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The dynamics associated with a quasiperiodically forced Morse oscillator is studied as a classical mod-

el for molecular dissociation under external quasiperiodic electromagnetic forcing. The forcing entails

destruction of phase-space barriers, allowing escape from bounded to unbounded motion. In contrast to
the ubiquitous Poincare map reduction of a periodically forced system, we derive a sequence of nonauto-

nomous maps from the quasiperiodically forced system. We obtain a global picture of the dynamics, i.e.,
of transport in phase space, using a sequence of time-dependent two-dimensional lobe structures derived

from the invariant homoclinic tangle of a persisting invariant saddle-type torus in a Poincare section of
an associated autonomous system phase space. Transport is specified in terms of two-dimensional lobes

mapping from one to another within the sequence of lobe structures, and this provides the framework

for studying basic features of molecular dissociation in the context of classical phase-space trajectories.
We obtain a precise criterion for discerning between bounded and unbounded motion in the context of
the forced problem. We identify and measure analytically the flux associated with the transition between

bounded and unbounded motion, and study dissociation rates for a variety of initial phase-space ensem-

bles, such as an even or weighted distribution of points in phase space, or a distribution on a particular
level set of the unperturbed Hamiltonian (corresponding to a quantum state). A double-phase-slice sam-

pling method allows exact numerical computation of dissociation rates. We compare single- and two-

frequency forcing. Infinite-time average flux is maximal in a particular single-frequency limit; however,

lobe penetration of the level sets of the unperturbed Hamiltonian can be maximal in the two-frequency

case. The variation of lobe areas in the two-frequency problem gives one added freedom to enhance or
diminish aspects of phase-space transport on finite time scales for a fixed infinite-time average flux, and

for both types of forcing the geometry of lobes is relevant. The chaotic nature of the dynamics is under-

stood in terms of a traveling horseshoe map sequence.

PACS number(s): 33.80.Gj, 05.45.+b

I. INTRODUCTION

Periodically forced nonlinear oscillators and coupled
nonlinear oscillators have been studied as models for a
variety of atomic and molecular phenomena, such as
multiphoton ionization of excited atoms [1—7], multipho-
ton dissociation of diatomic and polyatomic molecules
[8—14], and unimolecular and bimolecular reactions
[15—21]. In this paper we consider a quasiperiodically
forced Morse oscillator as a classical model of molecular
dissociation under external quasiperiodic electromagnetic
forcing. The unforced Morse oscillator is a one degree-
of-freedom Hamiltonian system whose unperturbed phase
portrait contains a separatrix that divides bounded and
unbounded motion, and the use of dynamical systems
theory in the ubiquitous case of periodically forcing such
a system is by now well established, indeed commonplace,
being employed in a variety of physical problems
[7,22 —27]. The immense popularity of, and indeed al-
most exclusive focus on, this type of forcing is related to
the fact that, by time-periodic sampling of phase-space
trajectories, the study reduces to that of a two-
dimensional Poincare map, so that one is fully armed

with all the tools and paradigms from dynamical systems
theory associated with two dimens-ional maps (to be de-
scribed momentarily). It is in this context that, without
resorting to statistics, one can answer basic questions
about molecular dissociation in the context of phase-
space trajectories, such as the following.

(i) Is there a precise criterion for discerning between
bounded and unbounded motion in the context of the
forced, nonintegrable problem and, if so, is there a practi-
cal way to determine this criterion and study its proper-
ties?

(ii) Can one identify in a nonstatistical manner which
points in phase space undergo the transition between
bounded and unbounded motion, corresponding to
molecular dissociation, and at what time these points
make the transition?

(iii) Can one identify and measure a /lux associated
with the transition between bounded and unbounded
motion? More ambitiously, is there a way to quantify
dissociation rates for a variety of possible initial phase-
space ensembles, such as an even or weighted distribution
of points in phase space, or a distribution on a particular
level set of the unperturbed Hamiltonian (corresponding
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to a quantum state)? Can one control these rates in any
way?

(iv) How does one establish the existence of a chaotic
response to the forcing and appreciate its significance?

Our goal is to address these questions in the context of
forcing with more complicated time dependences than
periodic, focusing for concreteness on quasiperiodic
(two-frequency) forcing. There is obvious motivation to
relax the restriction to the special case of periodic forc-
ing, for it allows one to study more complicated
scenarios: for example, one can study forcing by two
lasers at different frequencies and compare with forcing
by one. The basic difficulty in the extension past periodic
forcing is that, for any choice of discrete time sampling of
phase-space trajectories, the study does not in general
reduce to a two-dimensional map, but to a sequence of
two-dimensional maps. Hence, all the conceptual
machinery and mathematical tools associated with
iterates of a single two-dimensional map, such as
horseshoe maps, KAM (Kolmogorov-Arnold-Moser)
tori, fixed partial barriers, turnstiles, and so forth, do not
apply here. In extending the analysis to sequences of
maps, we will in addition to questions (i) —(iv) want to ask
the following.

(v) Is there a .way to compare the relative effects of
each frequency on questions (i)—(iv)?

(vi) Is there a way to compare flux and dissociation
rates between single- and multiple-frequency systems, and
say which is "better" or "worse"?

(vii) Do more complicated forcing time dependences
lead to new features in molecular dissociation, and can
one exploit these features?

(viii) What is "chaos" in the context of a sequence of
maps, where the horseshoe map paradigm does not apply,
and how does multiple-frequency forcing affect chaos?

Before outlining how we will proceed to answer these
questions for quasiperiodic forcing, let us first briefly
summarize the approach associated with periodic forcing.
Periodic forcing destroys the separatrix, which acted as a
complete barrier between bounded and unbounded
motion in the unforced case, and this destruction entails
a mechanism for escape from bounded to unbounded
motion, corresponding to molecular dissociation.
Dynamical systems theory offers a conceptual framework
for studying dissociation and answering questions (i) to
(iv) by establishing phase space structure -and using this
structure to study phase space tra-nsport (what we mean

by this and the brief description that follows should be
made quite apparent in the systematic study of quasi-
periodic forcing to follow). This structure is provided by
a set of invariant manifolds of the associated Poincare
map (these manifolds are global stable and unstable mani-

folds of a persisting saddle-type fixed point of the Poin-
care map). One can use these manifolds to precisely
define partial barriers in phase space between regions of
bounded and unbounded motion, and to identify the
turnstile lobes that are the gateways for transport from
one region to another. These barriers and turnstiles are
axed in the Poincare section. Having identified the
turnstiles, one can then study flux from bounded to un-

bounded motion, and dissociation rates. Flux is deter-

mined by measuring the turnstile lobe area, which can be
done by an approximate analytical method using Melni-
kov theory, or by exact numerical computation of the
turnstile lobe boundaries. For dissociation rates associat-
ed with an initia1 even distribution of points in phase
space, a popular approximation in chemical kinetics stud-
ies involves a Markov-model approach [15,16,21,28,29],
but the deficiencies of such an approximation will be dis-
cussed later. An exact method for calculating dissocia-
tion rates, for a variety of initial distributions, involves
studying the topology of intersections of preimages of the
turnstile lobes with the appropriate geometrical objects
(depending on the problem at hand), such as the
turnstiles themselves, or the level sets of the unperturbed
Hamiltonian. Lastly, Melnikov theory allows one to
study when the oscillator will respond chaotically to the
forcing.

