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Hydrogen molecules and chains in a superstrong magnetic field
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We study the electronic structures of hydrogen polymolecules H„(n =2,3,4, . . . ) in a superstrong

magnetic field (B ~ 10' G) typically found on the surface of a neutron star. Simple analytical scaling re-

lations for several limiting cases (e.g., large n, high B field) are derived. We numerically calculate the

binding energies of H„molecules for various magnetic-field strengths. For n =2,3,4 we employ a
Hartree-Fock method to determine the ground-state structure of the molecule in the Born-Oppenheimer
approximation. For n = 00 (a bound infinite chain) we use a variational method. For a given magnetic-
field strength, the binding energy per atom in the H„molecule is found to approach a constant value as n

increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds
3 to 4. We also consider the structure of negative H ions in a high magnetic field. For B—10' G the
dissociation energy of an atom in a hydrogen chain and the ionization potential of H are smaller than

the ionization potential of neutral atomic hydrogen.

PACS number(s): 32.60.+ i, 97.10.Ld, 31.20.Di, 97.60.Jd

I. INTRODUCTION

where p is the cyclotron radius

p=(Pic/eB )' =2.57X 10 ' B,z' (cm), (1.2)

and 8,2 is the magnetic-field strength in units of 10' G.
Because of this enormous confinement of electrons in the
transverse direction by the magnetic field, the Coulomb
force becomes much more effective for binding electrons
in the parallel direction, thereby giving greatly increased
binding energy. Furthermore, it is possible for these
elongated atoms to form molecular chains by covalent
bonding along the field direction. Several different ap-
proaches have been developed and some detailed calcula-
tions have been performed for determining the structure
of atoms and one-dimensional infinite chains in a strong
magnetic field. These methods include variational calcu-
lations [2—4], Thomas-Fermi-type statistical models [5,6],
Hartree-Fock calculations [7—9], and density-functional

The intense magnetic fields (8 —10' 6) believed to ex-
ist on the surfaces of some neutron stars motivate the
study of atoms, molecular chains, and condensed matter
in fields of extreme magnitude (see Ref. [1] for an early
general review). Moreover, the structure of matter in a
strong magnetic field is an interesting problem of funda-
mental physics, as well as an important astrophysical is-
sue in the context of neutron stars.

In superstrong magnetic fields the structure of atoms
and condensed matter is dramatically changed by the fact
that the magnetic force on an electron is stronger than
the Coulomb force it experiences. In the direction per-
pendicular to the field, the electrons are confined to move
on cylindrical Landau orbitals around a nucleus. The or-
bitals have radii

p =(2m+1)'~ p, m =0, 1,2, . . .

calculations [10,11]. The general consensus is that for
elements with Z &4, the isolated atom is energetically
favored over the molecular chain for typical magnetic
fields characterizing neutron-star surface. In particular,
the infinite iron chain is not bound, a qualitatively
different conclusion from the early result [3]. Therefore,
the polar cap model for pulsar emission [12], which is
based on the assumption of strong binding of the magnet-
ic material (Eb ~ 3 keV) to support a finite electric-field
boundary condition, may have a problem.

For young radio pulsars, which cannot be accreting
much gas and still remain visible as pulsars, one might
expect the surface to consist mainly of condensed iron-
peak elements formed at the neutron-star birth. But for
accreting neutron stars, acquiring fresh material either
from the interstellar medium or from a binary com-
panion, one expects a gaseous atmosphere to form on the
top of the surface. For these neutron stars, the light, ac-
creted material should dominate the atmosphere and sur-
face layers while the heavy elements sink down quickly
due to gravitational separation [13]. In fact, because of
the light material sitting on the surface, Fe may be
transformed to other elements by electron capture, so the
primordial Fe may not be present at all [14,15]. For
these reasons, the lightest elements, like H and He, may
be the most important species in a neutron-star atmo-
sphere. If the temperature there is not too high, light
atoms, molecules, and/or bound chains may form.

In the past, significant efforts have been devoted to the
theoretical study of hydrogen atoms in a strong magnetic
field. Accurate calculations of the energy levels of the H
atom in a magnetic field of arbitrary strength have been
performed (see, e.g., [16] and references therein). There
have also been some variational calculations of molecular
ions (Hz +) in strong magnetic field [17,18] and a few in-

vestigations of H molecules in a strong field [19]. The er-

rors in the atomic and molecular energies from these
variational calculations are usually bigger than 10%, re-
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suiting in an unreliable dissociation energy for the mole-
cule. For the magnetic-field strengths of interest here, no
reliable binding energies of H molecules have been ob-
tained previously.

As a first step in understanding the local physical prop-
erties of a neutron-star atmosphere, we calculate in this
paper the ground-state binding energies of several
different forms of H in a strong, uniform magnetic field.
Such forms include hydrogen polymolecules H„
(n =2, 3,4, . . .), infinite chains (n = 00 ), molecular ions

(H2+ ), and negative ions (H ), the latter being of poten-
tial importance for the opacities of a neutron-star atmo-
sphere. We focus entirely on the strong-field (but nonre-
lativistic) regime B ))10 G, for which the cyclotron en-

ergy of an electron is much larger than the Coulomb en-
ergy (see Sec. II). In all of our calculations, we use the
standard Born-Oppenheimer approximation, ignoring
possible corrections to the energy due to finite proton
mass [20]. Also, in our calculations of the molecules, we
assume that the directions of the molecular axis and mag-
netic field coincide, corresponding to the molecular
ground state. One can expect vibration (precession) of
the molecular axis about (around) the magnetic-field axis,
giving rise to possible rovibrational molecular spectra,
but we consider only the molecular ground state. We cal-
culate the binding energies for n =2, 3,4 by solving the
Hartree-Fock (HF) equations for the electrons. As n in-
creases, the single-determinant Hartree-Fock method be-
comes invalid because of the mixing of different
configurations. Fortunately, for a given B field, the bind-
ing energy per atom approaches a constant independent
of n ("saturation") at n -3,4 for typical field strengths of
interest, as we demonstrate analytically. Qualitatively,
this saturation occurs because as n increases, it becomes
energetically more favorable to have more electrons occu-
py the same inner Landau orbitals rather than have each
of them occupy different nodeless Landau orbitals. Our
numerical results confirm our qualitative picture. We
calculate the binding energy for the infinite H chain using
a variational method. The variational method is essen-
tially that of Flowers et al. [3] (which contains numerical
errors as pointed out by Miiller [4]), but our equations are
derived from the energy functionals given by Neuhauser
et al. [9]. Our approximate variational calculation
proves to be quite good for the He chain when compared
to more detailed Hartree-Fock calculations [9]. There-
fore, we expect that our results are even better for H,
where our approximations are more reliable and where
no previous calculations have been performed.

The paper is organized as follows. Section II is a brief
review of some basic concepts about atomic structures in
a high magnetic field, including a discussion of the bind-
ing energy of negative H ions. In Sec. III we consider
some qualitative features of molecules in a strong mag-
netic field and derive some simple scaling relations for the
binding energies of molecules. In Sec. IV we discuss the
methods and key equations used in our numerical calcu-
lations for H„molecules (n =2, 3,4 and n = ~). In Sec. V
we present our numerical results and confirm our qualita-
tive picture of saturation. In Sec. VI we summarize our
main conclusions.

II. BASIC CONCEPTS: ATOMS
IN A STRONG MAGNETIC FIELD

In this section we review some basic concepts about
atomic structure in a high magnetic field. These serve to
introduce some useful terms and are important for under-
standing the molecular calculations performed below and
the associated scaling relations. Our symbols for express-
ing the strength of magnetic field are as follows: B
represents the magnetic-field strength in Gauss, b gives
the magnetic field in atomic unit (a.u.), i.e., b=B/B0,
where

e /a0=2 Ry=2X13.6 eV,

and length is in units of Bohr radius

aa=fi /m, e =0.529X10 cm .

