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Monte Carlo simulation of the atomic master equation for spontaneous emission
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A Monte Carlo simulation of the atomic master equation for spontaneous emission in terms of atomic

wave functions is developed. Realizations of the time evolution of atomic wave functions are construct-

ed that correspond to an ensemble of atoms driven by laser light undergoing a sequence of spontaneous

emissions. The atomic decay times are drawn according to the photon count distribution of the driven

atom. Each quantum jump of the atomic electron projects the atomic wave function to the ground state

of the atom. Our theory is based on a stochastic interpretation and generalization of Mollow s pure-

state analysis of resonant light scattering, and the Srinivas-Davies theory of continuous measurements in

photodetection. An extension of the theory to include mechanical light effects and a generalization to
atomic systems with Zeernan substructure are given. We illustrate the method by simulating the solu-

tions of the optical Bloch equations for two-level systems, and laser cooling of a two-level atom in an ion

trap where the center-of-mass motion of the atom is described quantum mechanically.

PACS number(s): 42.50.Ar, 42.50.Vk

I. INTRODUCTION

Simulation methods are becoming an increasingly im-
portant tool in studying the effect of noise in complex
nonlinear systems. [1]. Recently, there has been consid-
erable interest in formulating simulation techniques for
quantum noise in problems of quantum optics [2—4]. In
quantum mechanics the effect of damping and Quctua-
tions of a system coupled to a reservoir can be described
by a master equation for the reduced system density ma-
trix. This corresponds to the assumption of a quantum
Markov process for the system variables [2]. A simula-
tion of quantum noise must therefore be based on simu-
lating solutions of the quantum master equation.

Of particular interest in quantum optics are damping
and noise in (cavity) modes of the radiation field and of
atomic systems. For the reservoir one typically assumes
a bath of harmonic oscillators in a vacuum, thermal, or
squeezed state [2]. Monte Carlo (MC) techniques for
solving density-matrix equations of damped cavity modes
have been proposed that are based on transforming the
master equation to a c-number equation for a (quasi-)
probability distribution (using a Wigner, a Q, a P, or a
generalized P representation) [1,2]. In many cases of in-
terest this gives a Fokker-Planck equation that can be
solved by simulating the associated Langevin equations
[2—4]. This is particularly interesting in situations corre-
sponding to generation of nonclassical states of light
[2—4]. In the present work we will focus on the develop-
ment of a wave-function simulation to solve the master
equation. The system we will consider is an atom driven
by laser light that is undergoing a sequence of spontane-
ous emissions. Thus we will develop a scheme that is
based on simulating the time evolution of an atom in

terms of atomic wave functions where the atom under-
goes "quantum jumps" at random times drawn according
to the photon statistics of spontaneous emission.

An atom driven by laser light and coupled to empty
vacuum modes of the radiation field is described by the
optical Bloch equations (master equation) for the reduced
atomic density operator. The price to be paid for elim-
inating the radiation field variables is that one has to
work with an atomic density matrix, i.e., in general there
is no (atomic) wave-function description for the atomic
dynamics damped by spontaneous emission. In a system
with N atomic degrees of freedom the atomic density ma-
trix has N elements, while an atomic wave function has
only N components. In systems with large N this
difference is significant, and the following question arises.
Can one replace the solution of the master equation for
the atomic density matrix by a stochastic simulation of
spontaneous emission in terms of atomic wave functions?
An example of a system involving a large number of
atomic degrees of freedom is laser cooling [5,6] in the
case where, in addition to the internal atomic degrees of
freedom, the center-of-mass motion of the atom has to be
treated quantum mechanically —a problem which be-
comes even more challenging in two- and three-
dimensional models [7].

In the present paper we will develop an atomic waUe-

function simulation procedure for the atomic master
equation, based on a stochastic interpretation and gen-
eralization of Mollow's pure-state analysis of resonant
light scattering for two-level atoms [8], as well as on the
theory of continuous measurements in photodetection as
given by Srinivas and Davies [9]. Mollow has shown that
the reduced atomic density matrix p~(t) for a two-level
system at time t can be represented in terms of atomic
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wave functions ~%'(t~t„, . . . , ti) & describing an atomic
ensemble that has emitted n =0, 1,2, . . . photons at times
t„» t, [10]. The relation between Mollow's n-
photon atomic wave amplitudes and n-photon detection
probabilities of the Srinivas-Davies theory has been estab-
lished by us in our work on quantum jumps [11].