For extension to quasiperiodic forcing, the basic ques-
tion we need to address, before addressing the other eight
questions is: since a sequence of maps is needed to deal
with more complicated forcing time dependences, what is
the phase-space structure associated with a sequence of
maps, and how is this structure used to study phase-space
transport in such a way as to quantify molecular dissocia-
tion? Our approach to answering this question will be to
first rewrite the forced system in autonomous form in or-

der to obtain a set of invariant manifolds in a Poincare
section of the enlarged phase space (these manifolds are
the global stable and unstable manifolds of a persisting
invariant saddle-type 1 torus of-the Poincare map). The
geometric structure provided in this autonomous setting
is then related back to the original nonautonomous se-
quence of maps: one understands the sequence of maps
in terms of the Poincare map acting on a sequence of
two-dimensional slices of the higher-dimensional Poin-
care section. The intersection of the time-dependent
slices with the invariant structures in the autonomous
setting defines a sequence of time depende-nt structures for
the sequence of maps. These structures then generate a
sequence of time-dependent partial barriers between
bounded and unbounded motion, and a sequence of
time-dependent turnstile lobes. The basic feature of the
analysis is thus the variation with sample time of the
relevant geometrical structure: to understand bounded
and unbounded motion under quasiperiodic forcing, one
must deal with time-dependent constructs, and the fact
that these constructs are derived from an invariant struc-
ture embedded in an enlarged phase space allows one to
embrace the more complicated transport issues associat-
ed with sequences of maps.

The paper is organized as follows. In Sec. II we define
the sequence of maps associated with the quasiperiodical-
ly forced Morse oscillator, and then study the geometri-
cal structure associated with the oscillator recast in the
autonomous form. The geometrical possibilities are far
richer than for periodic forcing, and in Sec. III we intro-
duce and calculate the quasiperiodic Melnikov function
and use the function to study the geometry. Intimately
related to the Melnikov function are the frequency-
dependent relatiue scaling factors, which provide a mea-
sure of the relative effect of each forcing frequency on the
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geometry. In Sec. IV we derive the sequence of two-
dimensional time-dependent phase-space structures from
the invariant one in the enlarged phase space, and use
this to define the sequence of partial barriers between
bounded and unbounded motion and the sequence of
turnstiles as the gateway for transport between these re-
gions. Section V, the bulk of the paper, focuses on quan-
tifying transport in phase space in order to study molecu-
lar dissociation. We first describe and use a double-
phase-slice sampling method to numerically compute the
partial barriers and the turnstile boundaries for an arbi-
trary time sample, which provides the framework for ex-
act computation of transport quantities under the se-
quence of maps. We then describe and quantity jfux as-
sociated with escape to unbounded motion (i.e., molecular
dissociation) and capture into bounded motion: relevant
measures include instantaneous flux, finite-time average
flux, and infinite-time average flux associated with both
escape and capture, and the quasiperiodic Melnikov func-
tion affords an approximate analytical expression for all
these measures, good for small forcing. Note that in con-
trast to the case of periodic forcing, these measures of
flux are in general different, with the sole exception that
infinite-time average flux associated with escape and cap-
ture are identical. It is found that the infinite-time aver-
age of the flux is maximal in the single-frequency limit as-
sociated with the larger relative scaling factor (i.e., in this
context single-frequency forcing is the best one can do).
Though flux is a popular concept in molecular dissocia-
tion problems, we assert its limitations and consider
several other transport features that help describe dissoci-
ation. In particular, we address the question of dissocia-
tion probability for an even or weighted initial distribu-
tion of points in phase space, which has relevance to the
dissociation of an ensemble of excited diatomic mole-
cules. As mentioned before, a popular approach to this
dissociation problem in the context of maps employs a
Markov model; we extend such an approach to sequences
of maps, and then stress the deficiencies of such an ap-
proach, and the need to consider the geometry associated
with the intersections of preimages of the turnstile lobes
with the turnstiles. This lobe intersection analysis, which
provides the basis for exact computation of the dissocia-
tion rates, extends from maps to sequences of maps in a
straightforward manner. The main new feature associat-
ed with sequences of maps is the variation of lobe areas:
this variation gives one added freedom to alter finite-time
transport quantities for a fixed infinite-time average flux.
As an additional dissociation problem, we discuss
penetration of the unperturbed energy levels by the
turnstiles and their preimages (which has relevance to
forcing a system prepared in a particular quantum state).
In contrast to the flux result, it is possible for lobe
penetration to be maximal in the two-frequency case.
Lastly we close with a brief discussion of the nature of
chaos in these systems: the horseshoe map paradigm
generalizes to a traveling horseshoe map sequence. We
point out that Noid and Stine [9], and more recently
Goggin and Milonni [13], have also studied the quasi-
periodically forced Morse oscillator; their approach
differs from ours in that it is primarily a numerical study

II. THE QUASIPERIODICALLY FORCED MORSE
OSCILLATOR AND ITS PHASE-SPACE STRUCTURE

We consider a quasiperiodically forced Morse oscilla-
tor

x=~,
m

p = —2Doa (e '"—e '")

+ed [E, cos(co, t +8, ) +E2 cos(co2t + 82 )],0 0

(2.1)

(x,p)ER . One can think of x =r r, as the separatio—n r
of a two-atom molecule minus an equilibrium separation
r„with p the relative momentum. The system then corre-
sponds to a nonrotating pair of atoms interacting under a
Morse potential and forced by an external two-frequency
electromagnetic field with amplitudes eE, and F2. The
parameters a and Do correspond to the range parameter
and unperturbed dissociation energy, respectively, of the
Morse potential, and d is the effective charge, or dipole
gradient. The initial phases associated with the forcing
are given by O, , L92 . For concreteness, one can think of,0 0

say, a HF molecule, and hence set m =0.9571 amu,
Do =6.125 eV, a =1.1741' ' (rs is the Bohr radius), and
d =0.7876Dor~ '. Note that, though for concreteness we
consider dissociation of a diatomic molecule, a forced
Morse oscillator can model other molecular phenomena,
such as pumping a local mode of a polyatomic molecule
by an infrared laser [10]. Further note that the rotating
diatomic problem can be studied in the context of the k
degree-of-freedom transport theory of Wiggins [31].

To study the dynamics of (2.1) it is advantageous to
sample phase-space trajectories at discrete time intervals,
the interval being one of the forcing periods, say 2m/co2.

of absorption and the dissociation threshold for points in-
itialized on the level set of the unperturbed Hamiltonian
that corresponds to the ground state, and does not ad-
dress the global picture of phase-space structure and
transport afforded by the global stable and unstable mani-
folds. There have also been experimental studies of
quasiperiodic electromagnetic forcing, such as Moorman
et al. [30] on ionization of highly excited hydrogen
atoms under a bichromatic microwave field.