For a free electron in an uniform magnetic field, the
motion perpendicular to the field is quantized into
different Landau levels, with the Landau excitation ener-

gy (the cyclotron energy) given by [21]

fuu, =Pi =b (a.u. )=11.57B,2 (keV) .eB

@lee
(2.1)

The ground-state (nL =0) Landau wave functions are
given in cylindrical coordinates (p, z, P) by

~o (P 0)= ~2
P (2.2)

Here the B fields lies along the z direction and, for the
subscripts in 8'„, nL is the Landau-level quantum

number (the number of nodes in the p direction), while m
is the negative of the angular momentum in the z direc-
tion. In Eq. (2.2), the length is in the units of the cyclo-
tron radius

P= Rc

eB

' 1/2

=b ' (a.u. )=2.57X10 ' B ' (cm) .

(2.3)

Accordingly, the electron distribution has a maximum at

p =(2m+ I)'~ p, m =0, 1,2, . . . .

These values are the radii of the Landau orbitals perpen-
dicular to the field. Note that the energy of a free elec-
tron does not depend on m at a11; for m »1 the max-
imum in the p distribution at p is very sharp. The elec-
trons move as free particles in the z direction.

For an extremely strong magnetic field,

B ~ B„i=m, c /A'e = (Rc /e ) Ba =4.414 X 10' G,
the electron cyclotron energy becomes comparable to the
electron rest mass energy and the transverse motion of

Ba =m, e c /i' =2. 35 X 10 G;
B,2 gives the field strength in 10' G, i.e., Biz =B/(10'
G). Recall that in atomic units, energy is expressed in
units of
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the electron becomes relativistic [21,22]. In this regime,
our nonrelativistic calculations will not be strictly valid.
But relativistic effects should not qualitatively change our
results, since the corrections are only of order
(U, /c ) —~E~ /m, c (v, is the electron speed in the z direc-
tion and ~E~ is the binding energy), which is much less
than unity for light elements. For practical applications
we are interested only in the field strengths up to a little
more than 8„„for pedagogical purposes we shall consid-
er arbitrarily large 8 but shall use the nonrelativistic
equations throughout.

Now we consider the energies of atoms. If the magnet-
ic field is sumciently strong so that

i.e.,

Ze Qo« fico, , or p «
p Z

b»Z'

(2.5)

(2.6}

m, v=0, 1,2, . . . .

The averaged potential is given by

V (z)= f d r~~IV (r~)~—21
r

(2.7)

(2.8)

Hereforth we shall employ p as our length unit in all the
wave functions and averaged potentials, making them di-
rnensionless functions. It is important to distinguish two
distinct types of excitations in the energy spectrum E
The "deep-bound" states have no nodes in their z wave

(Z is the ion charge), then the Coulomb potential can be
treated as a perturbation, and electrons are confined to
the ground Landau level ("adiabatic approximation").
For light atoms and typical field strengths found on the
surface of a neutron star, this condition is well satisfied.
We restrict our attention to this high magnetic-field re-
gime throughout this paper, i.e., all electrons will be in
the nL =0 state, so we will henceforth omit the index nL.
Electrons in the ground Landau level have spins all
aligned antiparallel to the magnetic field; hence, we can
ignore the electron spin degree of freedom completely.
Within this adiabatic approximation, the transverse wave
functions of electrons are fixed to be the Landau wave
functions, while the electrons adjust themselves in the z
direction. The electrons are then described by a one-
dimensional Schrodinger equation (or HF equations) in z,
with the electric potential averaged over the transverse
direction and weighted by Landau wave functions. Cal-
culations of hydrogen atomic structure that do not em-

ploy this simplification have been performed (e.g., [16]).
Let us consider the energy spectrum of a hydrogenic

atom (one electron, nuclear charge Z}. The electron wave
functions may be written as 4,= W (r~)f „(z), where
v denotes the number of nodes in f. Substituting this
function into the Schrodinger equation and averaging
over the transverse direction yields a one-dimensional
Schrodinger equation for f:

Ze„,f". „V (z)f .=E .f—. ,
2mep p

functions (v=0). Their energies are approximately given
by [ll

E o
——2AZ I (a.u. ),

I =ln 1

Zpm

1 b=ln
Z 2m+1

1/2 (2.9)

R-p 2m +1
b

1

ZI
(2.10}

This excitation, which consists in changing a Landau or-
bital from m to m+1, enters only logarithmically into
the electron binding energy, and therefore it is small. For
hydrogen (Z = 1) there is only one dimensionless parame-
ter b»1, but b has to become extremely large before
asymptotic solutions are approached accurately. In the
limit of the inequality b))(lnb) »1 becoming very
strong, and for m satisfying the double inequality
b /(lnb ) ))m ))1, the asymptotic value of A in Eq. (2.9)
is A =1. One may see this result by replacing the aver-
aged potential V (z) by I/((z~+p ) as B becomes in-

creasingly large; the analytic solution of the Schrodinger
equation for this potentia1 gives A =1 asymptotically
[23]. Our numerical solutions of the Schrodinger equa-
tion (2.7) gives A -0.3 for B,z —1 and A is still only
-0.5 even for 8,2

—10 . In the asymptotic regime, the
energy difference 6 between states m and m + 1 is only

b, =(lnb)ln (a.u. ),2m +3
2m +1 (2.11)

much smaller than the ground-state binding energy of
0.5(lnb ) (a.u. ).

Another type of excitation consists in having nodes in
the z wave functions (v%0). These states are only weakly
bound, e.g. , the v= 1 state (for Z =1) has about the same
binding energy as the ground state of a normal
magnetic-free H atom, E = —13.6 eV, since the equation
describing this odd-parity state is almost the same as the
radial equation satisfied by the s state in a normal hydro-
gen atom [1,23].

Now we consider heavy atoms. When
ao/Z »&2Z+ Ip, i.e., b))2Z (superstrong fields), all
electrons settle into the deep-bound levels with
m =0, 1,2, . . . , Z —1. The atomic energy is approxi-
mately given by the sum of all the eigenvalues of Eq.
(2.9). Accordingly, we can obtain an asymptotic expres-
sion for the total energy of the atom for Z » 1 [24]

1/2
b

2Z3
=lnE——Z I, I=in

Z&2Z+ lp

for l » 1 . (2.12)

When Z «b «2Z (intermediate-strong fields, but
still high enough to ignore the Landau excitation), the

m=0, 1,2, . . .

where A is of order unity. The sizes in atomic units of
the atomic wave functions perpendicular and parallel to
the field are, respectively,

' 1/2
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inner Landau orbitals are populated by many electrons.
In this regime the electrons can be treated as a one-
dimensional Fermi gas in a more or less spherical atomic
cavity [25]. Simple dimensional analysis for this gas gives
for the electron density n, -bpF (recall the degeneracy of
a Landau level is eB/hc- b) and for the kinetic energy
density c,k-bpF, where pF is the Fermi momentum.
Thus the total kinetic energy is Ek -R n, /b
-Z /b R, where R is the atomic radius. The potential
energy is E ——Z /R. Therefore, the atomic energy is

Z' Z'
b'R6 R

(2.13}

Minimization of E with respect to R gives

R-Z' 'b ' (a.u. ), E- Z—'b ' (a.u. ) . (2.14)

R -p„ 2n —1

b

1/2
1

Zl

L,
with l =ln . (2.15}

R

The ground-state energy of the ion is

E=——1 (4Z n+1)—
8

(2.16}

Applying this result for hydrogen ions (Z = 1), we see
that the ionization potential of H to H+e is —

~p
of the

binding energy of the H atom. Also we see that for n & 2,
the negative ion H '" "is not bound. Hence it is likely
that the only possible bound negative H ion is H

More detailed Thomas-Fermi-type models have been
developed for this regime [5,6,26], giving approximately
the same scaling relations. We shall see below that, in a
certain limit, the binding energy per atom as a function of
magnetic-field strength in a molecule is very similar to
that found in a heavy atom.