In previous work [11]we employed the above formal-
ism to study photon statistics in two- and three-level sys-
tems and illustrated the phenomenon of quantum jumps
[12—14] by deriving a simulation procedure for single-
atom realizations of photon count sequences. In the
present work we extend these ideas to calculate a MC ap-
proximation of the atomic density matrix in terms of
atomic wave functions. By simulating a sequence of
spontaneous photon emissions, we construct single-atom
realizations of atomic MC wave functions, which are
found by integrating Mollow's equation for the atomic
amplitudes with decay times drawn according to corre-
sponding photon emission probabilities. An ensemble
average over these stochastic wave functions then pro-
vides us with the system density matrix. Following our
earlier work on simulations of laser coolings [15], it is
possible to extend this formalism to include mechanical
light effects (laser cooling and atomic beam defiection)
and multilevel systems (Zeeman substructure). Our work
is related to the procedure of simulating the atomic mas-
ter equation which was proposed by Dalibard and
Mdlmer [16]. These authors have suggested a MC in-
tegration of the master equation based on propagating a
Wigner-Weisskopf wave function over time steps much
shorter than the natural decay time, and simulating a se-
quence of photon-count —no-photon-count measurements
in each time interval [14].

The paper is organized as follows. In Sec. II we review
Mollow's pure-state analysis of resonant light scattering
for a two-level system and point out its relation to the
Srinivas-Davies theory of photon counting. This leads us
to formulate our MC simulation. In Sec. III we general-
ize the simulation approach to mechanical light efkcts
and illustrate the method by applying it to laser cooling
in one-dimensional ion traps and comparing the simula-
tion results with the predictions of the Javanainen-
Lindberg-Stenholm theory [17]. Finally, we present a

I

In this section we give a summary of Mollow's pure-
state analysis [8] of resonant light scattering from two-
level systems (TLS's}, and point out the relation to the
Srinivas-Davies theory of continuous measurements in
photodetection [9,12]. This will lay the foundations for a
simulation procedure of the optical Bloch equations
(OBE's) in terms of atomic wave functions. A simulation
of photon statistics of two- and three-level systems has
been described in the context of our treatment of quan-
tum jumps [11].

A. n-photon contributions
to the atomic density matrix

The dynamics of a TLS with ground state ~g & and ex-
cited state ~e & which is driven by a classical light field
and coupled to a reservoir of vacuum modes of the radia-
tion 6eld is described by a Schrodinger equation

with state vector ~%(t}& and Hamiltonian

H =Hoq+HOF+Hi(t) (2)

(we scale the Hamiltonian by dividing by i'). Here
Hp g N ~a a is the free atomic Hamilton operator with

co, the transition frequency and a =
~g & (e

~
the atomic

lowering operator. HpF is the Hamiltonian of the free ra-
diation field, and Hi(t) denotes the interaction part,

H&(t)= —p,"~ [Cz~(x= )+8;~(x=0,t)]a
—at@, [Cx(x=0}+C„(x=O,t)], (3)

with p, the atomic dipole matrix element, Cx(x=O) the
positive frequency part of the electric 6eld operator, and

C,~(x=O, t)=bore ' ' the positive frequency part of the
electric field of the laser. The state vector ~V„F(t) & of the
combined atom-6eld system has an expansion of the form

generalization to multilevel systems with Zeeman struc-
ture in Sec. IV.

II. %AVE-FUNCTION REPRESENTATION
AND SIMULATION OF THE ATOMIC DENSITY

MATRIX FOR A TWO-LEVEL SYSTEM

~%'AF(t)& =)ql&~vac&+ g f d k~+& i(t)&b& i ~vac&

+ —y fd'k, fd'k, I+,, ,, &, , (r)&b, '...,
b",, ,, 1»c+.1

j \ kp

(4)

which describes the presence of n =0, 1,2, . . . scattered
photons in the field. Note that %~„(t)& is an element of
the product space of the atomic space &„=I ~g &, ~e &]
and the Fock space &~, ~%~„(t)& C&„gH~. The atom-
ic vectors ~%(t) & (E&~ ) are the so-called atomic vacu-
um amplitudes;

