ' +c.c.

where y'(co]) and y"(co]) are the real and imaginary parts
of the linear susceptibility of the medium at co1. From
Eq. (25), we can express the susceptibility in terms of the
quantum-mechanical state of the atomic system as

3~ ~ [P3](3~])o13' e]+p4](3~])o 14' E2]

i(3'&t —3k
&
z)

Xe ' ' +c.c. ,

where

P3(P(] + + P3(P'l1

31 3~1 ) ~11+3~1

(36)

(37)

( 3 ) g P4(P'll +~ P4(PI1'

1 4i 1 I 11+ 31
(38)

where

+]r] 'Re p4, (a)])o'(3]4
E1

(28)
Substituting Eqs. (33) and (37) into Maxwell's equations,
and keeping only the first-order derivatives, we obtain the
wave equation for the third-harmonic field:

and

I p;(I' I p;I I'
a'(co )]= g +

Nip +C01 Ct) t Ct)1

P4l P I 3 P'4 IP'(3
p43 ~]

( ~4( ~] I ~3(+~]

(29)

(30)

8 ] c)s3+ e3(—z, t )
Bz c Bt

3co1N
(2,0)=i [p»(3'])o ]3 (O, t )e](z, t )

280C A

+p4](3'])o(]4' "(z,t)s~(z, t)]e

From Maxwell's equations, we have

i(co&t —k
&
z)

E, =e,(z, t)e

where

(31)

co] Ny'(co] ) co]
k1= 1+ n

C 2Ep C
(32)

(33)

N being the density of atoms. Similarly, we can obtain
the linear part of the response of the medium to the
third-harmonic signal, expressed as

P3 (z, t)= g a,'(3'])o;;E3(z,t),

(39)

where hk =3k1 —k3.
When the laser pulse duration is much longer than the

transit time through the cell, which is the case here, the
time derivative in the wave equation can be neglected.
Also taking advantage of the fact that the effective length
of the sodium cell is often relatively small, we can avoid
the complicated consideration of the phase matching in a
focused beam. If we consider the phase mismatch hk,
the slowly varying part of the laser field E, and the
density-matrix elements 0. as being independent of z, we
obtain

where

i(3col t —k3z)E,( z, t)=,s( z, t) e

and

(34)

3co1N
(2,0)E3(L, t )=i [P3](3'])cr]3 E](t )

2E0C i5

e
—id, kL

+p4](3~] )o]4' ~z(t) ]
( —ib, k )

k3=
3'] Ny'(3'])

1+
C 2E,0

3c01
n 3a)c

(35)
(40)

We also need the nonlinear part of the polarizability
given by [12]

where L is the length of the sodium cell.
Thus the number of third-harmonic photons per pulse

unit area can be written as

2 2 23']N L
~

sin(b, kL /2)N3„=
4QC EO b,kL /2

1/2 2

p3]( 3Q)] )o ]3 +p41( 3~1 )o']4 " I, ( t )dt (41)

Taking into account the fact that the laser pulse is a func-
tion of both location and time, we solve the density-
matrix equations numerically with a pulse which has the
time-dependence shown below, and integrate spatially in
order to account for the effect of saturation due to the
strong laser intensities and the pulse duration.

The form of the intensity distribution of the laser pulse

X exp
2r

ro(1+ AAz/ct] ro),

is here taken as
Iosech (1.76t/r)

I(r,z, t)= 1+ AA. z /ct] ro

(42)



494 JIAN ZHANG AND P. LAMBRGPOULOS

I=Isrexp[ 2(r—/rc) ],
in which case we have

(43)

which is the usual expression representing focused beams.
More details on the definition of the constants appearing
in Eq. (42) can be found, for example, in Ref. [14].

To calculate the spatial average, we need to perform
the integration with respect to the spatial variables. As
we have pointed out earher, when the effective length of
the sodium cell is relatively small, we can also disregard
the z dependence of the laser intensity. The intensity dis-
tribution equation above can then be simplified as

R

4
gy 6-

R 5
0 4-
0
A
P l 1 ~ f [-50 —25 0 , 25 50

(cm ')

N3 r r r I X3 I I I

f r dr I™dI/I

I;„beingthe value of the intensity at r =r,„.
III. CALCULATIONS AND RESULTS

A. Single-laser case

We choose the following set of parameters:
I, =Iz =2.2 X 10'o W /cm, r =25 ns, vapor length L -8

cm, and density of atoms N=10 /m . In the single-
laser case, we have Iz =0, and the third-harmonic signal
is examined as a function of the detuning from the two-
photon resonance with 4D. In an experiment by Baldwin
et al. [12],a peak has been observed at resonance, as well
as a sharp dip at the center of the peak.

Figure 2 here shows a series of calculated third-
harmonic spectra under different laser intensities. It can
be seen that the widths of the spectra depend very sensi-
tively on the laser intensity. Moreover, the calculations
indicate that the ionization becomes saturated at intensi-
ties above 10 W/cm . As a result, contributions from
different spatial regions in the focal volume would be ex-
pected to play a very important role.

