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Numerical study of the linewidth of a semiconductor laser: Effect of saturation
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In this paper we calculate the intensity and carrier-density distribution inside a Fabry-Perot-type
semiconductor laser with arbitrary facet reflectivities. We derive an expression for the linewidth of such
a laser operated well above threshold, when the inversion saturates and the carrier-density distribution
becomes nonuniform. Results are given for the frequency and carrier-density dependence of the
linewidth-enhancement factor of Al Ga& As lasers. We find that saturation results in substantia1
nonuniformity of the distributions of the spontaneous-emission factor and the linewidth-enhancement
factor. Although these factors codetermine the laser linewidth, their combined effect on the linewidth-

power product is found to be negligible in most cases of practical importance. However, a small power-
independent contribution to the laser linewidth is predicted for large mirror asymmetries.

PACS number(s): 42.50.Lc, 42.55.Px, 42.60.Da

I. INTRODUCTION
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The fundamental linewidth of semiconductor lasers is a
topic that has received much attention in the past decade
[1—3]. This attention has technical motivation originat-
ing from possible applications of narrow-linewidth lasers
in coherent optical communications. However, this
research is also driven by basic interest in laser
linewidths. The high gain available in a semiconductor
laser allows small cavity dimensions leading to a large
and easily measurable fundamental linewidth, so that
current theories for this linewidth may be verified. Also,
high gain allows low mirror reflectivities, so that these
lasers are suitable candidates for studying the effect of
output coupling on the fundamental linewidth [2—10].
For large output coupling the intensity distribution inside
the cavity becomes nonuniform, which has been shown to
lead to an enhancement of the laser linewidth.

The fundamental lower limit on the laser linewidth is
due to the disturbing inhuence of spontaneous emission
on the phase of the intracavity optical field. For an ideal
four-level laser with small output-coupling losses, tuned
to the maximum of a symmetric gain profile, the full
width at half maximum (FWHM) of the laser line, b,v, is
given by the standard Schawlow-Townes expression [11],
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where I, is the cavity-loss rate, n the average number of
photons in the lasing mode, hv the energy per photon,
and P „, the combined output power from both laser mir-
rors.

As semiconductor lasers are not ideal four-level lasers
and their gain profile is not symmetric, their linewidth is
given by a more complicated expression. For a semicon-
ductor laser with spatially uniform gain, but arbitrarily
large output coupling, the laser linewidth is given by [5,9]

In Eq. (2), b, vo is the experimentally observed power-
independent contribution to the linewidth, for which
many explanations have been given, such as the competi-
tion of the lasing mode with nonlasing side modes [12] or
the presence of spatial hole burning [13]; the issue seems
to be undecided and will not be considered in this paper.
In Eq. (2), ri, ,=P,„,/P„, ;„ is the optical power ex-
traction eSciency, i.e., the fraction of the power pro-
duced by stimulated emission that couples out of the cav-
ity, the rest being dissipated through internal losses; note
that g,„,=1 if internal losses can be neglected. Finally, a
is the linewidth-enhancement factor [1], n, ) 1 is the
spontaneous-emission factor [14], and E ) 1 is the
excess-noise factor [5,8, 10,14], describing the influence of
large output coupling on the laser linewidth. The
linewidth-enhancement factor is defined as

ax„
BN

ax,
BN

(3)

where g„and y; are the real and the imaginary parts of
the complex susceptibility, related to the refractive index
and the gain, respectively, and N is the carrier density.
In semiconductor lasers the a factor gives the most dras-
tic correction to the original equation for the laser
linewidth [Eq. (1)],a being typically 3—7 [14].

In earlier papers [3,8] we addressed the effect of output
coupling on laser linewidth. Comparing the linewidths of
two sets of lasers with the same round-trip cavity losses,
but with a different internal intensity profile, we
confirmed the existence of the excess-noise factor E in
Eq. (2); the lasers with the most asymmetric mirrors and
thus the most nonuniform internal intensity profile had
the largest linewidth. In these earlier papers we assumed
that the gain was uniform over the length of the cavity,
which is valid if the laser is close to threshold. In the
present paper we drop that restriction and consider the
fundamental linewidth of a high-gain —large-output-
coupling semiconductor laser that is driven far above
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threshold. In this situation the large intracavity intensity
will saturate the inversion and hence result in a spatially
nonuniform inversion distribution and an intensity distri-
bution that is changed as compared to the unsaturated
case. The nonuniform carrier density leads to a nonuni-
form distribution of important parameters such as a and
n, , which, apart from the output power P,„, and the
cavity-loss rate I „codetermine the linewidth. In this
paper we present a method of calculating the above-
mentioned distributions. We also show how the funda-
mental linewidth can be calculated using the distributions
of a and n, , i.e., we show how these distributions have
to be averaged along the laser axis. We restrict the dis-
cussion to Fabry-Perot-type Al Ga, „As lasers.