We should stress at the outset the intent of our paper,
for the scope of recent investigations of dissociation prob-
lems is quite vast and not without controversy, covering
classical and/or quantum-mechanical studies (with or
without comparisons) of regimes ranging from low-
intensity microwave ionization of highly excited states to
high-intensity infrared dissociation of ground states,
along with chemical kinetics problems that cover a range
of situations. Our interest here is in a classical study
alone (i.e., the study of ensembles of classical phase-space
trajectories), the reasoning being that before performing
the difficult and somewhat controversial task of compar-
ing classical and quantum-mechanical treatments of a
classically chaotic system, it would be helpful to have a
firm grounding in the classical extension from maps to se-
quences of maps.
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n, p n
602 C02

(2.2)

For periodic forcing it is well understood that periodic
sampling of trajectories leads to the study of a Poincare
map, which simplifies the underlying geometrical struc-
ture with which to study the motion; for quasiperiodic
forcing, periodic sampling will in a similar way simphfy
the underlying structure to be studied. However, because
of the lack of periodicity in the vector field time depen-
dence, in this case we will be lead to the study of a bi-
infinite sequence of maps. The evolution of system (2.1)
from time t = (2m /co2)n to time t = (2m /co2)(n + 1)
defines a map on the plane

T,(;n): R' R',

FIG. 1. Invariant manifolds of the unperturbed Poincare
map P, 0, shown with a cutaway half-view. The separatrix is
shown in boldface and is parametrized by (s, 0& ), where s is the
time it takes for the point on the separatrix with (x,p) com-
ponent (x( —s),p( —s) } to move to the point with (x,p) com-
ponent (x (0),p (0)} (negative time intervals are included in this
definition).

x (n+1),p (n+1)2% 2K

C02 602 o= I(x,p, 8, )~limx ~ ac,p =0] . (2.5)

The goal then is to study the dynamics under the bi-
infinite sequence of maps IT,(",n);n EZI. To do this,
we rewrite the Morse oscillator in autonomous form in
order to construct invariant manifolds that are fixed in
the resulting enlarged phase space. These manifolds form
barriers which constrain the motion in the autonomous
system phase space and hence form structure that governs
motion in phase space. Having obtained these manifolds,
we will use them to define for each time t =(2m/co&)n a
set of curves in (x,p) space that will be used later to study
the dynamics under the sequence of maps; in particular,
to define the sequence of partial barriers between bound-
ed and unbounded motion and the sequence of turnstiles.

The Morse oscillator in autonomous form is given by

p = 2Doa(e '" —e'")+e—d(E& cos8&+E2 cos8z),
(2.3)

0) =co)

02 =C02,

where (8&,82)F T, the 2-torus. We then define a Poin-
care section

02
X '= I(x,p, 8),8~)~82=8~ I,

The global stable and unstable manifolds of ~, o, denoted
W'(r, o) and W"(r, o), respectively, coincide to form a
two-dimensiona1 separatrix which separates bounded and
unbounded motion, and which asymptotes with increas-
ing x to p =0 (see the Appendix for the analytical expres-
sion of the separatrix). Any point initialized inside the
separatrix evolves on a 2-torus and corresponds to a mol-
ecule which does not dissociate. Any point initialized out-
side the separatrix evolves on an unbounded two-
dimensional surface, and corresponds to a molecule that
is dissociated, asymptoting to infinite separation. As
shown in Fig. 1, the separatrix is parametrized by (s, 8, ),
where s is a timelike coordinate, described in the caption
[s =0 is chosen to correspond to the point of symmetry
(x = —in(2)/a, p =0)]. In Secs. IV and V we will be par-
ticularly interested in phase slices of the Poincare section

92
X ', defined as y(8, )—:I(x,p, 8, )~8, =8, I, and Fig. 2
shows the phase portrait in an arbitrary phase slice (for
the unforced prob1em, the phase plane decouples from
8&). The area enclosed by the separatrix in each phase

and the associated Poincare map generated by the Bow of
(2.3) is given by

02 02I', :X X

(x(0),p(0), 8, )~ x 2'
6)2

(2.4)

Studying the flow of (2.3) via this three-dimensional Poin-
care map is equivalent to sampling the trajectories of (2.3)
at time intervals equal to 2m/co2.

The phase portrait of the unperturbed Poincare map
P, 0 is portrayed in Fig. 1. There is a neutrally stable 1-

torus at I (x,p, 8, ) ~x =p =0I and a nonhyperbolic invari-
ant 1-torus (of saddle-type stability) of the form

FIG. 2. The phase portrait in the two-dimensional phase

slice y(0&) of X . As shall be the case with all figures, x and p
are plotted in units of Bohr radii and +2mDo, respectively.
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slice is equal to 4@Do/rao, where coo=a(2Do/m)' is the
frequency associated with simple harmonic motion near
the bottom of the Morse well (this is in contrast to the
study of MacKay and Meiss [7], who have an unbounded
area enclosed by the separatrix for a Coulomb potential).

Quasiperiodic forcing causes the separatrix to undergo

a global bifurcation, leading to nonintegrable motion near
the unperturbed separatrix, and providing a mechanism
for escape from bounded to unbounded motion, and cap-
ture from unbounded to bounded motion. The study of
this bifurcation is complicated by the fact that the invari-

ant saddle-type 1-torus is nonhyperbolic with infinite ra-

dius, and the relevant theorems, such as persistence of
the invariant 1-torus, have been proven for normally hy-

perbolic tori with finite radii. For the Morse oscillator
(2.3) we prove that the invariant 1-torus persists under

forcing and obtain an expression for the 1-torus (see the
Appendix). Given for the perturbed problem the ex-

istence of global differentiable stable and unstable mani-

folds of the surviving invariant 1-torus, the remaining
theorems, such as those necessary for the generalized
Melnikov construction, easily extend (see the Appendix}.
To avoid a lengthy digression to a rigorous mathematical

discussion, we assume the existence of global
differentiable stable and unstable manifolds, denoted
W'(~, ) and W"(r, ), respectively, and present later some

simple numerical computations that confirm the validity
of the assumption. For e)0, W'(r, ) and W"(w, } are no

longer identical, and Fig. 3 shows a case where the mani-

folds intersect in an infinity of 1-tori to produce the
boundary of a complicated geometrical construct referred
to as a homoclinic tangle. The manifolds crisscross each
other ad infinitum to form the boundary of three-
dimensional regions referred to as lobes, which shall be

FIG. 3. A possible stable and uns. able manifold geometry in
82X: the manifolds intersect in an infinity of 1-tori. There are

other possible geometries, as discussed in Sec. III.

discussed more carefully as we go along. It is the homo-
clinic tangle and its lobes that form the phase-space
structure needed to study molecular dissociation, and so
as a first step we need to understand the geometry of this
structure. For two-dimensional time-periodic systems
(whose associated Poincare map is two-dimensional), the
geometrical possibilities are simple: the manifolds are one
dimensional and either they never intersect, or they inter-
sect in an infinity of points to form two-dimensional
lobes. For more complicated time dependences and
higher dimensions, the geometrical possibilities are far
richer, but a generalized Melnikov theory provides an
analytical tool for studying these geometries.

III. GENERALIZED MELNIKOV THEORY
AND THE GEOMETRY OF THE HOMOCLINIC TANGLE

The generalized Melnikov function [32] is defined to be

M(s, 8»82', v)= f DH(xh(t), ph(t)) g(xz(t), p (1t), &cto+(co,s+8&),c02t+(cozs+82);p)dt, (3.1)

where

2

H (x,p) = +Do(1 —e '")
2p7l

is the Hamiltonian of the unforced Morse oscillator, D
denotes the derivative operator (a/ax, B/Bp) acting on
H(x, p),

eg(x, p, 8, , 82 , iJ, )=(0,ed(E., cos8, +Ez cos8z))

is the perturbation, (xI„ph) are the (x,p) coordinates of
the unperturbed homoclinic separatrix, p represents the
perturbation parameters d, E„andE2, and v represents
both the perturbation parameters and the other system
parameters, m, Do, and a. Expression (3.1) thus involves
a timelike integral, along the unperturbed homoclinic
separatrix, of a dot product between the perturbing vec-
tor field and the gradient of the unperturbed Hamiltonian
(see Guckenheimer and Holmes [22] for an introduction
to Melnikov theory and Wiggins [32] for an extensive
study of generalized Melnikov theory). The main use of
the Melnikov function is its provision of an 0(E) estimate

of the separation d (s, 8&, 8z ', v, e), normal to the unper-
0

turbed separatrix, of the perturbed stable and unstable
82

manifolds in X ' [32],

e'M (s, 81,82,' v
d(s, 8»8z,'v, e)= +0(& )