Figure 3 shows one example of the resulting third-
harmonic spectrum obtained after integration over the
focal volume. The dip near the center of the spectrum re-
sults from the competition between the ionization and the
THG. As a matter of fact, this dip corresponds to a peak
in the ionization spectrum. It appears only when the ion-
ization peak is saturated.

B. Toro-laser experiments

For the case in which the first laser is fixed at the two-
photon resonance with the 4D level, calculated results of
the third-harmonic spectra versus the detuning of the
second laser at different intensities are shown in Fig. 4.
First we note the small peak near the resonance, which is
the result of LICS. There is, however, a broad peak even
at intensities as low as I&=Iz=5X10 W/cm [Fig.
4(d)]. At lower intensities (I, =I2=10 W/cm ) the
broad peak disappears. The small LICS peak is so small
and narrow that it could easily be buried in the fluctua-
tions of an experimental background. The broad feature,
however, should readily show in an experiment since it is

9
rI)

7
4
g 6-

N 5-
Q

0
C4 3—50 -25 0 25 50

(cm ')

9
R

. 6-
Ce

4-
m 3-
0
0
A
C4 0—50

(c)

-25 0 25 50
(cm ')

8
N 7

~M

c 6-
5

fv

3-
N

c 1

C4 0—50 —25 0 25
(cm ')

50

FIG. 2. Calculated third-harmonic spectrum for single-laser
experiment with different laser intensities. 5&=0 corresponds
to 2~& =E4d. (a) Il =2.2x 10' W/cm . (b) Il =s.px 10
W/cm . (c) I, =1.PX10 W/cm . (d) Il =1.PX108 W/cm .
Arbitrary units are used for the number of the third-harmonic
photons.
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7

~ A

6-

0 4—

0
A
C4

—30 —20 —10 0 1Q

6I (cm ')
20 30

FIG. 3. One example of the resulting third-harmonic spec-
trum obtained after the spatial average in the r-direction. Arbi-

trary units are used for the number of the third-harmonic pho-
tons.

still prominent even after spatial integration.
But considering that we have calculated the spectra as-

suming that both lasers have a complete spatiotemporal
overlap, we consider the possibility that our calculation
may differ from a real experimental situation if the two
lasers do not have such a complete overlap. To test the
sensitivity of the broad feature to the spatial overlap, we
have calculated the third-harmonic spectrum for different
combinations of intensities of the two lasers, as shown in
Fig. 5. Clearly, the broad peak disappears even at rather
high intensities, as the second laser intensity is reduced.
Through further investigation, we have found that this
broad peak is most pronounced when the second laser in-
tensity is so strong that the two-photon Rabi frequency
between 4D and 5S is equal to the one-photon Rabi fre-
quency between 3P and 4D. When this is the case, i.e.,

~25
K

g20—

~25
~ W

g 20-

~15-
4

10-
N

' 5--
0
a Q—0.5 0.0 0.5 1.0 1.5 2.0

6, (cm ')

»5-
4
a$

10-
N

0
~+sk

0
A

—0.5 0.0 0.5 1.0 1.5 2.0
~ (cm ')

~25
N

~ ~
g 20-

4

10-
R

' 5-
0

Q—0.5

(c)

0.0 0.5 1.0 1.5 2.0
& (cm ')

~20
N

~ W

O15-

10-

N

0
A
o 0—0.5 0.0 0.5 1.0 1.5 2.0

~ (cm ')

0
A
C4 0 I I I I

/ I I I I ( I I I I i I I I I i I I I—0.5 0.0 0.5 1.0 1.5 2.0
~ (cm ')

FIG. 4. Calculated third-harmonic spectrum versus the detuning of the second laser for two-laser experiment at different intensi-
ties. (a) I& =I& =2.2X10' W/cm . (b) I, =I&=1.0X10 W/cm . (c) I& =Ip =1.0X10 W/cm . (d) I, =I&=5.0X10 W/cm . (e)
I

~
=I& = 1.0 X 10 W/cm . Arbitrary units are used for the number of third-harmonic photons.



496 JIAN ZHANG AND P. LAMBROPOULOS 45

~25

g20—

~15-
cj

10—
K

5--
0

C4 0—0.5 0.0 0.5 1.0 1.5 2,0
t, (cm ')

FIG. 5. Results of third-harmonic spectrum with different
combinations of intensities. Curve (1) taken from Fig. 4(a).
Curve (2) is calculated at I& =2.2X10' W/cm, I2=1.0X10'
W/cm . Curve (3) is calculated at I, =2.2X 10' W/cm,
I2=1.0X10 W/cm .

the two Rabi frequencies are equal, the coherence in the
excitation of these three energy levels is the strongest.
Thus the physical origin of this double-peak structure
can be attributed to the ac Stark splitting of the 4D state
due to its two-photon coupling to the 3S. To test this in-
terpretation, we have calculated a series of line shapes for
different intensities of the first laser and we present the
results in Figs. 6(a) —6(c). For reasons of economy in
computation time, we have performed these calculations
for considerably shorter pulse durations (0.1 ns). The ac-
tual pulse duration should not matter here because what
we need is to test the dependence of the splitting on the
laser intensity. Since we are arguing that the splitting is a
result of a two-photon Rabi frequency (which is propor-
tional to the square of the field amplitude), the distance
between the two peaks should be proportional to the in-

tensity of the first laser, which is indeed the case in Fig.
6(a)—6(c), thus confirming the origin of the structure.