Consider next the possibility of one or more electrons
being attached to a neutra1 hydrogen atom to form nega-
tive hydrogen ions. First imagine the formation of a H
ion by attaching an "extra" electron to a H atom in the
ground state with m =0. The extra electron can only set-
tle into the m = 1 state, which, if we ignore the screening
of the proton potential due to the first (m =0) electron,
has a binding energy of ~E,O~ as in Eq. (2.9) with Z= l.
But there is Coulomb repulsion between the two elec-
trons, which reduces the binding of the m =1 electron.
The repulsive energy is of order (ln&b )/L„which is of
the same order as ~E&o~. But the repulsive energy is
smaller ~E&0~ because of the cylindrical charge distribu-
tion of both electrons. Therefore, H is bound relative to
H+e and its ionization potential is also proportional to
(ln&b ) .

More detailed variationa1 calculations have been per-
formed for a Z ion (nuclear charge Z) with n electrons in
a superstrong-field regime [24]. The sizes of the ion per-
pendicular and parallel to the field are, respectively,

III. H„: QUALITATIVE OVERVIEW
AND SATURATION

1 2aU= ——ln +c
a R

(3.1)

where c is approximately constant of order unity (see,
e.g. , [1] or Appendix A). We shall find it useful to define
a "critical number" n, by

n, = [b /( lnb ) ]' (3.2)

As in Sec. II, b has to be extremely large for asymptotic
results to be accurate and for the analytical relations in
this section, we assume n, ~10, which requires b & 5
X10'.

Let us consider the case when all electrons in the mole-
cule occupy the deep-bound states with m =0, 1,
2, . . . , n —1. We shall see that this regime requires
n, )&n »1 and shall refer to it as the regime "before sat-
uration. " The molecule has a cylindrical shape, with the
cylinder radius given by

R —&2n —lp-
' 1/2

2n

b
(a.u. } . (3.3)

Each electron fills the entire length of the cylinder, J,.
Accordingly, the kinetic energy of an electron is —1/L, .
Using Eq. (3.1), the energy per atom is then

Here we consider some qualitative features of H„mole-
cules (n is the number of atoms in the molecule) in a high
magnetic field and derive simple scaling relations which
apply in some limiting regimes. The fundamental
difference between the normal H molecule in a zero 8
field and a molecule in a high magnetic field involves
their different electronic structures. In the zero-field
case, two H atoms in their ground states with spins oppo-
site to each other form a H2 molecule by covalent bond-
ing. In this case adding more H atoms is not possible by
the exclusion principle (unless one excites the third atom
to an excited state, but the resulting H3 is presumably
short lived). In a high magnetic field, the spins of the
electrons in the atoms are all aligned antiparallel to the
magnetic field, and therefore two atoms in their ground
states cannot bind together according to the exclusion
principle. Instead, in a high magnetic field, one of the
atoms has to be excited to a higher state first (which costs
"activation energy") before the two atoms can form a
molecule. However, as we discussed in Sec. II, exciting
an electron in the H atom from Landau orbital m to
m +1 costs very little energy, and therefore the resulting
molecule is stable. In this way, more atoms can be added
to form a bigger molecule, in contrast to the field-free
case.

We now derive some approximate scahng relations.
Let a be the atomic spacing (assuming equal spacing) and
R be the radius of the molecule perpendicular to the field.
Let the size of the molecule in the z direction be L, -na.
We consider n »1 so that any edge effects may be ig-
nored. As long as L, &)R, the Coulomb energy per atom
of the molecule is always
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1 nE— — I
L2

R =1.70b, a =1.88R, E= —0 390b

(3.7)

2a
with I=in =ln

R
Z

3/2 (3.4)

where we have assumed l))1. Variation of E with
respect to L, gives

E ——nl, L,——22
nl

21/2 n
with I =ln

I n 5/2
——', ln

n,
(3 5)

2+2 1 2a
ln

3R4 2b2 R

y =0.577. - (3.6)

where the first term is the kinetic energy and the second
term is the Coulomb energy (the Madelung energy for the
one-dimensional uniform lattice [27]). We can minimize
the energy by varying a and R independently, giving

As mentioned, this scaling behavior is expected to be
correct in the regime n, )&n »1, so that I ))1. For the
H2 molecule, n=2, the dissociation energy should be
comparable to the ionization potential of the hydrogen
atom for sufficiently large fields: They should both scale
like (lnb ), but we shall see that their ratio approaches a
constant only for b » 10 . In this regime, the binding en-

ergy of the molecule —nE ~ n . We notice the similarity
between Eq. (2.12) for the energy of heavy atoms in the
superstrong field and Eq. (3.5) for molecular energy be-
fore saturation. We present a more detailed variational
calculation for this regime in Appendix A, where we get
the coefficients for the relations above.

For a given 8 field, as n increases, the electrons occupy
more and more nodeless Landau orbitals (up to
m =n —1); beyond the critical number n„ it becomes en-

ergetically more favorable for electrons to settle into the
inner Landau orbitals with nodes in their z wave func-
tions. Beyond this point saturation occurs, as the energy
per atom asymptotes to a value independent of n, as we
now show. The saturation point is reached once a -R,
which is equivalent to n -n, .

After saturation, many electrons settle into the v%0
states, and the electrons can be treated as a Fermi sea in
the z direction. In order of magnitude, the electrons oc-
cupy states with m =0, 1,2, . . . , n, —1 and v=0, 1,
2, . . . , n ln, For n ». n, »1, we can approximate the
electron distribution in the molecule to be a uniform
cylinder with radius R and atomic spacing a. The distri-
bution is uniform because in the transverse direction the
area covered by the m orbitals increases roughly as
(&2m+1) ~m. Hence the volume increases with the
number of interior electrons, giving a constant electron
density. Note that the cylinder must have a reasonably
sharp edge because the wave function described by Eq.
(2.2) has such a sharp maximum at p . The energy per
atom is then

These scaling results become increasingly more reliable as
n increases beyond n„ i.e., n ))n, ))1. E is independent
of n in this regime. Note that this scaling behavior for a
molecule beyond saturation is the same as that for a
heavy atom in a field of intermediate strength.

The above relations provide qualitative understanding
of the molecular binding energy as a function of n and
the magnetic-field strength. But for these scaling laws to
apply accurately, we need b )&10, i.e., 8&2 »10 . Such
high field strengths are not to be found on neutron-star
surfaces. Nevertheless, the scaling behavior derived
above and the onset of saturation is confirmed by the de-
tailed calculations reported below.

IV. CALCULATION OF H„MOLECULES

In this section we discuss our detailed calculations of
H„rnolecules in a superstrong magnetic field.
Specifically, we calculate the ground-state binding energy
of small H molecules (n =2, 3,4) and that of an infinite H
chain (n = ~ ). In both cases we adopt the Born-
Oppenheimer approximation (ignoring any finite proton
mass effects on the electronic energy) by fixing the atomic
spacing a, calculating the resulting electronic structure,
and finding the minimum energy as a function of a. Since
the methods adopted for these two cases are otherwise
quite different, we discuss them separately.

A. Small molecules before saturation

We now present our equations for the simplest mole-
cule Hz (n =2). Corresponding equations for the higher
n's can easily be generated (see, e.g., Appendix B).

1. Hz. Molecular-orbital method (MO)

For a many-electron system in a high magnetic field,
the general one-electron basis wave functions are of the
form

@ „(r)=W (p, P)f „(z) . (4.1)

The Hamiltonian for H2 is

(4.2)

In writing Eq. (4.1), we omit the subscript nL =0 in W
since all electrons are in the ground Landau level (see
Sec. II); v denotes the quantum number for the z-

dependent wave function f (v is the number of nodes off
in the z direction). For a small number of electrons (i.e.,
before saturation) we can set v=0 since the high-v states
have much higher energies compared with the deep-
bound states (see Sec. II) (however, we shall see in Sec.
IV A 3 that at large atomic separations the ground state
must include appreciable contributions from v&0 basis
functions). For two electrons, we can choose two orbit-
als,

@00(r)=Wo(p, g)foo(z), C &o(r) = W&(p, f)f&0(z) .