~ %1, i & are the atomic amplitudes in the
presence of a scattered photon in the mode k, A, , etc. The
atomic vacuum amplitudes obey the Schrodinger equa-
tion

i „ iq(r) & =H„ie(r) &

dt

with

H,ff=(co,s i2a)a a ——[p,s C(x=O, t)a +H. c. ]

an e6'ective atomic Hamiltonian, where ~ is the spontane-
ous decay rate of the TLS. Note that the norm of ~%(t) &

will decay due to the non-Hermiticity of H,&. This is re-
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—p„= i(—H,ffp„p„—H,ff)+zap„adt

A reduced atomic density operator in the subspace of
n =0, 1,2, . . . scattered photons is defined as

p'„"'(t)=Tr [P'"'~%&„(t)& ()p„„(t)
~ ] . (9)

P'"' is a projection operator onto the n-photon subspace,
and TrF indicates the trace over the modes of the radia-
tion field. As has been shown by Mollow, p'„"'(t) obeys
the equation of motion

—p'"'= i (H —p'"' (")H—t
)

d

lated to the probability of spontaneous emission of the
next photon as will be shown below.

The reduced atomic density matrix, which is obtained
by tracing over the modes of the radiation field,

p„(t)=Tr [I'p& (t)&((p„(t)l],
obeys the OBE's

where the source terms ~~g &(g~p,'," "correspond to the
rate at which atoms are created in the ground state with
the emission of the nth photon. Obviously, we have

p, (t)= g p'„"'(t) .
n=0

A solution of Eq. (10) can be written in the form

p'„'( t) =St,0P z (0)

p'„"'(t)= f dt' S, , Jp'„" "(t'),
with the notation for the source term

Jp'" "(t)=zap'„" "(t)at .

(12)

The Green function of the homogeneous part of Eq. (10)
1s

p( )( t ) / p( )( t ) Pt (14)

with U, , the time evolution operator of the Schrodinger
equation (5). By iterating (12) we get the n-photon contri-
bution to the density matrix

p'„"'(t)=f dt„ f "dt„, . f dt, S, , JS, , JS, 0P„(0) (n ~1) .

For the n-photon probabilities we obtain

(15)

P' '( t) =Tr „[S,0P ~ (0)],
p'"'(t)= f dt„ f dt„, f dt, Tr„[S,, JS, , JS),op A (o) ]

(16)

The picture suggested by Eqs. (16) is the time evolution of
an atom in a time interval (O, t) which emits exactly n
photons at times t„~ & t, . Each photon emission is
accompanied by the reduction of the atomic density
operator to the ground state ~g &, as described by the
operator J. The time evolution between emissions, given
by S«., is governed by the non-Hermitian Hamiltonian
Heff Equation (16) suggest the interpretation of

is emitted at time t. Note that J is a non-negative definite
operator which guarantees c &0. The above interpreta-
tion is supported by the Srinivas-Davies theory of con-
tinuous measurement applied to photon counting.

In terms of the conditional probabilities we have

p [ (t),). . . , t„)= 1 — dt'c(t'~(t„, . . . , t))
n

p[0,)(t„.. . , t„)=Tr„[S,, JS, , JS, op&(0)] (17)
x II c(tk~ k —)

k=1
(20)

and

P[0 ()(tl). . . ) t„,t)
(n ~ 1)

p[0, t„)(t)) ~ . ) tn )
(18)

as an elementary probability density that the atom emits
exactly n photons at times t, . ~ t„during the time
interval [O, t). Furthermore,

Tr~[JS„JS, , JS, op„(0)]
c(t(t„, . . . , t, )=

Tr„[JS, , JS, 0p„(0)]

According to Eq. (20) the elementary n-photon probabili-
ties are products of the conditional probabilities for the
next photon being emitted at time tk (k = 1, . . . , n) times
the probability that no photon is emitted in [t„,t).