DH(xI, ( —s),ph ( —s)

(3.2)

(see the Appendix and Fig. 4). This analytical estimate of

w'~&, ) n w"(~,&

FIG. 4. The manifold separation d(s, 8&, 82, v, e) normal to

the unperturbed separatrix.
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manifold separation is a powerful tool for studying many
features of the homoclinic tangle, such as its geometry
and, later on, the flux between bounded and unbounded
motion. It is a straightforward consequence of the impli-
cit function theorem [32] that within O(e) of a zero of
the Melnikov function (with D(, s )M of rank one at the

zero) is a transversal intersection of the stable and unsta-
ble manifolds, and we refer to this class of intersections as
primary intersection manifolds (PIM's), which play a
basic role in understanding tangle geometry. Hence the
zero sets of the Melnikov function allow one to study the
approximate location and the exact geometry of the
PIM's.

For the quasiperiodically forced Morse oscillator (2.3)
the Melnikov function is

2~ N~/No
M(s, 8&, 82,'v) = — [E&de sin(ro&s +8&)

a

~RSF(~ a ~0)
A;

E;d

2' ('D . /COO

a (3.4)

The dependence of these factors on forcing frequency is
described by a single relative scaling function

gonometric dependence of the perturbation on (t, 8, , 82 )
0 0

in (2.1) carries through to a similar trigonometric depen-
dence of M on (s, 8, , 82) in (3.3) (the cosines go to sines).
We refer to the absolute value of the ratio of the Melni-

kov amplitude in (3.3), 3, = —(2n/a)E, de ' ', i =1,2,
to the corresponding relative forcing amplitude E,d in
(2.1) or (2.3) as a relative scaling factor VRsF..

0.1

0.05

0
0 0.05 0.1

Ed(~ + )

0.15 0.2

FIG. 5. A comparison between the manifold separation
~d (s, 8, , 8z , e)

~
avt (s,'8„8~) =(0, 8' n, z vr), as computed by the

Melnikov approximation (3.2) (the solid line) and by numerical
simulation of the manifolds (open dots). For this example

(col, co2) =2.6coo(g, 1), where g is the golden mean,
E,d =2 047co0+2mD0, Ezd. =3 685coo+2mDO . The horizon-.
tal axis is the maximum value of the p coordinate of r, [see Eq.
(A4) in the Appendix] in units of +2mDO.

+Ezde ' 'sin(co2s +82)] (3.3)

(see the Appendix). Note that (3.3) is valid for co;%0,
i =1,2; as explained in the Appendix, for either co&=0 or
cu2=0 (giving a constant term in the perturbation), the
corresponding term in the Melnikov function vanishes.
The Melnikov function is thus discontinuous at ~;=0,
since the Melnikov amplitudes limit to a nonzero value as
cu;~0, and we will discuss the physical implications of
this discontinuity momentarily. Figure 5 shows compar-
isons between manifold separation computed by the Mel-
nikov approximation (3.2) and by numerical computation
of the manifolds using a double-phase-slice sampling
method, which we describe later in the paper. The tri-

0.15 I I I I
i

I I I I
J

I I I I ) I I I I

0PRsF(cv; Q, c00)= e
a

(3.5)

The relative scaling function provides an approximate
[0(e)] measure of the effectiveness of a forcing frequency
in producing manifold separation, and, as such, is a basic
tool in understanding how each frequency affects dissoci-
ation. Since the function's exponential decay depends
only on coo, the period associated with simple harmonic
motion at the bottom of the Morse well provides the
relevant time scale for the forcing's effectiveness at pro-
ducing manifold separation. Given any two forcing fre-
quencies, one immediately knows the relative importance
of each one; for example, if one of the frequencies is at coo

and the other at 4coo, and the amplitudes of the two forc-
ing terms are identical, then due to the exponential decay
of the relative scaling function, the second term has a rel-
atively negligible effect on manifold separation, and
hence, as we shall later see, on certain transport proper-
ties, so that the problem is essentially one of single-
frequency forcing. As another example, in the mi-
crowave limit ~; && coo the relative scaling factor associat-
ed with each frequency will be approximately 2~/a,
essentially frequency independent. We remark that,
though the nonvanishing of the Melnikov amplitudes in
the limit co;~0 is not common (often they vanish in the
limit of infinitely slow and infinitely fast forcing), this
nonvanishing does occur in other systems, such as the
forced Josephson junction [24,25].

In Fig. 6 we approximately portrav [i.e., to O(e)] some
e, =6

PIM s in the Poincare section X by plotting the zero
sets of M(s, 8&, 8z =0;v) for a particular frequency ratio

0

cozlrs&=g ', where g is the golden mean (v'5 —1)/2, and
a range of forcing amplitudes. Note that the Melnikov
function, and hence the zero sets, are speci6ed relative to
the two-dimensional unperturbed separatrix, so that one
interprets the plots in Fig. 6 in terms of the separatrix,
shown by the dashed lines in Fig. 4, being flattened out
onto a plane. Hence, though the PIM's live in the three-
dimensional Poincare section, they are close to the unper-
turbed separatrix and for ease of portrayal we suppress
the dimension normal to the unperturbed separatrix.
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Figures 6(a)—6(g) show PIM's for a range of ratios of
Melnikov amplitudes. For

~

A
&
/A z ~

( I the PIM's are
nonintersecting l-tori, for

~
A

&
/A 2 ~

& 1 they are nonin-

tersecting spirals, and for
~
A

&
/ A z ~

= 1 they are intersect-

ing spirals (or equivalently intersecting 1-tori ). For other
ratios of coz/co& (both commensurate and incommensu-

rate), the PIM geometry, as A& /Az is varied is qualita-

tively similar. In Beigie, Leonard, and Wiggins (hence-
forth BLW) [33,34] we provide a more detailed study of
PIM geometry via theorems involving the Melnikov func-

tion. The basic result relevant to the Morse oscillator is

the following. The manifolds W'(r, ) and W"(r, ) inter-

sect if the Melnikov function (3.3) has a zero with

D(, & ]M of rank one. One can easily see that the Melni-

kov function (3.3) passes through zero a countable
infinity of times for each 8, E [0,2n. ). Thus, regardless of
PIM geometry, the set of PIM's intersects each phase

(92
slice y(8, ) of the Poincare section X ' in a countable
infinity of points for 8& C [0,2m ).

With an appreciation of PIM geometry, it should not
be difficult to visualize the nature and geometry of the

(9~

previously mentioned three-dimensional lobes in X ' by
remembering that the separation of W'(r, ) and W"(r, ),
and hence the thickness of the lobes, is normal to the
page for Fig. 6 (see Fig. 7). As one might expect from the
figures, the geometries of the invariant lobes can take on
a rich variety in quasiperiodic problems, and thus a pre-
cise definition of an invariant three-dimensional lobe in

02
X ' necessitates fairly careful development and a rather
abstract description. We merely say here that for the

20

case where PIM's are 1-tori, a lobe in X ' is the region
bounded by segments of W'(r, ) and W"(r,) between ad-

jacent PIM's; for other PIM geometries a definition simi-
lar in spirit applies and we refer the reader to BLW
[33,34].

=e,
2lt

(b)

FIG. 7. Visualizing three-dimensional lobes by showing the

suppressed dimension.