Several methods are available to evaluate the linewidth
of a laser with nonuniform intracavity intensity and in-
version. Eventually, all methods are based on an expan-
sion of the intracavity optical field in the cavity eigen-
modes, followed by an evaluation of the disturbing effect
of spontaneous emission on the (complex) amplitude of
the lasing mode. In this paper we use the
nonorthogonal-mode formalism introduced in Refs. [8]
and [15] to calculate the linewidth of a Fabry-Perot-type
semiconductor laser with arbitrary output coupling. An
alternative approach that makes use of the Green's-
function approach [5,16] has recently been applied by
Tromborg, Olesen, and Pan [16] to calculate the
linewidth of a distributed-feedback semiconductor laser.
Unfortunately that derivation is not very transparent and
we find the final expression difficult to implement in prac-
tical cases. Using the nonorthogonal-mode formalism,
we will derive a much simpler expression for the
linewidth of a laser with nonuniform population inver-
sion. This new expression will be shown to agree with the
expression derived using the Green s-function formalism.

Two basic approximations are made in the calculation.
First, one might expect the distribution of carrier density
over the cavity to exhibit a spatial profile similar to that
of the standing-wave intensity (spatial hole burning with
a period A,, /2, where A,, is the optical wavelength in the
semiconductor medium) and thus provide a coupling of
the intracavity traveling waves by the saturation-induced
gain and refractive-index grating. We neglect this effect
because, in semiconductors, carrier diffusion is so rapid
(as compared to the spontaneous-decay rate) that the in-
version grating is effectively washed out [18].

As a second approximation we use the rate-equation
approximation, in which the active medium is treated as
an ensemble of an identical two-level system. In fact, the
carriers are distributed over conduction and valence ener-

gy bands. The seemingly crude discard of the effects of
carrier redistribution over the bands can be justified by
noting that the intraband relaxation process is much fas-
ter than any of the other processes involved. As a conse-
quence, the carrier distribution in each of the bands
remains practically in equilibrium and is well character-
ized by the integrated population. Therefore, we can
neglect the so-called '*non1inear gain" in the calculations,
an issue that is discussed further in Sec. II.

The paper is organized as follows. In Sec. II we de-
scribe the calculation of the intensity and carrier-density

distributions and the derivation of the corresponding dis-
tributions of the linewidth-enhancement factor a and the
spontaneous-emission factor n,z. Section III describes
how the fundamental linewidth can be found once the
latter distributions are known. In Sec. IV we present
several numerical examples, while conclusions are given
in Sec. V. In the Appendix, an expression for the
linewidth-enhancement factor of GaAs is derived.

II. CALCULATION OF INTRACAVITY
DISTRIBUTIONS

In this section we calculate the stationary-carrier den-
sity and intensity distributions inside a semiconductor
laser. This means that we neglect fluctuations. The fluc-
tuations will be considered in Sec. III, where we calculate
the linewidth. The carrier and intensity distributions
were calculated using the standard propagation equations
for the left- and right-traveling intensities

dI*(z)
dz

=+g(z)I (z), (4)

where I*(z) represents the intensity traveling to the right
(+ ) and to the left ( —), respectively, g(z) =(I /vs)G is
the modal intensity-gain coefficient, I is the confinement
factor, U is the optical group velocity, and G is the bulk
intensity gain [14]. In a semiconductor laser the gain G is
a function of carrier density N, for which a separate equa-
tion has to be solved at each position z in the laser. This
equation is the standard rate equation for the carrier den-
sity [14],

d J
N(z, t)=-

dt '
ed

G(N(z, t )
—)S(z ),N(z, t )

Tsp
(5)

where J is the injected current density, e is the electron
charge, d is the thickness of the active layer, s

p
is the

carrier lifetime, and S(z) is the volume photon density.
We take the photon density S(z) appearing in Eq. (5) as
proportional to the envelope of the intensity profile along
the z direction because, as discussed in the Introduction,
diffusion effectively washes out the carrier grating burned
by the standing-wave optical intensity.