B. Mollow's pure-state analysis
of resonant light scattering

For an initial pure state pz(0) = ~%(0) &(%(0)~, the
atomic n-photon density operator (9) can be written in
terms of atomic wave functions

c(t)=Tr„[JS, P„(00)](n =0) (19) I)II(t. lt. ) . . . , t))&E~g . (21)

are the conditional probabilities that given n =1,2, . . .
photons were emitted at times t, , . . . , t„, the next photon

These wave functions are defined recursively by the
hierarchy of Schrodinger equations



4882 R. DUM, P. ZOLLER, AND H. RITSCH 45

t—I p(t lt„, , t) ) & =H.ttl p(t It. . . t) ) &

d
dt

(t ~ t„) (22)

function survives the projection to the ground state. For
n =0 the wave functions (21) are identical to the atomic
vacuum amplitudes defined in Eq. (5). Thus we have for
n =0

and initial conditions

Iq (t„ I t„, . . . , t, ) ) =a I% (t„ I t„,, . . . , t, ) ) . (23)

Note that the phase of the le ) component of the wave

p'„"(t)= l~(t) ) & w t)l,
and for n ~ 1

(24)

(n)p'g'(t)= «t„f ~dt„, f ddt, I%(tlt„, . . . , t, ))()p(tlt„, . . . , t, )I .
0 0 0

(25)

The probability density (17) for n-photon emission is re-
lated to the norm of the corresponding wave function by

p(, ,)(t, , . . . , t„)=ac"
II I% (tl t„, . . . , t, ) ) II' . (26)

We therefore interpret t„& ~ t, as the decay times at
which a photon is spontaneously emitted, and the initial
condition (23) as the reduction of the wave packet associ-
ated with this quantum jump. It is easy to verify that

II I
)p( t

I t. .f dt'c(t'lt„, . . . , t, )=1—

so that the probability density factorizes,

p(o, ,)
= [I)11,«lt. )I'+ I+,«It. )I']

xKI+, (t. It. -) )I' . ~l)p, (t) ) I' . (29)

We emphasize that Eqs. (28) and (29) are true for a pure
TLS only, not for the more general cases considered in
the following sections.

For an initial mixed state the density matrix p „can al-

ways be diagonalized,

(27) p „(0)= g p. l +.(0) ) ( +.(0)
I

(30)

c(tlt. . . t) )=c«lt. )=)tl p, (tlt. }I', (28)

i.e, the probability that a photon is emitted during [t„,t)
is equal to the decay of the norm of the Mollow wave
function, which has been normalized at time t„of the last
quantum jump.

For a TLS the conditional probability densities depend
only on the last decay time t„,

with probabilities p satisfying 0 ~p ~ 1 and g~ = l.

C. Simulations

The pure-state representation (25) suggests simulating
the reduced atomic density matrix p„(t) in terms of
atomic wave functions. We rewrite Eq. (25), using Eq.
(26),

00 E2

p„(t)= g f dt„ f dt„, f dt, p(, „(t„.. . , t„)IC(tlt„, . . . , t, ))(C)(tlt„, . . . , t) }I,
„—0 0 0 0

(31)

with normalized wave functions

I
4'( t

I t„, . . . , t, ) )

= 'p(tlt. . . . . t, ) & &II +(t It. .
A Mc integration can now be performed by drawing de-
cay times t „~ ~ . , t„according to the probability density

p(0, ,)(t, , . . . , t„). Such a MC integration for MC wave
functions Iy(t) ) in a given time interval [0,T} is imple-
mented as follows.

(i) Initial condition We choose a. n initial state, typical-
ly Iy(to=0))=lg). To count the number of spontane-
ous emissions we introduce a photon counter n, which we
initially set to zero.

(ii) Time propagation We integrate t.he Schrodinger
equation (5) up to the time of the next photon emission,
determined by

f dr c(alt„, , t, )= 1 —Illy(t) ) II'=x (33)
n

with x F [0, 1] a random number drawn from a unifo™
distribution. We increase the photon counter by one
(n~n +1) and set t„=t which we identify as the emis-
sion time of the nth photon. The quantum jump at t„
reduces the atomic wave function to the ground state
[18]

Ix«. }& a lx(t„) & ~lla lx«. }&II . (34)

p„(t)=—g If;(t))(f;(t)l
N

(35)

with lf, (t)&=ly, (t)&/Illy, (t)&ll and i =1, . . . , N num-

We then proceed by integrating the Schrodinger equation
(5) for Iy(t)) until we reach the next decay time. We
stop upon reaching the end of the chosen time interval.