IV. THE HOMOCLINIC TANGLE AS A TEMPLATE
FOR STUDYING MOLECULAR DISSOCIATION

A. Using the invariant homoclinic tangle to study
the sequence of maps

We have a set of two-dimensional invariant manifolds
W'(~ ) and W"(r ) fixed in the three-dimensional Poin-

2

care section X ' for the Morse oscillator in autonomous
form (2.3), and the geometry of the manifolds is studied

via the generalized Melnikov function. The trick is then

to relate things back to the original physical problem,
that of a sequence of two-dimensional maps on (x,p)
space. This is done in a simple manner, as described heu-

ristically here and rigorously in BLW [33,34]. At each
sample time t =(2m/co&)n, the phase associated with the

first forcing frequency is 8,(n) =8, +2'(co, /co&)n; hence

one can think of the original two-dimensional Morse os-

cillator (2.1) at this sample time as a ttvo dime-nsional slice
02

of the three-dimensional Poincare section X ', defined by
the time slice, or equivalently the phase slice

0) +2~
CO)

n = (x,p, 8, ) 8, =8, +2m. n
C02

(4. 1)

Hence the sequence of maps (2.2) on (x,p) space can be
understood in terms of P, acting on a sequence of phase

02
slices of X, as shown in Fig. g (for incommensurate fre-
quencies the phase slices will visit 8, E [0,2n. ) uniformly
and densely, and for commensurate frequencies they will

visit a finite number of 8, values ). The intersection of
each time slice with W'(r, ) and W"(r, ) defines time
dependent one-dimensional manifolds in (x,p) space at
the appropriate sample time [the manifolds vary with the
time slice since W'(r, ) and W"(r, ) vary with 8,]. Figure
8 illustrates this in the case where the invariant manifolds
intersect in 1-tori, and the result for each time slice is a
time-dependent two-dimensional homoclinic tangle with
the same topological constraints as in the familiar case of
periodic forcing: the two manifolds crisscross ad
infinitum, intersecting each other but never intersecting
themselves, to define a countable infinity of two-
dimensional lobes. More precisely, the set of PIM's inter-
sect the time slice y(8, +2~(co, /co2)n) in a countable

0

infinity of primary intersection points (PIP's), and the seg-
ments of W'(r, ) and W"(~,) in that time slice between
adjacent PIP's define the boundary of a two-dimensional
lobe in that slice. The template for transport in (x,p)
space under the sequence of maps, and hence the key to
studying molecular dissociation, is thus the time-
dependent two-dimensional lobe structure associated
with each sample time. It is a straightforward conse-
quence of the invariance of W'(r, ) and W"(r, ) that each
lobe in the nth time slice maps under T,(",n) to a lobe in

the (n +l)th time slice. Hence the global picture for
transport in (x,p) space under the sequence of maps

[ T,( ",n ) ~
n EZ ] is expressed in terms of lobes mapping
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knows how the three-dimensional lobes in X ' evolve un-
der the single map P„one can easily deduce how the
two-dimensional lobes evolve under any of the maps in
the sequence of maps (several examples and illustrations
are given in BLW [33,34]). Recognizing the importance
of the invariant manifolds, we proceed to discuss the as-
pects of transport that are relevant to the study of molec-
ular dissociation. The key issue is to use the sequence of
lobe structures to precisely define boundaries between
bounded and unbounded motion and then precisely iden-
tify the regions in phase space which cross these boun-
daries under each map.

B. Deriving from the homoclinic tangle the sequence
of partial barriers between regions of bounded

and unbounded motion and the sequence of turnstiles

By definition, points on W'(r, ) and W"(r, ) asymptote
with positive and negative time, respectively, to the in-
variant 1-torus at infinity v„sothat in a manner similar
to the separatrix of the unforced system, W'(r, ) and
W"(r, ) play the role of dividing surfaces between bound-
ed and unbounded motion. For the unforced problem,
where W'(r, 0} and W"(r, 0) are identical, the entire
manifolds play the role of the dividing surface and they
act as a complete barrier. For the forced problem, where
W'(r, ) and W"(r, ) are no longer identical, segments of
the manifolds, joined together at an intersection set, play
the role of the dividing surface between bounded and un-
bounded motion; it is possible for points to move across
this surface, and hence the dividing surface acts as a par-
tial barrier. We give a careful discussion of the construc-
tion of these dividing surfaces in BLW [33,34], and the
essentials of this construction applied to the Morse oscil-
lator can be conveyed here in a simple manner with the

help of some figures. One chooses the above-mentioned
intersection set to be a one-dimensional subset of the set
of PIM's that is piecewise continuous and intersects each
phase slice y(8, ), 8, E [0,2~}, in a single point. Examples
are illustrated in Fig. 6, denoted by r, (there are, of
course, other possible choices, and we will discuss our
particular choice momentarily). If we let S[r„r,] and
U [r„r,] denote the segments of W'(r, ) and W"(r, ), re-
spectively, from r, to r„then C=U[r, r, ]US[r„r,]

20
denotes a two-dimensional surface in X that divides
each phase slice y(8, ), 8& E [0,2n. ), into two regions, as il-

lustrated in Fig. 10. For the case of toral PIM's, illustrat-
ed in Fig. 10(a), one can choose r, to be a l-torus, and C

82
in fact divides X ' into two regions; for the case of spiral
PIM's, illustrated in Fig. 10(b), one must choose r, to
have a discontinuity, and hence C is discontinuous and

02
does not divide X ' into two regions, since there are gaps
at the region of discontinuity. However, for all cases, 8
divides each phase slice y(8, ), 8, E[0,2n. ), into two re-

gions, which is all one is interested in for the sequence of
maps. At each sample time t =(2n. jco2)n, we thus have
in (x,p) space a time-dependent boundary
C ( n ) = CA—y(8, +2'(co, / co2)n ) that divides the space

0

into two regions, denoted Rb(n) and R„(n),as illustrated
in Fig. 10 (note that invariant three-dimensional regions

in X ', R„and Rb, are then defined as the union of the
corresponding two-dimensional regions over the phase
slices defined by 8, E[0,2n)). In the context of this
time-dependent boundary we can now explain the choice
of ~, in Fig. 6, and hence the choice of the sequence of
boundaries. We chose r, such that for each 8, K[0,2')
the s parameter associated with r, Ay(8, ) is the closest to
zero out of all the PIM intersections with that phase

/
C

(a)

e,

e,=o — X

t= —n2K
0)2

-S
~~c

e)
e,=o

t= —n2K
M2

FIG. 10. The invariant boundary p divides each phase slice into two regions: an illustration for (a) toral PIM geometry and (b)

spiral PIM geometry [q,(n):r, fly(8& +2m l~—, /co, )n )]. The shaded region shows a gap.
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slice. The aim of this choice is for the boundary C(n) to
most closely resemble the unperturbed separatrix at each
time slice.