Note that in Eqs. (3) and (4) all variables are real
valued. The intensity gain 6 is twice the real part of the
complex amplitude gain sometimes used by other authors
(see, e.g., [14]). The imaginary part of the complex am-
plitude gain, describing the dependence of the refractive
index on the population inversion, does not enter Eqs. (3)
and (4). However, it does affect the laser linewidth, as
will be shown further on.

Also note that we assume that the gain is only a func-
tion of the population inversion and shows no direct in-
tensity dependence. For an ensemble of real two-level
systems, e.g., an atomic or molecular gas, this is obvious-
ly true. However, for a semiconductor gain medium, re-
sidual carrier redistribution over the conduction, and
valence bands at large intensity, for example, spectral
hole burning and/or carrier heating lead to a (small)
dependence of the gain directly on intensity. Recently,
numerical work has shown that this so-called nonlinear
gain also leads to an intensity dependence of the
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linewidth-enhancement factor [2] and thus of the laser
linewidth. For In& „Ga As„P& lasers this influence
was calculated to be small [2]. As the nonlinear gain is a
factor of 5 smaller in Al Ga, As than in

In, „Ga„As~P, ~ [19],we expect this effect to be negli-
gible in Al Ga& „As lasers and feel that the simple two-
level rate-equation approximation is valid in our case.

If the relation between the gain G and the carrier den-
sity N is known (see below), the stationary-carrier density
and intensity distribution in the laser can be found by
simultaneously solving Eqs. (4) and (5), setting the
round-trip gain, including internal and mirror losses, to
unity and setting dN(z, t ) ldt =0. At the intensities that
we use, a numerical solution for these distributions is
most easily found by iteration. To first order, both car-
rier density and gain are uniform and the intracavity field
is the sum of two counterpropagating, exponentially
growing traveling waves. To second order the carrier
density becomes inhomogeneous, as in the high-field re-
gions in the cavity stimulated emission will reduce the
carrier density more than in the low-field regions. There-
fore, the gain also becomes inhomogeneous and the inten-
sity profile is deformed compared to the sum of two sim-

ple exponentials. For practical intensities this iteration
procedure converges rapidly to a consistent solution for
the stationary-carrier density and the intensity distribu-
tion.

Knowledge of the relation between the gain G and the
carrier density N is essential to our calculations. While in
a true two-level system the gain is obviously proportional
to the population inversion, the situation is more compli-
cated in a semiconductor, where the population is distri-
buted over energy bands and the relation G(N) depends
on the electronic band structure of the semiconductor.
Furthermore, the dependence of the refractive index on
carrier density, as characterized by a [see Eq. (3)], has
potentially severe consequences for the laser linewidth.
As all this information is not available in the literature
we spent some effort to determine the functional depen-
dence of both the gain and the linewidth-enhancement
factor on the carrier density.

First we note that the approximation of a linear depen-
dence of gain on carrier density, which is often used in
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FIG. 1. Calculated gain coefficient g of Al„Ga, As as a
function of carrier density for different photon energies h v rela-
tive to the Al Ga& „As band gap Eg. The laser parameters
used for the calculation of all figures are given in Table I.

the literature [20,21], applies for the maximum gain at
each carrier density with the photon energy as a free pa-
rameter. However, in a semiconductor laser with a
position-dependent saturation, the carrier density varies
spatially, but the photon energy (i.e., laser oscillation fre-
quency) is fixed. So we need a relation between gain and
carrier density at fixed photon energy. We have used the
standard strict k-selection model [20,21] to calculate such
a relation for the case of GaAs. Typical results are
shown in Fig. 1. The values of the device and material
parameters used in the gain calculation are given in Table
I.