(iii) Average over realization Repeatin. g the above
simulation N times, we obtain an approximation for the
atomic density matrix
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bering the realizations. An estimate of the expectation
value of an arbitrary atomic operator 8 is

&@&=Tr„[@p~(t)]=—g &g;(t)l@ly;(t) &

1V,.
(36)

0.3

Stationary solutions of the OBE's can be simulated
very efficiently by following one realization of the wave
function ly(t) & over times much longer than the time
scale of the damping of the atom, replacing the ensemble
average by a time average to calculate an approximation
of the stationary density matrix.

So far we have assumed a pure state for the initial con-
dition. A mixed state (30) can be simulated by starting
the simulations with pure states l%' (0) & drawn accord-
ing to the probabilities p

Recently, Dalibard and Mdlmer [16] have suggested a
MC integration of the master equation based on propaga-
ting a Wigner-Weisskopf wave function. They simulate a
sequence of photon-count-no-photon-count measure-
ments (see also Cook [14], Sec. 4.2) on a grid with fixed
time steps, much smaller than the time scale given by the
spontaneous-emission lifetime, the inverse Rabi frequen-
cy, and the inverse detuning. Our simulation technique is
more naturally formulated as a variable (global) time step
integration where the non-Hermitian Schrodinger equa-
tion is integrated to the next decay time in typically a few
steps using the propagator U, , of Eq. (5) [19].

As an illustration we plot in Figs. 1(a) and 1(b) a MC
wave function ly(t) & as a function of time for Q=~ and

Figure 1(a) shows the excited-state probability
l(elf(t) & l, while in Fig. 1(b) we plot the corresponding
no™lily(t) &ll . The decay™t„.. . , t6 are indicated
by arrows; x„.. . , x6 are the corresponding random
numbers [compare (33)]. Figure 2 shows a comparison of
the exact solutions of the OBE's for the excited-state pop-
ulation p„(t) for Q=6x and b, =0 with the simulation re-
sults for 100 and 1000 realization (stars and dashed line,
respectively). For 10000 realizations, the simulation re-
sult is indistinguishable from the exact solution.

0.9

0.8-

0.7-

0.6-

0.5-
p (t)

0.4-

0.3-

0.2-l
I

0.1

0
0 3

xt

FIG. 2. Simulation predictions for the excited-state popula-
tion p„(t) are compared with the exact result derived from the
optical Bloch equations. The stars correspond to 100 realiza-
tions. The dashed line has been computed with 1000 trajec-
tories. For 10000 realizations the simulation result is indistin-
guishable from the exact solution. The parameters are 0=6K
and 5=0.

III. MECHANICAL LIGHT EFFECTS
IN A T%'O-LEVEL SYSTEM

In this section we generalize the approach of Sec. II to
include the center-of-mass motion for the atom. We de-
velop the master equation and its wave-function simula-
tion for laser cooling of a TLS and illustrate the applica-
tion of the simulation procedure to one-dimensional laser
cooling of trapped ions [6,17]. Essential elements of this
formalism were developed in our previous work [15].

A. Master equation and its simulation

We consider again a TLS driven by a laser and coupled
to a reservoir of vacuum modes of the radiation field.
The atomic part of the Hamiltonian (2) in the
Schrodinger equation (1) now includes the kinetic energy
p /2M, and possibly a potential V(x). Analogous to Eq.
(7) we define a reduced atomic density matrix p„(t)
which can be shown [20] to obey the master equation

d
p„= i(H,ep„—p„H—,e)+ f dQ&J&p„.dt

The non-Hermitian effective Hamiltonian

(37)

0 ~ 10 1520253035404550
xt

1

0.8-
2 0.6-

lxl 04
0.2-

0
0 10 15 20 25

TT T
t4

30 35

X3

X2

X46

——--"---- X5
40 45 50

T
'S '6

FIG. 1. Plot of a realization of the Monte Carlo wave func-
tion as a function of time: (a) excited-state probability
l(el f(t)) l, (b) the corresponding norm lily(t))ll. The param-
eters are A=K and 6= K.

H,e= + V(x)+(a), i I a)ata—
—[p C(x, t)a +H.c. ] (38)

acts in the atomic Hilb crt space
=L(R )[lg), le&], which is the product space of
square-integrable center-of-mass wave packets and inter-
nal atomic states. In the interaction Hamiltonian the
electric field of the laser is now evaluated at the atomic
position operator X. Furthermore, we have defined

Jzp„=@(k)e" ap„a e (39)
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with 4(k) as the angular distribution of the spontaneous-
ly emitted photons which describes the mechanical
momentum transfer k,sk with k,s =co, /c in Eq. (37)
when the electrons return to the ground state by spon-
taneous emission.