As we shall explain, points can cross C only via the
turnstile lobes, which we now define and identify. It is a
straightforward consequence of the orientation preserv-

ing nature of P, that the lobes between r, and P, '(r, },
which we refer to as the turnstiles, change their orienta-
tion relative to C' under P, . What we mean by this can be

easily visualized in Fig. 11, where we show an example
with toral PIM's and one pair of turnstile lobes. It
should be clear from the figure that points in the
turnstiles, and only these points, cross the invariant
boundary C under P„mapping from outside to inside or
vice versa. At each sample time t =(2m le@2)n, we thus
have in (x,p) space time-dependent turnstiles defined by

CO)

Lb„(1;n)=Lb„(—1)Clg 8& +2m n
N2

(4.2)

L„b(1;n)=L„&(1)Ay 8, +2nn.
N2

where Ls„(1)and L»(1) are the three-dimensional lobes
82

in X ' that map under one iterate of P, from Rb to R„
and from R„to Rb, respectively. Hence the turnstile

Lb„(1;n)[L„&(1;n)]is the set of lobes which map under

T,(",n) from inside (outside) Rb(n} to outside (inside)

Rb(n + 1), and we shall refer to these two processes as es

cape and capture, respectively. The points in Rb(n) at
time t =(2n Ic02)n are destined to oscillate in a bounded
fashion until at some future sample time t =(2nlco2)n, .
8 ) n (which may or may not ever occur), they escape un-

der T,(",n ) via the turnstile lobes Lb„(1;n) to R„(n+1)

and henceforth asymptote to infinite separation (in a
similar manner one describes capture). Hence, it is
correct to interpret Rb(n), R„(n)as the regions of bound-

ed and unbounded motion, respectively, and the turnstile
lobes Lb„(l;n) and L„b(1;n}as the sole mechanism for

transport between the bounded and unbounded regions.
We conclude this section with three remarks.
(i) Previous studies which do not address invariant

manifolds are forced to use approximate and somewhat

ad hoc criteria for dissociation. For example, in their
study of ionization and dissociation in terms of a forced
nonlinear oscillator, Leopold and Percival [1] (Coulomb
potential, periodic forcing), and later Goggin and Milon-

ni [12,13] (Morse potential, periodic and quasiperiodic
forcing) use for their dissociation criterion a time-

dependent "compensated energy": any point with energy
greater than this compensated energy is considered disso-
ciated. As we shall see with some simulations in Sec.
V A, it is possible for their criterion to significantly differ

from the true criterion offered by the invariant manifolds.
Even if one is in a regime where such an approximation
works well, it is still important to appreciate the true dis-

sociation criterion.
(ii) We stress the new feature in the generalization from

transport under maps to transport under sequences of
maps: one is not concerned with transport with respect to
a fixed region in the plane, as is the case with two-
dimensional maps, but with transport with respect to a
sequence of regions, which vary in shape and size from
one time sample to the next. This is a consequence of the
fact that the relevant dividing lines between bounded and
unbounded motion, made up of points which asymptote
to the invariant torus ~, as x ~~, vary from one time
sample to the next, due to the more complicated time
dependence in the forcing. That the time-dependent tem-

e,=o
e, = 2m

q (n)

L„b(1;n)

I

T~(L (1; n); n)

T(L (1; n); n)

n+1)

FIG. 11. The turnstiles as the sole mechanism for transport between the bounded and unbounded regions.
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plate with which to study transport, the sequence of lobe
structures, is derived from a set of invariant manifolds
embedded in an enlarged phase space, allows one to em-
brace the more complicated transport issues associated
with quasiperiodic forcing.

(iii) Though not explicitly stated, our discussion of
turnstile lobes assumed that each lobe was entirely con-
tained in one region or the other. This is the case for
small enough forcing (which in practice can be quite
large), and when it is not the case one can redefine the
turnstiles in an appropriate manner to be the portions in
one of the regions [33—35].

C. A comment on boundedness and unboundedness

in the quantum-mechanical treatment

For a classical approach, it is the segments of the in-
variant manifolds of the perturbed system, and not the
unperturbed separatrix, that are relevant to the criterion
for dissociation. For example, in the forced system a
point may oscillate in a bounded manner over some finite
time interval such that it repeatedly crosses back and
forth over the unperturbed separatrix. Bearing this in

mind, consider the conventional approach used in the
quantum-mechanical treatment (as described, for exam-

ple, in Goggin and Milonni [12,13] and Lu et al. [14], or
elementary quantum-mechanics texts for that matter).
Let [ ~b, ) ] denote the set of bound states of the unforced

Morse oscillator. If the system is initially in some bound
state

~ g(t =0) ) then the dissociation probability at time t

for the forced problem is

P, (t)=I —gl &b;lg(&)) I'. (4.3)
l

Hence one finds the dissociation probability by subtract-
ing from one the probability of being in one of the [ ~ b; ) ]
states. The obvious question that arises for this approach
is: does one want to interpret [ ~ b; ) ] as the set of bound
states for the forced problem? For time-independent per-
turbations (Zeeman effect, Stark effect, and so forth) one
routinely solves for the perturbed eigenvalues and eigen-
states; however, for the more difficult case of time-
dependent perturbations it has become common to study
transitions relative to the unperturbed basis states accord-
ing to (4.3) and the question of the interpretation of
bounded and unbounded motion in the time-dependent
problem remains largely ignored.

V. QUANTIFYING FLUX AND DISSOCIATION RATES

A. Computing the partial barriers between bounded

and unbounded motion, the number of turnstile lobes,
and the turnstile boundaries

A first step towards quantifying molecular dissociation
via phase-space transport is the numerical computation
of the partial barriers and turnstiles, which provides a
direct portrayal of phase-space structure and allows exact
computation of Aux and various dissociation rates. The
procedure for numerical computation of the invariant

stable and unstable manifolds of saddle-type fixed points
of maps at finite (x,p) values is well known and straight-

forward; the added complications here are of course that
we are dealing with sequences of maps and an invariant
1-torus with infinite radius. One can study sequences of
maps by employing a doubze-phase-slice sampling method
[33,34], which is similar to the sampling method for
maps, except that one takes into account that the evolu-
tion from one time sample to the next is understood in

0~

terms of phase slices of the Poincare section X ' map-

ping from one to another under P, . Hence to compute
segments of the global stable and unstable manifolds in
some finite window x E [x„x&]at a given time sample
t = (2n. /coz )n, i.e., at a given phase slice

g(0, +2~(co, /coz)n), one evolves under the dynamical
0

system vector field backward and forward in time, respec-
tively, over some time interval bt~=(2m/coz)j, jEZ,
small segments of the stable and unstable manifolds that
originate at large x values in the diferent phase slices
y(0, +2~(co, /coz)(n +j)) and y(0, +2~(co, /coz)(n —j)),
respectively. If ~, had a finite radius, one would take
these initial segments to be the local stable and unstable
manifolds of ~, in the appropriate phase slices. The p
coordinate of r, is known exactly in any phase slice [see
Eq. (A4) in the Appendix], so in practice one can take the
initial segments to be horizontal segments at large x
values (say x ) 20) slightly above and below the p value of
r, Ay(0, +2m(co, /coz)(n +j)) and r, Ay(0, +2m. (co, /
coz)(n —j)) for W'(r, ) and W"(r, ), resPectively. The er-
ror incurred by this approximation can be made negligi-
ble by choosing for the line segment x sufficiently large
and p sufficiently close to the p coordinate of v, in the ap-
propriate phase slice (for example, in the Melnikov calcu-
lations in Fig. 5 we ensure that the error due to the initial
segment approximation is orders of magnitude smaller
than the true manifold separation). In making this ap-
proximation, we stress the need to respect the variation
of the p coordinate of ~, with the choice of Poincare sec-
tion and phase slice: in the context of periodic forcing,
Bruhn [36] takes the initial segment to lie on the corre-
sponding unperturbed manifolds, but for reasonably sized
perturbations a line eleinent that lies on W'(r, o) can lie
below W"(r, ), and hence move opposite to the intended
direction.