For the calculation of the linewidth-enhancement fac-
tor a, the Kramers-Kronig relations were used to calcu-
late dg„ION from By; IdN, where y;(co) directly follows
from the spectral dependence of the calculated gain. De-
tails of the calculation are given in the Appendix. The
main results are given in Figs. 2, 3, and 4. In Fig. 2 we
show a as a function of carrier density. For each carrier
density, a was calculated at the photon energy at which
the gain is maximum. However, as stated above, we need
a relation for a at a fixed photon energy. Figure 3 shows

TABLE I. Device and material parameters used in the calculation of intensity and carrier-density
distributions.

Symbol

SP

m,

mo

Description

laser length
transverse width of
intensity distribution

active-layer thickness
emission wavelength
spontaneous lifetime
confinement factor
effective mass in
conduction band

effective mass in
valence band

free-electron mass
momentum matrix element

Value

250

5

0.075
790

1

0.15

0.067

0.55
9.11 X 10

1X10

Units

pm
pm
nm
ns

mo

mo

kg
kg ms
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FIG. 2. The solid curve shows the numerically calculated
value of a as a function of carrier density at the photon energy
for which the gain is maximum. The dashed curve gives the
(approximate) analytical results of Westbrook and Adams.
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FIG. 4. Calculated value of a as a function of carrier density

N for different photon energies E relative to the band gap Eg.

such a relation at a photon energy of 30 meV above the
band gap. Clearly, the behavior is totally different from
that in Fig. 2. Finally, Fig. 4 gives the result of a at
several different photon energies in the region of carrier
densities that is of interest to us.

Using the above results we have numerically calculated
the steady-state intensity and carrier-density distributions
in a semiconductor laser as a function of the injection
current. The results for a laser with intensity-reflection
coefficients of the facets equal to R, = 10% and

R2 =90% (in the following called a 10-90 laser) are given

in Fig. 5 for two values of the injection current, namely
I=I,h and I=1.5I,h. In the model the latter value cor-
responds to a total output power, i.e., from both facets, of
=15 mW. Also shown in Fig. 5 are the distributions of
the spontaneous-emission factor n, and the linewidth-

enhancement factor a. The spontaneous-emission factor
n, was calculated using known relations for the carrier-
density dependence of the quasi-Fermi-levels [22].

u (z)=CI[I+(z)]'"e '"'+[I (z)]' e'"'j

w (z)= 1
[ [I (z ) ]I/2e ikz—

C2L (I+I )
'/z

+ [I+(z ) ]1/2eikz
j

C =(f 'dz[I (z)+I+(z)])'/2,
0

(6a)

(6b)

(6c)

ized nature of the mirror losses and possible inhomo-
geneities of the gain medium is to use a Green s-function
approach as has been done in, e.g., [5,16]. Another ap-
proach, and the one we use, is based on direct mode ex-
pansion [8]. It starts from the fact that due to the local-
ized nature of the mirror losses the longitudinal eigen-
modes [u~ j are nonorthogonal. It is then convenient to
introduce the set of adjoint modes {w j (i.e., the eigen-
modes of the time-reversed laser [8]), which is biorthogo-
nal to the set [u~ j [17]. We write the eigenmodes and
adjoint modes of the laser as

III. FUNDAMENTAL LINEWIDTH
R, R2

Evidently, the nonuniformity of the distributions of a
and n,~

has to be properly averaged in any theory of laser
linewidth. In order to see how this should be done we

have performed an analysis based on the same principles
used to derive the standard rate equations (see, e.g. ,

[23,24]), modified to include the fact that mirror losses
are localized and not homogeneously distributed over the
length of the cavity. One approach to treating the local-
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FIG. 3. The solid curve shows the calculated value of a as a
function of carrier density at fixed photon energy E=Eg+30
meV. The dashed curve shows the (approximate) analytical ex-
pressions of Westbrook and Adams.
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FIG. 5. Calculated intensity, carrier density, spontaneous-
emission factor n, ~, and linewidth-enhancement factor a as a
function of the axial coordinate inside the laser. R&=10%,
R2 =90%. The dashed curve corresponds to I=I,h (no satura-

tion) and the solid curve to I= 1.5I,h.
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where C is introduced for normalization and L is the cav-
ity length. Note that the complex optical wave vector k
used in Eqs. (6a) and (6b) depends on the position z in the
cavity because in general neither the gain nor the refrac-
tive index is uniform. Both I—(z) and k(z) are taken
from the numerically calculated stationary distributions
of I(z) and N(z). Notice that the product I+(z)I (z) is
independent of the position z in the cavity; the reason for
this is that the left- and rightward gains are identical
since a possible carrier grating is washed out by diffusion
[25-27].