45 HYDROGEN MOLECULES AND CHAINS IN A SUPERSTRONG. . . 4837

2 p 2

H=H0(1}+Hp(2)+ +
r12 a

with

(4.3)
A

v (z)= fd rllw (r1)l +
rz

Hp(1) =—

Hp(2)=—

a2 e'
2m 3Z1

111 8 e e

2m, BZ2 rA2 r&2

(4.4)

H0C 0=6 0C 0 m =0 1 (4.5)

Therefore, we can easily determine the f's by solving the
one-dimensional Schrodinger equation

2f p V (z)f p=s pf p m=0 1
2mep p

(4.6)

where 1,2 denote the electrons, A, B denote the ions, a is
the distance between the two ions, r A1 is the distance be-
tween electron 1 and ion A, etc. (Fig. 1). As an approxi-
mation, we can choose the two orbitals to be solutions for
the H2+ ion (the so-called molecular orbitals; see, e.g.,
[28]). Hence they satisfy

a a=V z ——+V z+-
m 2 m (4.9)

where V (z) is defined by Eq. (2.8}. The two-electron
wave function is then

2

00 10
+Edir+Eexch (4.11)

where E " and E'"'" are the direct and exchange ener-
gies, respectively. They are given by

2E"'=fd3r, d'r21@~(rl) 12lc,p(r2) I'
12

2}= [ 00 10]

1
[@'00( 1}@10(2} @00( 2 @10( 1}]

2

where the notation S[ ] denotes an antisymmetrized wave
function. Therefore, the energy of H2 is

E=&ylHly&

obtained by averaging the three-dimensional Schrodinger
equation for 4 over the transverse direction. Equations
(4.6) are solved for f's, subject to the boundary conditions

and

2

dz, dz2fpp(z, }f,p(z2) Dpl(zl z2)
P

(4.12)

and

f', =0 at z =0 (4.7) 2E'*'"=—fd'rl" r24 00(r 1 }410(r2A 00(r28 10(rl)
12

2m~pf 0~exp —
Izl ', Is, l$2

' 1/2

as lzl~~ .

(4.8}

2

Z1 Z2 00 Z1 10 Z2
P

xfpp(z2)f 10(zl }Eol(zl z2) . (4.13)

The averaged potential is given by
In Eqs. (4.12) and (4.13), the direct and exchange kernels
are defined by

1
Dpl (zl z2 ) =fd rlld r2j I wp(rl~) I I wl (r2j ) I

Ep1 (z, —z2 ) =f d r, jd r21 Wp ( r, j ) W, ( r2J )

(4.14)

X Wp (r2j }Wl (rlj )
12

(4.15)

where the adopted length unit in 8'is p.
(For some useful mathematical relations for calculating

the functions V, D ., and E,, see Appendix C.)

A4 2. Hz. Hartree Foek method (HF)-

FIG. 1. The adopted coordinate system for a H2 molecule in
a high magnetic field.

Here the basis functions are the same as in the
molecular-orbital method, but the f's are not given by
the orbitals of H2+. Instead, we determine the f's self-
consistently (see Appendix B), which yields the corre-
sponding Hartree-Fock equations (we omit the index
v=0} in this section):
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fi d
2m, dz2

2 2

V (z)+ K (z) —E f (z)
p p

2

J (z), m =0, 1 . (4.16)
p

In Eq. (4.16), V is again given by Eq. (4.9), the direct
and exchange potentials E and J are given by

E (z}=fdz'f, (z') D, (z —z'),

Jo(z) =f&(z)fdz'f &(z')fo(z')Ep&(z —z'), (4.18)

(4.17)

and similarly for I(, and J&, where D0, and E0, are given
by Eqs. (4.14) and (4.15). Boundary conditions for the f's
are given by Eqs. (4.7) and (4.8). Similar equations have
been derived in [7—9] and used to solve the structure of a
single atom. The total energy of the molecule is then

separation increases, the electron orbitals employed
above do not approach two separated orbitals of isolated
atoms. A second electron configuration, which has a
much higher energy than the first for small separation,
but becomes more and more degenerate with the first
configuration at large separation, must also contribute to
the ground-state energy at large separation. At large sep-
aration, the calculations discussed above, which are based
on a single-electron configuration, are clearly invalid due
to the mixing between different configurations. To treat
the molecule properly when the separation is large, we
should include another configuration which consists of a
single node state (vAO) in our basis trial functions (the
so-called configuration interaction; see [28]). To show
that we can get the correct large-a behavior for the total
energy, let us consider H2. In Sec. IV A 1 our trial func-
tion is

2

Edir Eexch
0 1 (4.19) V, =S[Coo@,o] . (4.20)

which just differs from Eq. (4.9) by the signs in front of
the direct and exchange energy terms. The Hartree-Fock
equations for general H„molecules are given in Appen-
dix B.

3. Ht. Configuration interaction

At large atomic separation a, the total energy of the
molecule (excluding the e /a term) should approach the
sum of the energies of two isolated atoms, one is the
ground state, another in the first excited state (see Sec.
III). The two methods above (MO and HF) do not give a
correct large-a behavior for the total energy (see Fig. 2).
This erroneous behavior is not surprising: As the ion

In general, another configuration wi11 be mixed with %'&.

0'2=S[C'oi~'1& l . (4.21)

Notice that both configurations have the same symmetry
with respect to the Hamiltonian: the total orbital angular
momentum along the z direction is MI, =1, the total spin
is Mz, = —1, and both are even with respect to the opera-
tion r;~ —r;. In ordinary molecular notation, both are
designated H . At small separation, %2 lies much higher
in energy than 4&, so that when calculating the ground-
state energy, we can simply employ 4&. But at large sep-
aration, the energy of (I)'2 is close to 4&, and the mixing
between these two configurations becomes important.
We then have

2 2

H„= (0')lHI%') ) = +sop+a, p+ dz&dz2f~(z& ) f&p(z2) Dp&(z] zp)
p

e
dzidz2foo(zi }fio(zz) foo(zz)f io(zi )Eo&(zi —z2),

p
2 2

Kz2 = (%2 Hlq 2 ~ +&pl+&11+ ch)ck2fol (h1 }fll(h2) Dol(hl z2)
p

2

dz, dzzfo, (z, )f»(z2)fp&(zz)f &](z] )Ep&(z& zz)
p

2

dz&dz2f~(z&)f p&(z& )f&p(zz)f»(z2)Dp&(z& z2)
p

e2
dz, dzzf pp(z & )f» (z

& )f&p(h2 )fp] (z2 )Ep] (z
&

—z2 ) .
p

(4.22)

(4.23)

(4.24)

E=
—,'(H„+H22 ) ——,

' [(H„—H22) +4H, z
]'~ (4.25)

The total energy is obtained by solving the secular equa-
tion detlH;. Eo,, l

=0, which yi—elds for the lowest ener-

gy state

A.s n increases, more configurations are mixed and the
equations become more complicated. We don't consider
them any further. In Fig. 2 we summarize our calcula-
tions for H2 using the three different methods discussed
above. We see that the calculation that takes
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configuration interaction into account does give the
correct behavior of the total energy for large separation.

B. Infinite H molecular chain (H )

I
I I

I
I I I

-250

We calculate the ground-state energy of an infinite
molecular chain of hydrogen in a superstrong magnetic
field using a variational method. For an infinite chain,
which is always beyond saturation, the simplest model of
a cylinder of uniform electron density gives [see Eq. (3.7)
with the Z dependence restored or Ref. [27] ] the energy
per atom for a Z chain:

E = —0.390Z b (a.u. )= —119Z Biz (eV) .

(4.26)

Comparing the value E = —119 eV (for Z = 1 and
B =1),2= & with the ground-state energy of a H atom at
B~2=1, E, = —160 eV (see Table I), we have E)E„
which is qualitatively wrong (see Sec. III). Clearly, the
most naive calculation above is not sufficiently accurate
to determine the possibility or the binding energy of a
chain versus an atom at B,2 —1. (The uniform cylinder
model is reliable, however, for higher field strengths; see
ec. III.& Ther ~. III.& Therefore, a more robust variational calcula-

tion is needed to obtain the results for field strengths
characterizing neutron-star surfaces.

Gla sacr and Kaplan [2] generalized the uniform
cylinder model above by considering the quantized elec-

tron charge distribution in the perpendicular direction.
However, they assumed a uniform electron population in
different Landau orbitals. The effect they treated
amounts to only a small change in the value of the con-
stant in the Madelung energy expression (3.6), and there-
fore it is still insufficient to account for the binding of
chains.