Repeating the steps leading to Eq. (17) in Sec. II we
identify

p(0 ~i(t„k„.. . , t„.,k„)

=Tr„[S,, Jz S, , J& S, cp„(0)] (40)

Trq[JfS, , Jf, S,
tr

Tr„[Jq S,
n

Jf, S~,ao~(o)]

Jf, S~,ov(0) l
(41)

In particular, the pure-state representation of the normal-
ized atomic wave function takes on the form [15]

as the probability density that in the time interval [O, t)
exactly n photons are emitted at times t &, . . . , t„ in direc-
tions k&, . . . , k„. Furthermore, the conditional densities
are

c(t, kIt„,k„;.. . ; t„k, )

00

p„( )= g f dt„ f "dt„, f dt, fdQ „ -fdQ „p(-o,)(t„k,;.. .;t„,k„)

x IC(tIt„,k„;.. .;t„k, ) &(C(tIt„,k„;.. .;t„k, )l . (42)

Here Iqj(tIt„,k„;.. ;t, , k, ) .& is the normalized atomic
wave function obtained by integrating the hierarchy of
Schrodinger equations in (22) with H, s given in (38) with
initial conditions

I%(t„It„,k„;.. .;t„k,) &

We proceed by integrating the atomic Schrodinger equa-
tion (5) for Iy(t ) & until the next the decay time, etc.

(iii) Aueraging. We repeat these simulations N times to
get an approximation for the atomic density matrix ac-
cording to (35). This reduced atomic density matrix con-
tains all information on the internal atomic dynamics and
the center-of-mass distribution.

=ae '~ " I%'(t„It„),k„)', . . . ', t„k, )& . (43)

The factor involving the exponential function in Eq. (43)
describes the kick the photon provides to the center-of-
mass motion of the atom in spontaneous emission. We
emphasize that in view of Eq. (43) the coherence of the
center-of-mass packet of the atom as well as the phase of
the excited-state component of the wave function is
preserved in the quantum jump of the electron.

In this way it is straightforward to generalize the simu-
lation prescription of Sec. II for the MC wave function

(i) Initial condition We choose . an initial state. Typi-
cally this will be of the form Iy(to =0) &

= Ig &8 IP& with
center-of-mass wave packet IP &. We introduce a photon
emission counter n which initially is set to zero, n =0.

(ii) Integration loop. For times t & T we integrate the
Schrodinger equation (5) until the emission time t given
by

f dt' f dQ-„c(t', kIt„,k„; . . ;t„k,).
=I—Illy(t) & II'=x (44)

with «[0,1] a uniformly distributed random number.
We increase the photon emission counter by one
(n ~n + 1) and identify t„=t with the emission time.
Next we choose a direction of the spontaneously emitted
photon k according to the angular distribution 4(k).
The wave function after the quantum jump at time t„ is

Iy(t„)&~e' " *Iy(t„)& /IIae' " *Ig(t„)& II . (45)

B. Laser cooling in ion traps

To illustrate the simulation technique of Sec. III A we
study here in some detail laser cooling of a two-level
atom in a one-dimensional harmonic trap described by a
trapping potential V(x)= —,'Mv x with oscillator fre-

quency v. The theory of laser cooling of trapped ions is
well developed. We refer to reviews by Stenholm [17],
Wineland and co-workers [21],and Blatt [22].

Below we choose to compare our MC results with
analytical predictions of the theory developed by
Javanainen, Lindberg, and Stenholm [17,23] for the
Lamb-Dicke limit (LDL). In the LDL the particle is as-
sumed to be confined within a spatial region much small-
er than an optical wavelength, i.e., the parameter
ri=ac/A, «1 with ao the size the harmonic-oscillator
ground state and A, the wavelength of the laser [24]. In
this limit the cooling time becomes slow compared with
the internal time scale of the TLS and the harmonic-
oscillator frequency. This allows an adiabatic elimination
of the internal atomic degrees of freedom and leads to the
master equation for the harmonic-oscillator populations
P„(t),

P„(t)= ri [(n +—1)A—++nA ]P„(t)d
dt

+ri (n+1)A P„+,(t)+ri nA+P„, (t),
(46)

with n =0, 1,2, . . . . The coefficients A+ are identified as
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nf = A ~/(A —A+ )(A ) A+ ) .