We have used the formalism of biorthogonal eigen-
modes to derive the laser linewidth. The derivation of
the equations for the stationary and Auctuating quantities
is completely analogous to that given in other papers
[24], except for the fact that almost all quantities become
z dependent now. Writing

E(t) =Eo[1+p(t)]e'~"',

N(z, t)=N, +n(z, t),
(7a)

(7b)

where E(t) is the slowly varying complex field amplitude,
we find the following linearized (i.e., products of small
quantities are neglected) equations for the fluctuating
quantities

—[p(t)+i/(t)]= f dz g(z)[1+ia(z)]n(z, t)d . 1

dt 2L 0

sp —i/(t)F (t)
Eo

(Sa)

a
n(z, t ) = —— n (z, t ) —2 p(t ),

Bt
' r (z) '

g(z)
(Sb)

where F, is the Langevin force corresponding to spon-
taneous emission, (=I t)G IBN is the effective differential
gain and

g(z )$0(z )+
r„(z)

=r„r
co~ (z)—:g(z )So(z)G(z) .

(9a)

(9b)

It should be realized that v& and co& are now functions of
z and have thus lost their simple physical meaning of a
relaxation-oscillation damping time and frequency. The
spontaneous-emission term F,~(t) is the randomly vary-

ing optical field produced by spontaneous emission in the
laser mode, integrated over the cavity. It differs from the
one normally used in the laser rate equations [24] as it re-
sults from the projection of the usual 5-function
correlated-noise amplitude on the adj oint mode w~(z) in-

stead of on the eigenmode u (z). This difference has been
shown to result in the so-called excess-noise factor K
[8,15]. We repeat here the essence of the argument, ex-
tending it in such a way that the effect of saturation is in-
corporated. Equations (8a) and (Sb) describe the dynam-
ics of the system and are the starting point for the calcu-
lation of the linewidth. We neglect fast variations in
n (z, t ), such as those related to the relaxation oscillation,
and set the left-hand side of Eq. (Sb) to zero. This gives

2r~ (z )to~ (z )
n(z, t)=- p(t ),

(z)
(10)

X —f dz 2DL(z)~w~(z)~
0

where a is defined below as Eq. (13a) and DL (z ) is the lo-
cal Langevin-diffusion coefficient. Although this cannot
be rigorously justified, we take the heuristic point of view
that we can indeed define a local-diffusion coefficient
DL(z), which is proportional to the local spontaneous-
emission rate [24] and thus is position dependent when
the carrier density is nonuniform. Only the component
of DL (z ) that varies slowly in space should be used in Eq.
(11), because the spatially fast component, associated
with the population grating, is washed out by carrier
diffusion. According to Eq. (11) the mean-square phase
fluctuations increased linearly in time, a signature of
phase diffusion. The laser linewidth hv is given by the
time derivative of ( b, t}It (r) ). After relating the intracavi-
ty intensity to the total output power P,„„i.e., from both
facets (see Ref. [28]), we obtain

r, , her',
~v= ' (1+a2)E,.t —— '

n.ptG,.t(1+a2)E,.t4m.n out

(12)

Equation (12) is the fundamental result of this paper; it is
of the same form as the standard expression for the semi-
conductor laser linewidth [Eq. (2)], where the effects of
saturation and nonuniform population inversion were
neglected, with the following generalizations:

f dz a(z )r~ (z)t'oz (z )

CX
= (13a)

f dz rR (z)co~ (z)
0

r, (z)
rC„,= f dz " 1 1

I (z) I+(z)

Gsat =

I (z )+I+(z )

~o
'

2I.