The next step in a more relaxed variational calculation
is treating the effect of Coulomb potential on the popula-
tion of electrons in different m orbitals [3]. This is clearly
an important ingredient for calculating the binding of
chains since it allows for more electrons in the inner or-
bitals (small m's), which increases the binding.

A further improvement in the calculation of chains in-
cludes the nonuniform electron density distribution in the
z direction along the field [9]. This effect is important for
treating the bound electrons (i.e., the "electron core" in

li h
[3])correctly for chains of heavy atoms like F B t f
ig t atoms such as H and He, the density variation along

z is not significant since all the electrons in the chain are
"ionized" and are well approximated by plane waves. A
numerical comparison of a He chain with and without
density variations along z indicates that indeed the varia-
tion can be safely ignored (see Sec. V).

For calculating a H chain, a variational calculation
which assumes uniform density in the z direction is thus
sufficient. This calculation is simpler than the full HF
calculation of Neuhauser et al. [9] since the energy func-
tional can be expressed in a semianalytic form. The cal-
culation of Flowers et al. [3] contains numerical errors
[4], indicating that this kind of calculation is subject to
errors. Therefore, we are grateful that the mathematics
we employ is a simplification of the reliable equations al-
ready derived by Neuhauser et al. [9].

1. Key equations

The basis electron wave functions are plane waves in
the z direction with ground-state Landau orbitals in the
perpendicular direction, i.e.,

14 „(r)= e'"'W (ri), (4.27)

where L =Na is the total length of the chain and k is the
z wave-vector quantum number (the "Bloch wave vec-
tor"). Electrons fill the mth orbital (band) up to a Fermi
wave number given by

I I 5 I I I I

0.5
k =o.

m m a
(4.28)

2l Bp

FIG. 2. The calc
B=1012 G as a f

ulated energy of H2 in a high magn t' fi ldeic e

dot-dashed curv
as a unction of the interatomic separat' Thion. e

- as ed curve is from the MO calculation (Sec. IV A 1), the

the
light solid curve is from the HF calculation (S IVA2),

e dark solid curve is from the MO calculation taking into ac-
count the configuration interactions (Sec. IV A 3). The d he as ed

orizontal line corresponds to the sum of thee energies of two

th
separate H atoms, one in the ground state (m =0) h, anot er in

e first excited (m = 1): —161 eV —117eV= —278 eV

(4.29)
m=0

where Z is the nuclear charge (for a H chain, Z = 1
Here m o is the number of occupied orbitals, i.e.,
m =0, 1,2, . . . , mo —1.

We then obtain for the energy per cell in a chain

Here o. is the number of electrons in mth orbital per
call. Charge neutrality demands

m —10

cr =Z,
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TABLE I. Interatomic equilibrium separation a (in units of ao =0.529 A) and binding energy per atom ~E~ (in eV) for H„mole-
cules in a superstrong magnetic field. Binding energies for a H atom and the negative ion H are also given, together with the total
binding energy and interatomic separation for the molecular ion H2+. B» is the magnetic-field strength in units of 10' G. Values in
( ) are believed to give spuriously low binding energies; values in [ ] for H„at B,r =500 are calculated up to m0=12 (see
text).

(10" G)
H
IEI

H
IEI

H+
IEI

Hq

IEI
H3

IEI
H4

IEI
H„

IEI

0.1

0.5
1.0
2.0
5.0
8.0

10
100
500

76.37
130.2
161.5
198.5
257.1

291.9
309.6
540.5
763.0

83.3 0.61 99.9 0.54
141.2 0.35 182.0 0.31
174.7 0.28 232.0 0.24
214.5 0.23 293.2 0.19
277.2 0.18 393.3 0.15
314.7 0.15 454.6 0.13
333.6 0.15 485.9 0.12
582.8 0.085 920.2 0.070
819.7 0.060 1362 0.050

80.15
145.1
184.3
232.6
311.7
359.8
383.9
729.3

1070

(0.48
0.27
0.22
0.17
0.13
0.11
0.11
0.059
0.043

77.07)
145.8
188.7
242.6
333.4
390.5
418.8
847.4

1298

(0.46
(0.25
(0.20
(0.15
0.12
0.10
0.092
0.048
0.030

71.75)
140.6)
185.0)
241.7)
338.8
400.7
432.9
915.0

1454

(0.58
0.31
0.23
0.17
0.12
0.099
0.092
0.038

[0.022

79.04)
146.5
190.4
246.9
347.7
414.2
450.1

1060
1920]

P(m+1) =f(m)+ —,g(1)= —y,1
(4.31)

Z 2e 2

a
—ln +y+ g—cr g(m+1)2a 1

p Z

where y is Euler's constant, y =0.577. . . . The function
Y ~ is given by

m+m'
Y = g d, (m, m')P(s+1), (4.32)

o o Y ~
+E'"'"

m m'

(see Ref. [9]). Here f is the digamma function

(4.30) s=0

where the coefficients d, (m, m ') are given in Appendix C.
The exchange energy is given by

E'"'"=— g o cr .f dz
r

sin(o rrzp/a ) sin(cr rrzp/a )
E (z),

cr rrz p/a o rrz p/a
(4.33)

where the function E ~ is given in Appendix C.
For a given lattice spacing a, the occupation numbers o (m =0, 1,2, . . . , mc —1) are varied to minimize the total

energy E under the constraint (4.29). We increase mc until further increase in mc results in no change in the distribu-

tion, i.e., o,=0. Typically, mo lies between 6 and 10. The constrained variation 5E EF5+ —p o =0 yields
0

fi
CF=

27tl e

2

Z 2e2 1 e sin(cr .rrzp/a )+ g(m —+1)— ger Y — g f dz cos(cr n.zp/a ) E (z) .
a Z cr .rrzp/a

(4.34)

Here sF is a constant Lagrange multiplier (Fermi energy)
which must be determined self-consistently. The system
(4.34) consists of mc equations for the mo unknown pa-
rameters o plus the constant cF. It is solved together
with Eq. (4.29) for these unknown quantities.

V. NUMERICAL RESULTS AND DISCUSSION

Our results for n =2, 3,4 are obtained from the single-
deterrninant Hartree-Fock method (Sec. IVA2 and Ap-
pendix B). The recipe for solving the Hartree-Fock
equations is as follows: For a given interatomic separa-
tion a, guess the trial wave functions f; calculate the po-
tentials K and J from Eqs. (4.17) and (4.18), or (B14) and
(B15); guess eigenvalues E and boundary values of the

wave functions; and use the standard shooting algorithm
[29] to obtain the eigenvalues and new wave functions for
Eq. (4.16) or (B13). New potentials K and J are then cal-
culated and the whole process is repeated until conver-
gence is achieved. Thus we obtain the total energy as a
function of a; the equilibrium separation can be found by
locating the energy minimum. For Eq. (4.16) or (B13),we

integrate inwards starting from a point z =z,„ far from
the center. Shooting succeeds when the boundary condi-
tion at the center, f ' (0)=0, and the normalization con-
dition I" dz

~f (z)
~

= 1 are satisfied. Numerically, the

wave functions are determined on a grid with arithmeti-
cally increasing spacing from z =0 to z =z,„. Typically,
z,„-60—100 (in units of p) is sufficient coverage for
field strengths of interest. The number of grid points
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varies between 100 to 200 for sufficient accuracy. For
zero separation, our Hartree-Fock Hz molecule calcula-
tion gives the He atomic binding energy (excluding the
e /a term); similarly, the energy of H3 at zero separation
gives the energy of a Li atom, etc. These limits provide
checks on our numerical results. Our resulting atomic
binding energies agree with other HF result [7—9] to
within -0.5%.