The stationary solution is a Bose-Einstein distribution

(47)

cooling and heating rates n~n+1. Explicit expression
for A+ in terms of the TLS parameters 0, 6, ~, and os-
cillator frequency v have been given by Lindberg and
Stenholm [20,25]. In terms of these rates the final energy
for t ~~ is Ef =Av(nf +—,

'
) with mean population

0.9 .

0.8
n = 8

0.7

0.6-

P„(t)05
04

P„"=(1—A+/A )(A+/A )" . (48)
0.3

0.2
Time-dependent solutions have been given by Stenholm
[25]. In particular, the mean occupation is

0.1

(n ), =noe '+nf(1 —e '), (49)
0 100 200 300 400 500 600 700 800

where W=rt (A —A+))0 is the cooling rate. Cool-
ing is found for detunings of the laser below resonance,
5 &0.

MC simulations results are not limited to the LDL and
are not based on an adiabatic elimination assumption as
Eq. (46). In contrast, the approximation inherent in a
simulation procedure is that it is restricted to a finite
number of trials 1V, and that the integration of the
Schrodinger equation (5) requires representation of the
center-of-mass wave function in a finite basis: In the
present case we have chosen a truncated basis set of
harmonic-oscillator states

l
n ) with 0 ~ n ~ n,„In F.igs.

3 and 4 we compare our MC predictions with the above
analytical results for the parameters 0=v=~, 6= —~,
and Lamb-Dicke parameter g=0. 1. Initially, the atoms
are prepared in the harmonic-oscillator state

l
n = 8 ), and

n,„=16.An average over 1500 MC wave functions was
taken. The angular distribution was assumed to be iso-
tropic. Figure 3 is a plot of the distribution function
P„(t) as a function of n for times Irt =15,150,500 and
t~~ (stationary solution). The dashed lines are the
analytical Lamb-Dicke formulas [17], while the symbols
indicate the MC results. Figure 4 shows the distribution
function P„(t) as a function of time at for n =0,2, 4, 6, 8.

0.6

FIG. 4. Laser cooling of trapped ions. The distribution func-
tion P„(t) of the population of trap levels is plotted as a function
of time ~t for n =0,2, 4, 6, 8. The solid lines are the analytical
results [17], while the dashed lines correspond to simulations.
The parameters are the same as in Fig. 3.

The solid lines are the analytical results [17], while the
dashed lines correspond to simulations. Agreement of
simulation with the analytical results tends to be quite
good.

IV. TWO-LEVEL SYSTEM
WITH ZEEMAN SUBSTRUCTURE

In this section we generalize the treatment of Sec. II to
include the Zeeman substructure. The angular momenta
of the atomic ground- and excited-state levels are Jg and
J„respectively. We choose as a basis the eigenstates of
J;s, which we write as lgms ) and lem, ). The master
equation for the TLS driven by a laser field [26]

@,~(x=0, t)=@,
~ g (

—1)~e ~e~e
' '+cc.

q =0,+1

( g lel'=1) (50)

0.5 -',

's, t-+ oo
l

0.4-

P (t) 0

1s

d pq — i(H«pz p—&H«)+ g—Jzpzdt
q =0, +1

with

(51)

0.2-

0.1-

0 1 2 3 4 5 6 7 8 9

H«=(ro, i ,'Ir) g le—m—,)(em, l

m

—,'Q, g( —1)te A e ' '+H. c.
q

(52)

FIG. 3. Laser cooling of trapped ions. The distribution func-
tion P„(t) of the population of trap levels is plotted as a function
of n for times ~t=15, 150,500, ~. The dashed lines are the
analytical results [17]. The symbols correspond to the simula-
tions. The parameters are v= 1,0=2,6= 1 in units of ~.