[1 (R, )'i ]2I (0)+—[1—(R2)'i ] I+(L)
—(1/2L)lnRtR2 f dz[I (z)+I+(z)]

(13b)

(13c)

Note that the weight factor rtt (z )co+ (z ) used to derive
K is proportional to the local gain if the laser is driven far
above threshold. Also note that E„t is determined by

with rz(z) and co„(z), as defined in Eqs. (9a) and (9b).
Substitution of Eq. (10) in Eq. (8a) yields two coupled
linear first-order differential equations for p(t) and P(t),
driven by the real and imaginary parts of the
spontaneous-emission force. The standard Fourier-
transform technique can be applied to solve these equa-
tions [1,28], yielding for the mean-square phase fluctua-
tions of the optical field

, , [1+(-)']1

4' Eo
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IV. EXAMPLES

The values of a, K„„and G„, as a function of injec-
tion current are given in Fig. 6 for the case of a 30-30, a
10-90, a 10-10, and a 1-100 laser. Clearly the axial varia-
tion of 1V has only a small influence on a, K „and G„„
except in the case of the extremely asymmetric 1-100

~ I I I I I I I I I I I ~ ~ I I I I ~ I I I ~ I ~ ~ I I I ~ ~ I
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1,-

averaging the ratio of the local excess spontaneous-
emission rate r,~(z)/I, over the local traveling-wave in-

tensity. This is similar to the result found using the mod-
el for traveling-wave phase diffusion [9]. Equation (12)
reduces to Eq. (2) when the spontaneous-emission rate
and the linewidth-enhancement factor are taken as in-
dependent of z, as in the case of negligible saturation. In
absence of saturation K,=n, K with

[(R,}'/'+(R, )' '][1—(R,R, )' ']
(R )R2)' lnR )Rq

as the excess-noise factor that describes the effect of out-
put coupling on the laser linewidth in the absence of satu-
ration [5,8, 10].

The occurrence of the factor G„, in Eq. (12) is due to
the fact that saturation leads to a redistribution of the in-
tracavity intensity and thus affects the loss rate through
the mirrors [9,29]. Saturation leads to a reduced gain in
the high-field region close to the output-coupling
mirror(s) and tends to flatten out the intracavity intensity
profile, thereby effectively reducing the cavity-loss rate
G„,& 1. In the absence of saturation, G„,= 1.

Other procedures for the averaging of a have been re-
ported in Refs. [2,16,30]. Some algebra shows that the
results are similar and that the weight factor rz (z )co+ (z )

in the a averaging [Eq. (13a)] that we find with the for-
malism of nonorthogonal eigenrnodes is, e.g. , identical to
that which can be deduced from Eq. (57) in Ref. [16] if we
set the nonlinear gain to zero [31]. The formalism
presented here has the advantage that it allows a clear
physical interpretation of the results and that the derived
equations are easy to use, as will be demonstrated in the
examples below.
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FIG. 7. (a) The circles show the calculated linewidth vs in-
verse output power for the same lasers as in Fig. 6. The dashed
curves represent a linear fit. For all four lasers, the slope of
these curves equals the slope predicted by the theory without
saturation within 0.2%. (b) Enlarged section in the region of
high output power for the 1-100 laser. The intercept shows a
power-independent contribution of 1.1+0.3 MHz, apparently
due to the effect of saturation.

laser. The linewidth [Eq. (12)] has been calculated for
several values of the inverse output power for the same
lasers; the results are shown in Fig. 7. The main result is
that for all four lasers the slope of the calculated
linewidth versus inverse output power is within 0.2%%uo of
the value predicted by theory when saturation is neglect-
ed. Therefore we conclude that, although saturation
causes important laser parameters such as a and n, p

to
vary appreciably along the laser axis (see Fig. 5), the net
effect on the fundamental linewidth is negligibly small,
even when the asymmetry of the mirror reflectivities is
very large.

It should be noted that, for the 1-100 laser, Fig. 7(b) in-
dicates the existence of a power-independent contribution
to the laser linewidth due to the effect of saturation. A
power-independent linewidth is actually observed in
semiconductor lasers, but generally attributed to other
causes such as mode-mode interactions [12,32 —34].

It should also be noted that we have assumed that the
carrier density and thus the quasi-Fermi-level separation,
which is proportional to the voltage across the laser junc-
tion, are free to vary across the laser axis. This would
indeed be the case if the laser were a purely current-
driven device. However, a semiconductor laser is not
perfectly current driven: the series resistance along the
laser axis is finite and will tend to remove the axial volt-
age difference imposed by the variations of the carrier
density. Thus the carrier-density variations calculated in
this section present an upper limit to the actual varia-
tions.
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FIG. 6. Calculated values of a, G„„and E„,as a function of
injection current for four lasers with different facet reQectivities
(in percent). 1: 30-30; 2: 10-90; 3: 10-10; and 4: 1-100. The
threshold currents lie at the starting point of each curve. Ex-
cept for the 1-100 laser the averaged quantities depend only
slightly on injection current.