Our procedure for calculating the infinite H chain is as
follows: For given a, guess a value for mo and solve for
the o 's and ez from Eq. (4.34) subject to the constraint
of Eq. (4.29). Once the occupation fractions a 's are ob-
tained, they are substituted into Eq. (4.30}to get the ener-

gy. We then increase mo and redo the calculation. The
process is repeated until convergence is obtained. Thus
the binding energy versus a and the equilibrium atomic
separation are obtained. As the field increases, the nurn-
ber of Landau orbitals mo needed for convergence also
increases. For example, at B&g=1 m0=5 is needed for
convergence, while at B,&=10, only m0=8 orbitals are
occupied. In our calculation, we allow up to 12 Landau
orbitals (mo =12), which is sufficient for numerical con-
vergence if B,z & 100. Our results for the infinite chain at
B]p

=500 are obtained from an extrapolation based on
the calculations done up to m0=12.

Our code for calculating the infinite H chain can also
be used to calculate an infinite He chain [Z=2 in Eqs.
(4.29)—(4.34)]. Our He results agree with those of Miiller
(1984) [4] to at least three significant figures for B,&

=1
and B&&=10. Comparing with the results of Neuhauser
et al. (1987) [9], which allow for a nonuniform density
distribution along the field direction, our results for He
chain energies agree to within 0.8%%uo (the agreement im-
proves for higher field strength). For example, at B,z = 1,
the ground-state energy of a He atom is —575.3 eV while
our He chain energy per atom is —595.5 eV (equilibrium
spacing a =5.7p), resulting in a cohesive energy of -20
eV. By comparison, Neuhauser et al. give a chain energy
of —600 eV (a-6p), resulting in a cohesive energy of
-25 eV. At B&z=5, the atomic energy is —958.8 eV,
our chain energy is —1105 eV (a =6.7p), and our
cohesive energy is therefore 146 eV, while Neuhauser
et al. give the chain energy of —1108 eV (a -6.6p) and a
cohesive energy of =149 eV. We see that our approxi-
mate treatment of the infinite chain is sufficiently robust
to determine reliably the cohesive energy of the He chain.
For the lighter element H, the effect of any nonuniform
electron distribution in the field direction is even smaller
due to a weaker Coulomb force. Therefore we expect

that our results for the H infinite chain, which has not
been analyzed previously, to be even more reliable.

In Table I we present our HF results for H„molecules
with n =2, 3,4 and n = 00 at various field strengths. The
equilibrium interatomic spacing and the binding energy
per atom (equal to the total binding energy of the mole-
cule divided by n) are given. We note that at small B
field, as n increases, the binding energy per atom in-
creases first, then decreases slightly. We consider this
small decrease of binding energy as n increases as spuri-
ous. It comes from the approximations employed in our
calculation, and not from our numerical integration. As
discussed in Sec. IV A 3, when the total length of the mol-
ecule increases, difFerent configurations become more and
more mixed, and the single-determinant Hartree-Fock
method without multiple configuration interactions be-
gins to break down. Specifically, the electrons begin to
acquire some probability of occupying the v%0 states as
saturation is approached (see Sec. III). Also, the fact that
the calculated binding energy of the infinite chain is close
to the binding energy of a finite molecule before satura-
tion confirms our belief that the decrease in binding ener-

gy is spurious. We therefore put those values of binding
energy that are believed to be spuriously low in
parentheses. The actual binding energies of these rnole-
eules can be better estimated by interpolation between
the reliably calculated binding energies of the smaller
molecules and that of the infinite chain. Presumably, a
more detailed calculation taking configuration interac-
tions into account can be performed to remove the small
discrepancy quoted above.

In Table II we compare the calculated parameters of a
Hz molecule in a high magnetic field with a molecule in
zero field. The molecular zero-point energy for the vibra-
tional motion along the field direction is also included in
the Table. Within the Born-Oppenheimer approxima-
tion, the interatomic potential curve governing the rela-
tive motion of the ions is the total molecular electronic
energy as a function of the atomic separation E(a}. We
fit E (a) to a parabolic curve around the equilibrium sepa-
ration [i.e., the minimum of the E(a) curve] and get the
effective spring constant from the second derivative of
E(a) at the equilibrium point. Our quoted values for the
molecular zero-point energy Eo= —,'Ae„ is for a Hz mole-
cule consisting of two protons. The zero-point energies
for molecules of other hydrogen isotopes can be easily ob-
tained from the sealing law Ace„~M ', where M is the
reduced mass of the molecule. It can be seen that the
molecular dissociation energy and the vibrational excita-

TABLE II. Properties of Hz in a superstrong magnetic field compared with those in zero field.

Blg (10' G)

0
1

5
10

100
500

Dissociation energy (eV)

4.75
45.5

109
149
378
614

a (ao)

1.4
0.24
0.15
0.12
0.07
0.05

Zero-point energy Eo (eV)

0.26
5.3

12
15
33
57
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tion energy greatly increase in a high magnetic field,
while the size of the molecule greatly decreases.

In Table III we give the energy release for various
molecular formation processes as calculated from the
data in Table I. These quantities are crucial for deter-
mining the relative molecular abundances in a neutron-
star atmosphere.

The scaling with B of the binding energies in Tables I
and III is of particular interest: For b =426B]2))1 the
ionization potential I, of the neutral hydrogen atom has
the form of 5(lnb) F (eV), where F is a slowly varying
function of b. The numerical values of the expression
5(lnb ) are shown in Table III. We see that F is indeed a
slowly varying function, but the various asymptotic rela-
tions obtained in Sec. III become accurate only for ex-
tremely strong fields, e.g. , F will eventually approach
=13.6/5, but only for b ))10 . Asymptotically, the dis-
sociation energy D2 of the diatomic molecule, the sixth
column of Table III, should be of the same form, but this
is approached even more slowly, so that D2 is appreciably
less than I, for intermediate field strength. The binding
energy per atom of an infinite chain should increase as
b ~ in the asymptotic regime, so that D „should eventu-
ally become much larger than both I, and D2. Table III
shows that these quantities are indeed are indeed compa-
rable at b —10 .

For completeness, we also include our results for the
molecular ion Hz+ in Tables I and III. The binding en-

ergy and equilibrium atomic distance of H2 can be easi-

ly obtained by solving Eqs. (4.6)—(4.9). Our binding ener-

gy for Hz+ agrees with that of Brigham and Wadehra
[18] to within 2% for 8,2 =0. 1 and 1.

As we have discussed in Sec. II, a H atom in a high
magnetic field can easily attract an electron to form a
bound H ion. The H ion may, in principle, be impor-
tant for determining the opacity in a neutron-star atmo-
sphere. We include our Hartree-Fock calculation results
for the total binding energy of H in Table I and the ion-
ization energy of H in Table III. Our results for the
binding energy of H agree with those obtained by
Proschel et al. [8]. In our HF calculation, we have not
been able to find a bound state for H, consistent with
our discussion in Sec. II that the only bound negative H
ion is H . As seen in Table III, the ionization energy of
H is greatly increased in a strong magnetic field, as

3W= (3—30 cos 8+ 35 cos 8),
16r

(5.1)

where Q is the quadrupole moment of a subcylinder

compared to its value of 0.75 ev for 8 =0. Nevertheless,
the ionization potential is small compared to that for the
H atom and to the dissociation energy of H2. The abun-
dance of H may thus be small.

A point regarding the three-dimensional H lattice is
worth mentioning. Up to now, the only self-consistent
calculation of the atom, one-dimensional infinite chain,
and three-dimensional solid in a strong magnetic field is
the calculation by Jones [10,11] for Fe using density-
functional theory. Density-functional theory in a strong
magnetic field has several intrinsic uncertainties, e.g. , the
correlation energy functional is not rigorously deter-
mined. Nevertheless, these calculations indicate that, for
Fe, the infinite chain is not bound, and the three-
dimensional Fe solid is only weakly bound (cohesive ener-

gy ( 1 keV). In the case of H, the infinite chain is strong-
ly bound, as we have shown. It is interesting to know the
relative binding energy of the H infinite chain and the
three-dimensional H solid. By placing a pile of parallel
infinite chains in contact with each other, we can con-
struct a three-dimensional lattice (e.g. , body-centered
tetragonal; see [11]). We can estimate the binding energy
of this three-dimensional lattice with respect to breakup
into separate one-dimensional chains by calculating the
Coulomb interaction energy between different chains.
We approximate the structure of the single chain by the
simplest uniform cylinder model as discussed in Sec. III
with the parameters given by Eq. (3.7). We then fix the
charge distribution within the chains and set the chain-
chain axial separation roughly equal to two times the
chain cylindrical radius. The dominant contribution to
the Coulomb energy comes from the interaction between
the nearest-neighboring atoms (subcylinders). In the case
of body-centered tetragonal lattice, each atom has eight
nearest neighbors. We calculate the interaction of the
atom with its neighboring atoms using a Monte Carlo in-
tegration method. For atoms far away from each other,
we can use the classical quadrupole-quadrupole interac-
tion formula for the energy, i.e.,

TABLE III. Energy releases (in eV) from various atomic and molecular processes in a superstrong magnetic field. The values are

calculated from the data in Table I. b =B/(2. 35X10 G).