A~ = g ( Jsmslql J,m, ) lgm )(em, l,
m, m

(53)

The e with q =0,+ forms a spherical vector basis. ~ is
the radiative decay rate and Q, is the average Rabi fre-
quency as given by Shore [27]. Here we have introduced
atomic lowering operators



4S86 R. DUM, P. ZOLLER, AND H. RITSCH 45

where (J,m, I Jg mg lq & is a Clebsch-Gordan coefficient
and

Jqp~ =s+qp~~q . (54)

As in Secs. II and III we introduce the probability den-
sities

p(o, i)( i qi " 'r. q, )

rA[S, Jq S, ' ' ' J p', OP/(0)] (55)

Trz[J S, , J „S,
Tr„[Jq„s, ,

JqlSl, QPA(0)]

' J,1St, ,

OPS�(0)

l
(56)

for spontaneous emissions at times t„, . . . , t, with polar-
izations q„, . . . , q, . In a similar way we introduce wave
functions IV(t It„,q„, . . . , t, q, ) &, so that

d7 c(7rqI r», q», . . . , t), q) )

q
ll

and conditional probability densities

v(r&qIr», q», . . . , r), q) )

In terms of the Mollow wave functions the density matrix
1S

00

P, (r)= g f «.f "«.
& f «& & P(0, ,~(&&,q&, , r. , q". )l+(&I&.,q. ; ;i&,q"&.)&&+(&I&.,q. ;.";&&,q&)l (58)

n=0 q&, . . . , q„

Ix«. )& ~, ly«. )&/Il~qlx«. )&II ~ (59)

An interesting question is the manifestation of trapping
states [28] in the simulation procedure. Trapping states
(or dark states) correspond to linear combinations of
atomic ground states which are not coupled by the atom-
ic dipole matrix element to the excited atomic state.
These trapping states appear as eigenstates of H,z with
purely real (nondecaying) eigenvalues. Thus these dark
states will lead to

g f dq. c(r,qIt„„q„,. . . , t, ,q, ) &1,
q

n —1

(60)

so that there is a finite probability for the emission time
t„ofthe next photon to be t„~00.

V. CONCLUSIONS

In this paper we have developed a MC simulation of
the atomic master equation for spontaneous emission in
terms of atomic wave functions. The starting point of
our theory has been Mollow's pure-state analysis of reso-
nant light scattering and its interpretation in the context
of the Srinivas-Davies theory of continuous measure-

where the tilde again indicates normalization.
The resulting simulation procedure for the MC wave

functions Iy(t ) & is the same as in the preceding sections.
The polarization of the emitted photons is chosen accord-
ing to the probability distribution P (t)/g Pq(t) with

P (t)=Tr„[JS,+o„(0)]/Trz [S,op„(0)] .

The wave function after the quantum jump with emission
of a photon of polarization q is

ments in photodetection. We have shown that realiza-
tions of the time evolution of atomic wave functions can
be constructed which correspond to an ensemble of
laser-driven atoms undergoing a sequence of spontaneous
emissions. The atomic decay times are drawn according
to the photon-counting distributions. Each of these
spontaneous-emission events (quantum jumps) is associat-
ed with a projection of the atomic wave function to the
ground state of the atom. In addition to developing the
formalism for a TLS, we have presented an extension of
the theory to include mechanical light effects, and a gen-
eralization to atomic systems with Zeeman substructure.

Potential areas of application for the present technique
as a calculational tool are laser cooling of atoms, where
the center-of-mass motion of the atom must be described
quantum mechanically, in particular in situations with
complicated atomic level structure, and two- and three-
dimensional models. In addition, the present method is
ideally suited to model spontaneous emission in atomic
beam deAections from running, standing, or evanescent
light waves [5].

A wave-function simulation can also be developed for
damped harmonic oscillators (damped modes of the radi-
ation fields) and can be generalized to include a thermal
or squeezed bath. This opens the prospect of applying
this simulation procedure to solve cavity @ED problems
[29] where one or a few atoms interact strongly with a
cavity mode of the radiation field.

Ware added in proof. In the meantime we have become
aware of the work of H. Carmichael (unpublished) and C.
Cohen-Tannoudji, F. Bardou, and A. Aspect [in Laser
Spectroscopy X, edited by M. Ducloy, E. Giacobino, ar1d
G. Carny (World Scientific, Singapore, in press)]. Carmi-
chael discusses a simulation algorithm similar to Ref.
[16]. Cohen-Tannoudji, Bardou, and Aspect simulate
wave functions for velocity-selective coherent population
trapping.
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