In conclusion, we have presented the results of calcula-
tions of the linewidth of a Fabry-Perot-type Al Ga& „As
laser with various facet reflectivities. The calculations in-
clude the saturation inside the laser. In cases of practical
interest this results in appreciable (tens of percent)
nonuniformity of the distributions of the linewidth-
enhancement factor and the spontaneous-emission factor.
However, we have found that after proper averaging of
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these distributions and taking into account the effect of
saturation on the output-coupling efficiency, the resulting
calculated linewidth as a function of the inverse output
power is hardly affected by saturation. A small power-
independent contribution, however, was noted for the
case of very asymmetrically coated lasers.
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APPENDIX: CALCULATION OF THE
LINEWIDTH-ENHANCEMENT FACTOR

In this Appendix we comment briefly on the calcula-
tion of the linewidth-enhancement factor a, the results of
which have already been presented in Fig. 2—4. General-
ly, cx depends upon the photon energy E and the carrier
density E. In this appendix we derive a simple formula
that permits a straightforward calculation of tr(N, E) for
Al Ga& As. Apart from the context of the present pa-
per this formula might also be useful when modeling
waveguides of semiconductor lasers [35,36].

Our calculation of the linewidth-enhancement factor a
starts with the definition given as Eq. (3). To find a,
By, /BE is calculated from the optical-gain spectrum and
By„/BN is then deduced using the Kramers-Kronig trans-
formation:

By„(E') 2 „E By; (E )=—P dE,
BN m o (E'—E') BN

where E=hv —E and P indicates the principal part.
We have numerically performed this calculation using
strict k selection in the calculation of the optical gain; re-
laxation of k selection has been shown to have a negligi-
ble effect upon a [37].

The numerical calculation of a was done for a range of
values of the carrier density E and photon energy E. The
energy at which the gain reaches its maximum value for a
specific carrier density is denoted by E,„. The value of

a(N, E E)= [ 1.4——7. 85 X 10 (E Ez ) )N—
+ [ 1.349—0.04(E Es )], —(A2)

where N is in units of 10' cm and E —Eg is in units of
me V. This formula describes 0;, for the case of
Al„Ga, „As lasers, with less than a 10%%uo error when

compared with the numerically computed values
displayed in Fig. 4, i.e., for carrier densities in the range
(1.5 —4)X10' cm and for photon energies in the range
of 10—100 meV relative to the band gap.

a at this energy is relevant, as laser oscillation will take
place at or very close to this gain maximum. In Fig. 1 we
have presented the results of our calculation for the gain
G(N, E). In Figs. 2 and 3 the calculated values of
a(N, E,„) and a(N, E ) at a Jinxed photon energy
(E=Ez+30 meV) have been shown, respectively. In
both figures, also curves based on approximate analytical
expressions of Westbrook and Adams [37] are given. For
In, Ga As P, lasers the results of Westbrook and
Adams have been found to yield excellent agreement with
experiment [37].

Over a part of the operating range, reasonable agree-
ment is obtained between the two methods of calculating
e, but significant discrepancies appear, in particular, in
the results of Fig. 3, i.e., for a(N, Es„,d). The discrepan-
cies appear to have their origins in certain approxima-
tions made in the Westbrook-Adams derivation that, al-
though valid for In& Ga As P, lasers, give rise to
quite large errors for Al Ga, As lasers. Specifically, it
seems that, due to the relatively large carrier density in
Al Ga, As lasers, an analytical approximation to the
carrier-density derivative of the Fermi-Dirac distribution
functions, as made by Westbrook and Adams, becomes
rather inaccurate.

In Fig. 4 we have presented calculations of a(N) for a
variety of E values. Calculations of the carrier-density
dependence of tx for 1.42-eV band-gap GaAs lasers (and a
photon energy of 1.446 eV) have also been reported by
Chow, Dente, and Depatie [36]. We find that our results
(obtained for a 1.54-eV band gap) are within 5' of those
given in Fig. 1 of Ref. [36]. From a linear fit to the com-
puted results displayed in Fig. 4, we obtain
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