Biz
(1012 G) 5(ln b)2 e+p =H H+e=H H+p =Hz+

Q (eV)
H+H=H2 H2+H=H3 H3+H=H4 H„+H=H„+I

0.1

0.5
1

2
5
8

10
100
500

70.2
144
183
227
293
331
349
568
753

76.4
130
161
199
257
292
310
541
763

6.93
11.0
13.2
16.0
20.1

22.8
24.0
42.3
56.7

23.6
51.8
70.5
94.7

136
163
176
380
599

7.56
29.8
45.6
68.2

109
136
149
378
614

3.78
17.0
36.0
64.1

120
160
179
543
991

3.78
15.6
27.2
44.1

97.9
139
166
577

1159

3.78
16.3
28.9
48.4
90.6

122
141
520

1157
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Q =Q„=fd r,p, (r, )(3z, —r i ),

r is the distance between two quadrupoles, and 0 is the
angle between the line joining the two quadrupoles and
the z axis. We find that the resulting Coulomb energy is
very small, less than 1% of the chain binding energy.
This conclusion is certainly tentative, considering the ap-
proximations employed in our calculation are the sensi-
tive dependence of the Coulomb integral on the chain-
chain separation. Nevertheless, we expect that the bind-
ing energy of a three-dimensional H solid can be larger
than that of a one-dimensional infinite H chain by not
more than -5%.

VI. CONCLUSIONS

Strong magnetic fields are believed to exist on the sur-
face and in the interior of many neutron stars. This mag-
netic field is not expected to affect the material structures
deep inside the surface, where the matter density is high.
When p))7.08X103p,Biz/ (g/cm ) [where p, is the
mean molecular weight per electron and B,2 =B/ (10'
G)], many Landau levels are filled by the electrons. In
this regime, the quantized nature of the electron orbitals
is smeared and the matter behaves like the material in a
zero field (see, e.g., [26]).

On the surface of many neutron stars, on the other
hand, the magnetic field B is strong and the matter densi-
ty is relatively low, so almost all electrons are in their
Landau ground states. Bound atoms, molecules, and
chains may then be important and their existence in the
neutron-star atmosphere may have some observable
consequences for the observed x-ray spectrum from cool-
ing and accreting neutron stars. For a neutron star with
some accretion onto its surface (even if slow), the surface
layers consist mainly of hydrogen and helium. The
ionization-recombination equilibrium of atomic hydrogen
depends mainly on the ratio kT/(lnb), where T is the
temperature and b is the magnetic-field strength in units
of 2.35 X 10 G. If the ratio is suSciently small to give an
appreciable abundance of neutral atomic hydrogen, at
least diatomic molecular hydrogen can have a non-
negligible abundance. For a fixed value of kT/(lnb ), the
long chains and solid hydrogen grains become more im-
portant in principle as b increases. However, if the field
strengths are confined to B&2 ~ 10, these larger structures
are likely to have low abundance for the temperature re-
gime of interest, T-10 —10 K. Since H2 has many
excited-state levels, some spectral lines may be observable
or, if the collisional broadening should turn out to be
strong, the neutron-star atmosphere opacities may be
enhanced by the presence of H2. We hope to investigate
the molecular energy-level structure in the future.
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APPENDIX A: ANALYTICAL SCALING
RELATIONS FOR H„MOLECULES

BEFORE SATURATION:
VARIATIONAL CALCULATION

Before saturation, the n electrons occupy Landau or-
bitals m =0, 1,2, . . . , n —1. The radius of the molecular
cylinder is R =&2n /b. We assume n ))l. Our deriva-
tion for hydrogen molecules is similar to that of Ka-
domtsev and Kudryavtsev (1971) [24] for heavy atoms.

Ignore the exchange energy and define the average
wave function 4 =n, /n, where the electron density is

n, =g,",4, . The total energy of the molecule then be-
comes

E=n fd r BV
2 az

2
n/2

I= — /2 lr —~&z
I

n —
1P)@, ~ x (Al)

where the four terms are electron kinetic energy, ion-
electron interaction energy, electron-electron interaction
energy, and ion-ion interaction energy, respectively. In
the above equation,

d',
1' r2

(A2)

Since the electron density has a sharp edge at radius R, in
the direction perpendicular to the field, the electron den-

2/g 2
sity is well represented by a function of the form e
We therefore take as a normalized trial wave function

q/2(r)
a —2a~z~ —

p /R

~R 2 (A3)

where u is the free variational parameter. Substituting
the wave function into the energy expression (A 1) and as-
suming n ))1, ln(1/aR )))1, yields, to logarithmic ac-
curacy,

ncaa 2 1, 2 1 n "
1E= 2n aln + ,'n —aln —+-

uR ' uR a y ] I
(A4)

Equation (A4) can be obtained simply by considering the
electron distribution as an average linear charge density
/(, =aexp( —2alzl) and employing the radius R for the
cutoff of any logarithmic divergence. For the second
term in Eq. (A 1), note that
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f d3 qy2 d
—2

~ ~ d 1
~ ~ +

I 4 =a dz =a ln +ln 1=2a ln
aR

(A5)

where we have used the cutoff R for z close to Ia. Thus
we obtain the second term in Eq. (A4). For the third
term in Eq. (Al), observe that ( I/r ) can be regarded as
the potential produced by the average linear charge dis-
tribution, which is equal to 2A, ln(1/aR). Accordingly,
we have

4
9n I

This variational calculation gives the same results as our
dimensional analysis in Sec. III.

f d r —4' =f dz 2A, ln =a ln3 1 2 1 1

T aR aR

which gives the third term in Eq. (A4).
The energy per atom is therefore

(A6)

APPENDIX B: HARTREE-FOCK EQUATION
FOR H„MOLKCULES

The general Hamiltonian describing a linear H„mole-
cule with the ions lined up on the z axis along the 8 field
1S

2E/n = +—g —.——,'(na)ln ——
—,'(na)ln

2 a . i ' 2 ' naR

(A7)

H=Ha+ V,I+ V„+VII,

where
2

(Bl)

Consider the second and third terms. For n &&1, to
make the sum of these two terms finite, we require

Hs=g p, +—A, +g B S;,1 e

2m, ' c ',. mc (B2)

1—=—na.—3

Q
(AS)

V~= —e gg 1

ir, —Iaz
(B3)

With this condition, the sum of the second term and
third term is —', n ay according to the relation

V„=e 1

i(j lj

ll ——lnn~y as n~~, (A9)

2
1

2,~, iI —Jia (B5)

where y =0.577. . . is Euler's constant. We then have

2

E/n = ——'(na)ln + 'nay . —
2 2 naR

(A 10)

Varying E with respect to a gives, for ln(2/naR ) ))1, a
minimum value of E when

A= —,'BXr . (B6)

For all electrons in the ground Landau levels with spin
aligned antiparallel to the B field, H~ reduces to

In the equations above, a is ion spacing (we assume equal
spacing); S; is the electron spin; I,J label ions, i labels
electrons, and A is the magnetic vector potential

a= —', nl, E/n = ——', n l for l &&1, (Al 1)
1Hs=g p,,

i 2me
(B7)

where
1/2

2 b
l =ln =ln

naR n
(A12)

Choosing the trial function to be the antisymmetrized
product of the basis functions