With the above procedure one can calculate with arbi-
trary precision segments of the invariant manifolds for
the nth time sample, and from this immediately calculate
the partial barriers and turnstile boundaries by an ap-
propriate choice of r, Ag(0& +2vr(co&lcoz)n ) and

0

T 8y(0, + 2'(co, /coz)(n + 1 ) ), and then the calculation
0

of P, '(r, Ay(0, +2'(co, /coz)(n +1))). Figure 12 shows
0

a simple illustration with a sequence of four time slices.
Note how the number, size, and shape of the turnstile
lobes can change from one time sample to the next,
which contrasts sharply with the time-periodic case,
where the turnstiles are independent of sample time. By
explicit computation of the manifolds as just described
here, one can determine the number of turnstile lobes for
each time slice. However, the Melnikov function pro-
vides an analytical tool for determining turnstile lobe
number, which will be relevant to some of the Aux calcu-
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12. The turnstiles and core boundaries for a sequence of four time slices [q, (n)= r, py(—8, +2m(co&/co&)n) and the parame
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ters are the same as in Fig. 9].

lations to come. If s =s, (8, ) denotes the s values associ-
ated with the choice of ~„then the turnstile lobes at the
nth time slice lie between s, (8& +2'(co& lco2)n ) and

0

s, (8, +2m(co, /co&)(n+1)}+2m/co2. Every time the Mel-

nikov function crosses through zero it corresponds to a
nearby crossing of the stable and unstable manifolds;
hence, if JV(8, +Zm(co, /co@)n } denotes the number of

0

zero crossings of M(s, 8& +2m(co, /co&)n, 8z,'v) between
0 0

(and not counting) the above two endpoints, then the
number of turnstile lobes in that time sample is (generi-
cally) given by A'(8& +2m(co&leo&)n }+1(and by the sign

of the Melnikov function one can determine how many of
these lobes correspond to escape and how many to cap-
ture, as described in BLW [33,34]. Bearing this in mind,
the plots of the Melnikov zero sets in Fig. 6, along with
the portrayal of r, and P, '(r, ), allow one to immediate-
ly deduce the number of turnstile lobes in each phase
slice. For example, in Fig. 6(d) there is seen to be two
turnstile lobes (one capture and one escape) for all time
slices (except the isolated cases where the PIM's cross).
In contrast, in Fig. 12, which is the same example except
sampled now at the slower rather than the faster frequen-
cy, there is a different number of turnstiles lobes (ranging
from two to four) for each time slice. BLW [33,34] give a
careful comparison of the effect of different sampling
choices; for either choice, however, the same transport

formalism goes through and we will on purpose consider

both types of sampling interchangeably.
In Fig. 13 we compare for a particular example the dis-

sociation criterion based on numerical computation of
segments of the invariant manifolds versus Leopold and
Percival's "compensated energy. " The compensated en-

ergy includes a time-dependent term that simply shifts

the unperturbed separatrix up and down in p with time,
and there is no accounting for the overall distortion and
"breathing" of the true partial barriers.

B. Turnstile lobe area and flux

A central transport quantity in previous studies of
molecular dissociation in the context of maps is the Pux
between regions of bounded and unbounded motion
[7,15—21,37—39]. Though flux describes an important
feature of transport to and from regions of bounded and
unbounded motion, we shall later see its limitations. In
contrast to the case of area-preserving maps, where a sin-
gle measure of flux suffices, for area-preserving sequences
of maps there are five relevant measures of flux. The first
two are the instantaneous Pux, denoted P, (n) and P, (n)
for escape and capture, respectively,
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Q)p

P, (n)= p(Lb„(1;n)),
(5.1)

ing quite short to quite long. The final measure is the
infinite tim-e average fiux

602

P, (n) = p(L„b(1;n}), N4= lim g [P,(n)+P, (n}], (5.2)

where p( ) denotes the area of the lobes within the
parentheses. Instantaneous flux thus refers to the area in
phase space, per sample time, that escapes or is captured
between the nth and (n+ 1)th time samples, and is in
general different for each time sample and for escape
versus capture, since the partial barriers vary with each
time slice and the area of the region they enclose can
change. The next two are the finite time-average jFux,
denoted 4, (n) and 4, (n) for escape and capture, respec-
tively, which are simply the average of the instantaneous
flux over the first n+1 time samples. This as well is
different for each n and for escape versus capture, and
though both quantities will converge to the same value in
the limit n —+ ao, the convergence time can vary from be-

which is the same for escape and capture, since the area
of Rb(n) remains bounded, as should be plain from the
definition of Rb(n). One can exactly compute the above
fluxes by identifying the turnstiles and computing their
boundaries for each time slice, as described in Sec. V A.

One can approximately [to O(e)] compute the fluxes
using the Melnikov function. Integrating the distance ex-
pression over the arc length of the unperturbed separatrix

dA, = ([DH(xz( —s),pl, ( —s))()ds

gives the area of an individual turnstile lobe
X(1;n)CLb„(1;n)UL»(1;n) in the nth time slice
y(8, +2m. (co, /co2)n ),

j. —I
)

l I I
]

I 1 I
I

I I I

sb(n)
p(L(1;n))=sf M s, 8) +2m

CO)

n, 62, v ds
N2

+o(e ), (5.3)

0—
I

I

I
I
I
I
I
I

where s, (n) (sb(n) are the s values of the bounding PIP's
of the lobe. Using (5.3), one can calculate instantaneous
flux and finite-time average flux by determining the areas
of the appropriate turnstile lobes (see Figs. 14 and 15).
For the infinite-time average, one obtains a particularly
simple expression

4= lim f ~M(s, 8&,8z, v)~ds+0(e ) .
T m2T 0

(5.4)
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FIG. 13. The dissociation criterion based on segments of the
stable and unstable manifolds (the solid line) and Leopold and
Percival's compensated energy (the dashed line). For this exam-

ple we are in the phase slice y(el =
~~ ~) of the Poincare section

8 =3m/2
2X,and the parameters are (a) (col ct)2) =co0(0.231 2 618),

ed (E, ,E2 ) = (0.102, 1.105)coo+2mDO; (b) the same as (a) except
E1 ~ E ] ~ Note that for this particular example we choose

q, (n) whose s value is second closest to zero, which leads to a
smoother core boundary in this case.

The expression for 4 really involves a sum over phase
slices of the turnstile lobe areas, for which the 0 (e) term
of (5.3) is a good approximation for e not too large and
co„co2not too small, but this is converted to an integral
over a single phase slice by elementary periodicity prop-
erties of the Melnikov function arguments [33,34]. Note
that, for a given sampling phase 82, for commensurate

0

frequencies the average flux depends on the initial phase
8, , i.e., 4=4(8, ), but for incommensurate frequencies

0 0

it is independent of 0, .
0

One would like to compare the flux associated with
periodic and quasiperiodic forcing. A normalization cri-
terion for the forcing amplitudes is needed to decide upon
"equivalent" periodic and quasiperiodic perturbations
that can be compared. For example, let us choose the
criterion E, +Ez =const=E (i.e., as E, and E2 are
varied, we keep constant the sum of the intensities associ-
ated with each amplitude in the electromagnetic field}.
For fixed co„co2,we then vary, say, E, from 0 to E, with

E2 determined by the normalization criterion. The ques-
tion then is how does the infinite-time average flux vary
as a function of E&? The variation depends on two prop-
erties: interference effects and relative scaling factors.
Referring to Fig. 16, at the single-frequency limits, asso-
ciated with the endpoints E, =0 and E, =E, the average
flux N is proportional to the relative scaling factor associ-
ated with the corresponding frequency. Interference
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FIG. 14. The variation of turnstile lobe area with the phase
81. In this example there are one or two of each of the escape
and capture turnstile lobes, depending on the phase slice:
Lg„(1;81,j) and L„b(1;8„j)denote the jth escape and capture
turnstile lobes, respectively, in the phase slice defined by 81,
where j increases with s. Note that different lobes correspond
to different line types, which are discontinuous in 81. For this