In Fig. 7, we show the third-harmonic spectrum versus
the detuning of the first laser calculated when a second
laser at frequency ro2o(Rto2o+Es Ace&o+E4d =3&to]o
+E3, ) is introduced. It is obvious that this second laser
adds new features to the third harmonic spectrum shown
in Fig. 2. But these new features also disappear when the
second laser intensity becomes insufficient. Shown in Fig.
8 is the spectrum calculated at different intensities of the
second laser. The new features disappear as the intensity
of the second laser decreases, as must be the case for
structure due to LICS.

Finally, in order to test our formalism and atomic pa-
rameters, we turn to the experimental result published by
Pavlov et al. [8[ and Dimov et al. [9]. The pulse dura-
tion of both lasers in Refs. [8,9] was about 2 ns, while

their intensity was 10 W/cm, and their bandwidths
about 0.1 cm

Figure 9 shows the result calculated for the conditions
of the experiment in Refs. [8,9]. The calculations repro-
duce a similar degree of enhancement of the LICS over
the continuum (approximately a factor of 18 in the exper-
iment). The width of the spectrum is also comparable
(-0.5 cm '). The asymmetry is somewhat more visible
than that in the experiment. Considering that the experi-

mental data must have had some error bars and the possi-
ble background noise, our calculation compares fairly
well with the experimental line shape (Fig. 3 of Ref. [8] or
Fig. 4 of Ref. [9]).

Finally, it should be reemphasized that ionization satu-
ration was not present in the experitnent in Refs. [8,9]
due to the relatively short pulse duration. Hence the spa-
tial effects, which are shown to be such a strong factor in
determining the spectrum in Figs. 3 and 5 for a much
longer pulse (25 ns), were much less important in that ex-
periment. This makes the data less sensitive to the details
of beam spatial overlap, which facilitates the theoretical
interpretation and is also responsible for the marked
LICS enhancement.

IV. CONCLUDING REMARKS

In this paper, we have developed a thorough time-
dependent density-matrix theory for third-harmonic gen-
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FIG. 7. Calculated third-harmonic spectrum versus the de-
tuning of the first laser for two-laser experiment. The second
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eration in sodium gas in the presence of laser-induced
continuum structure. We have then applied the theory to
quantitative calculations using single-channel quantum-
defect theory for the evaluation of atomic parameters,
such as Rabi frequencies and photoionization widths. In
the numerical calculations, we have made every effort to
simulate real experimental conditions, such as spatiotem-
poral aspects of the laser pulses and have evaluated their
role in shaping the third-harmonic generation spectra.
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FIG. 8. The solid curve is the third-harmonic spectrum
versus the detuning of laser one calculated at I, =2.2X10'
W/cm', I~=1.OX10 W/cm . The dashed curve with a sharp
peak near the center is Fig. 7(a), I] =I2=2.2X10' W/cm'.
The dashed curve on the top is Fig. 2(a), I& =2.2X 10' W/cm .
Arbitrary units are used for the number of the third-harmonic
photons.

Our theory and calculations show that, due to the pos-
sibility of ionization saturation, high laser intensities do
not always enhance the third-harmonic generation, and
that the laser-induced structure in the continuum is very
sensitive to the relative intensities of the two lasers.
Furthermore, experimental investigations would be very
useful in clarifying the role of laser induced continuum
structure in nonlinear interactions of atoms with strong
radiation fields.

It should be evident from our analysis of the various
effects entering these phenomena that large intensity is
not necessarily useful. Large must of course be evaluated
in the context of the pulse duration because the satura-
tion (due to the inevitable ionization) increases with time
as well as intensity. Owing to the nonlinear nature of the
processes, one does not have simple rules that determine
the behavior in terms of, say, the product of duration and
intensity. We know, on the other hand, that a minimum
of intensity is necessary, if observable LICS is to develop;
this means that delicate balances between confiicting re-
quirements determine the observability of these effects.
A quantitative analysis, such as the one undertaken here,
will thus be necessary for the reliable prediction and/or
interpretation of experimental results.

We hope that we have demonstrated the richness and
subtlety of the many nonlinear processes at play in stud-
ies of LICS. A further most interesting dimension of
variety should be expected when the continuum already
contains structure due to intra-atomic interactions, as is
the case in more than one-electron atoms. We expect to
report soon on studies of LICS combined with doubly ex-
cited autoionizing states in alkaline-earth atoms.
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