@ „(r)= IV (p, P)f „(z),

Also from Eq. (AS), we see the interatomic separation is we obtain

2

(H) = ",y fdzif' „(z)i g f dzif— (z)i V (z)
2mep m v p m, v

2

+
2p

2

2p

t r
m, v, m, v

f dzdz'D .(z —z')if „(z)i if ~,.(z')i

f dz dz'E .(z z')f „(z)f „(z')f , „,(—z')f . .(z),
I Im, v, m, v
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TABLE IV. The direct interaction coefficients d, (m, m') as defined by Eq. (C8). We only list half of the coefficients d, (m, m')
here; the other half can be obtained from the identity d +,(m, m ') =d, (m, m'). We quote the numbers to six decimals.

m' $=0 $=1 $=2 $=3
d, (m, m')

$=4 $=5 $=6 $=7 $=8 $=9

0
1

1

2
2
2
3
3
3
3
4
4
4
4
4
5

5

5

5

5

5

6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9

0
0
1

0
1

2
0
1

2
3
0
1

2
3
4
0
1

2
3
4
5
0
1

2
3
4
5
6
0
1

2
3
4
5
6
7
0
1

2
3
4
5
6
7
8
0
1

2
3
4
5
6
7
8
9

1.0
0.5
0.5
0.25
0.375
0.375
0.125
0.25
0.3125
0.3125
0.0625
0.156 25
0.234 375
0.273 438
0.273 438
0.031 25
0.093 75
0.164063
0.218 75
0.246 094
0.246 094
0.015 625
0.054 688
0.109 375
0.164063
0.205 078
0.225 586
0.225 586
0.007 813
0.031 25
0.070 313
0.117 188
0.161 133
0.193 359
0.209 487
0.209 473
0.003 906
0.017 578
0.043 945
0.080 566
0.120 850
0.157 105
0.183 288
0.196381
0.196381
0.001 953
0.009 766
0.026 855
0.053 710
0.087 280
0.122 192
0.152 740
0.174 561
0.185 471
0.185 471

0.0
0.5
0.125
0
0.375
0.25
0.0625
0
0.25
0.281 25
0.15625
0.039063
0
0.15625
0.25
0.210938
0.109 375
0.027 338
0
0.093 75
0.195 312
0.218 75
0.164063
0.082 031
0.020 508
0
0.054 688
0.140 625
0.195 313
0.1875
0.131 826
0.064453
0.016 113
0
0.031 25
0.095 703
0.158 203
0.183 105
0.161 133
0.108 765
0.052 368
0.013092
0
0.017 578
0.0625
0.119628
0.161 133
0.167 846
0.139647
0.091 644
0.043 640
0.010910
0

0.25

0
0.125
0.1875
0.375
0.0625
0.015 625
0.117 188
0.15625
0.3125
0.15625
0.007 813
0.031 25
0.109 375
0.136719
0.234 375
0.210937
0.0625
0
0.041 016
0.102 529
0.123 047
0.164063
0.218 75
0.125
0.023 437
0.002 930
0.046 875
0.096 680
0.112793
0.109 375
0.195 313
0.165 039
0.071 777
0.007 324
0.008 057
0.050 354
0.091 644
0.104 737
0.070 312
0.158 203
0.176269
0.177 187
0.040 283
0.001 343
0.013092
0.052 368
0.087, 280
0.098 190

0.1875
0.070 313
0.140625

0
0.117 188
0.140 625
0.046 875
0
0.3125
0.039 063
0.03125
0.125
0.109 375
0.034 180
0
0.273 438
0.109 375
0
0.0625
0.118 164
0.087 891
0.026 367
0
0.218 75
0.164063
0.023 428
0.012 207
0.079 102
0.017666
0.072 530
0.021 148
0
0.164063
0.1875
0.071 777
0.000 982
0.030 518
0.085 937
0.097 015
0.061 096
0.017456
0

0
0.070 313
0.117 188

0.156 25
0.046 875
0.003 906
0.068 359
0.102 539

0
0.109 375
0.109 375
0.017 578
0.009 766
0.056 918
0.092 285
0.273 438
0.027 344
0.041 016
0.118 164
0.070 557
0.005 493
0.014 832
0.063 446
0.084 595
0.246093
0.082 031
0.002 930
0.079 101
0.102 661
0.044067
0.001 007
0.018 798
0.061 096
0.078 552

0.117 188
0.048 828
0

0
0.068 369
0.0976 656
0.036 621
0

0.136718
0.034 180
0.009 766
0.076 294
0.082 397
0.028 839
0

0
0.102 539
0.087 890
0.005 493
0.024414
0.077 362
0.070496
0.023 498
0

0.097 656

0.102 539
0.036 621
0.001 526
0.048 065
0.076 904

0.085 449
0.037 384
0

0
0.065 918
0.082 397
0.019073
0.004 272
0.046 997
0.070495

0
0.048 065
0.074 768
0.029 907
0

0
0.048 828
0.085 449 0

0.074 768

0
0.037 384
0.067 291
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where

V (z)= J d ri~ W (ri)~ g =+V (z I—a),
r Ia—z~

1D,(z~ —z2)= f d r&id rzi~ W (r&i)~ ~
W .(r2i)~

12

1E .(z, —z2)= J d r, id r2iW (r, i)W (r2i)W*(rii}W* (rii)
12

(B10)

(Bl 1)

(B12)

d

2m p~ dz

2 2

V (z) + E (z) —c, f (z)
P P

(For some useful mathematical forinulas related to the
functions V, D, E, see Appendix C). Varying
( H ) with respect to f, we get the Hartree-Fock equa-
tions

V (z)=
m!

d
dt

m

V(z, t)i, (C4)

Therefore, we can obtain V (z) from the erfc function.
On the other hand, for large z (z &30), we can use the
asymptotic expansion

2

where

e J,(z), (B13)
P

V (z)= 1 ——'(m+1)1

+ —,
'

—,'(m+1)(m +2)
4

E (z) = g fdz'f „(z') D .(z —z'),
m', v'

J „(z)= g f, „,(z)fdz'f „.(z')f „(z')
m, v

XE (z —z') .

(B14)

(B15)

—
—,
'

—,
' —', (m+1}(m +2)(m+3) 2

+ 0 ~ ~

6

(C5)

APPENDIX C: USEFUL MATHEMATICAL
RELATIONS FOR LANDAU WAVE FUNCTIONS

V (z)= J" ' dx.
v 2m! 0 V'x +.(z/i/2)

(Cl)

One may use a standard quadrature algorithm (e.g. ,
Romberg integration; see [29]) to obtain the functions
V (z). We do this for 3 ~ z ~ 30. Alternatively, for small
z (z 3), it is easier to relate it to the erfc functions by us-

ing a generating function

V(z, t)= g (1 t) V (—z)
m=0

Here we summarize some of the mathematical rela-
tions needed for our numerical electronic-structure calcu-
lations (see [7,8,30] for further details}. Our length unit
here is the cyclotron radius p=(A'c /eB )'

The averaged Coulomb potential defined by Eq. (2.8) is

m+m'
D .(z}= g d (m, m') —V, —z (C6)

m+m'
E .(z)= g e(mm') —V, —z (C7)

The coefficients are defined by

X
m

XLm'

m' —m

m+m'

s=0
d, (m, m')L, (x),

2

(C8)

m! x
m't 2

I m' —m
s

s=0
e, (m, m')L, (x),

{C9)

The electron-electron direct interaction kernel D
defined by Eq. (Bl 1) and the exchange interaction kernel
E ~ defined by Eq. (B12) can be shown to be related to
the Coulomb interaction potential V by

2t

1/2

exp erfc(z&t /2),
tz'
2

where

oo

erfc(x}= —f e "du .v'~ x

From Eq. (C2) for V(z, t), we have

(C2)

(C3)

where L„ is the Laguerre polynomial of order n [31].
Hence the coefficients d and e share the properties of the
Laguerre polynomials. We can calculate these coeffi-
cients from the orthogonal relations of Laguerre polyno-
mials. In Table IV we give the coefficients d, (m, m') for
m, m ' ~ 9. The exchange coefficients e, ( m, m '

) as defined
in Eq. (C9) are related to d, (m, m') by the relation

e, (m, m') =(—1)'d, (m, m') .
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