82 =0
example we are in the Poincare section X with Melnikov
amplitudes (A„A,)= —(A, A), A &0, and (~„co2)
=(g ', 1)coo. The areas for the escape and capture lobes are
given in (a) and (b), respectively, and are per unit e A /coo.
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FIG. 15. The variation of convergence rate for finite-time
average flux. The black dots correspond to escape, the white
dots to capture, and the flux is per unit eA. For this example
( A1, A2) —

( A, A), A & 0, and (a) (m1 co2) =(g 1)~0
(81 82 ) =(7T,O), (b) (coI co2) =(0.231,2.618)coo, and (8

23 3=(—~ —m. ).22 '2
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effects cause the flux profile to dip below a linear increase
from the lower to higher 4. The single-frequency limit
associated with the larger relative scaling factor thus cor-
responds to an absolute maximuin of the average fiux (the
absolute minimum may or may not be at the other
single-frequency limit, depending on the difference be-
tween the two relative scaling factors and the size of the
dip due to interference effects). In this context, the best
one can do is single-frequency forcing. In other contexts,
however, including other aspects of flux, multiple-
frequency forcing can enhance certain transport quanti-
ties. In particular, the variation of lobe areas gives one
the freedom to vary instantaneous and finite-time average
flux for a fixed infinite-time average. Relevant to the
variation of finite-time average flux is the time scale for
convergence to the infinite-time average. This time scale
can be anywhere from relatively short to arbitrarily long
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Egd

FIG. 16. Infinite-time average flux as a function of E1d, with
(E1+E2)d =E d . The frequency co, is fixed at coo, the fre-
quency co2 is ~coo (dashed), coo/g (solid), and '9 coo (dashed-
dotted). The flux is per unit e(2m. /a)Ed, the horizontal axis is
per unit Ed, and 81 =82 =0.

0 0



4818 DARIN BEIGIE AND STEPHEN WIGGINS

0.4 I I I
I

I I I
I

I I I

0.3

0.2

0.1

0
0 2 ~(~o 4

FIG. 17. The single-frequency infinite-time average fiux as
calculated by the Melnikov approximation (5.4). The Aux is per
unit e(2m/a)Ed.

(refer back to Fig. 15). We wish to stress the importance
of the finite-time quantities, for, as we shall see, dissocia-
tion rates of course decay in time, so the dissociation pro-
cess occurs over a finite time interval, and the infinite-
time average Aux may or may not have strong relevance
to the problem at hand.

Just as the relative scaling function helps one under-
stand the multiple-frequency case, so too does the Aux as-
sociated with single-frequency forcing (see Fig. 17). The

single-frequency infinite-time average fiux given by (5.4)
increases monotonically with decreasing forcing frequen-

cy m, corresponding to infinite turnstile lobe area and
maximal Aux in the limit co—+0. Such a result would
seem to deserve an explanation. In comparison, MacKay
and Meiss [7] obtain for a Coulomb potential a turnstile
lobe area and Aux which both diverge as co~0 for fixed e.
In their calculations they (along with Casati et al. [6])
consider dissociation of a prepared highly excited state
(no =66), and they choose both e and co to depend on no;
if one maintained this dependence as no~ ~ then both e
and co would limit to zero, in such a way as to lead to
divergent lobe area but zero Aux. For the Morse poten-
tial we briefiy discuss two cases of the limit co~0: (i) e
fixed and (ii) lime~0. For the case of e fixed note from
the Appendix [Eq. (A3)] that as co~0 the amplitude of
oscillation of the p coordinate of ~, diverges, so that for
sufficiently small co the problem becomes no longer near-
integrable. Figure 18 shows the turnstile lobe L»(1) for
four successively smaller values of co. The lobe grows in
area and spirals around Rb. There is no obvious reason
why the lobe should not remain in a spiral as co further
decreases, and given that the stable manifold cannot in-
tersect itself, Lb„(1)would then be trapped entirely in
R&, allowing for two possibilities as co~0: either the area
of the lobe and hence of R„diverge, or the area of R& will
remain finite, forcing the turnstile lobe area to remain
finite (this would not contradict Melnikov theory since
we are not in the near-integrable regime). The plots sug-
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FIG. 18. The single-frequency lobe structure in X for four successively smaller forcing frequencies, with @Ed fixed. The shad-
ed lobe is the escape turnstile lobe Lb„(1),and the white lobe is the image of the capture turnstile lobe P,(L„b(1)).For these exam-

ples eEd =0.037coo+2mD&, and (i) co=0.333coo, (ii) co=0.222co&&, (iii) co=0. 111coo, and (iv) co=0.0555coo.
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gest that the areas will keep growing, though a much

more intensive numerical study would be needed to as-

sure this. Even if this were the case, however, one would

of course not conclude from a maximal flux result that
the aim for good dissociation rates is to make the forcing
frequency arbitrarily small, for the followng reasons.

(i) That Rb grows with decreasing frequency implies

that more and more of the phase space is eaten up by the
bounded region.

(ii) One sees from Fig. 18 that as the frequency de-

creases a larger percentage of Lb„(1)intersects with

P,(L„b(1}),so that a larger percentage of phase-space

trajectories escaping under the next iterate of P, were

just captured at that time sample.
(iii) Lb„(1)does not necessarily penetrate any better the

inner level sets of the unperturbed Hamiltonian as co de-
creases.

It is precisely issues such as these, such as the intersec-
tion of the turnstile lobes with other lobes and with level
sets of the unperturbed Hamiltonian, that need to be
dealt with for a complete study of dissociation rates, and
we address these issues in the next two sections. We last-

ly remark here that for the case lime~0 the flux will fall
to zero, and as long as elco is kept sufficiently small the
problem remains near-integrable (one would be interested
in this situation for low-intensity microwave ionization or
dissociation of highly excited states).

C. Dissociation rates

The main limitation of flux is that it involves phase
space areas with no regard for the histories and initial
conditions of phase-space trajectories within these areas.
In the next two sections we study two basic phase-space
transport questions relevant to molecular dissociation
which addresses the history and location of phase-space
trajectories. The question addressed in this section is: at
time t =(2~leo&)n, how many of the initially bounded
points [i.e., those in Rb(0) at t =0] have escaped [i.e., are
in R„(n)]?For n )0 the turnstile Lb„(1;n)may in gen-
eral contain points which were in Rb(0) and R„(0)at
t =0, so to answer this question one must know the histo-
ry of the points in the turnstile lobe. Such a question is
studied in the following language. At time t =0 let the
regions Rb(0) and R„(0)be covered uniformly with parti-
cles of species Sb and S„,respectively, and let "Tb„(n)
[V„b(n)]denote the total amount of species Sb (S„)con-
tained in region R„(n)[Rb(n)] at t =(2m/co&)n. Then
for area-preserving sequences of maps

V'b„(n +1)—Vb„(n)=pb(Lb„(1;n)) pb(L„b(1;n)), —

(5.5)

where pb( ) denotes the area of the region within the
parentheses that contains Sb. Equation (5.5) then
quantifies a dissociation rate, and summing (5.5) over n

[and using that Tb„(0)=0], one obtains an expression for
Tb„(n)for any n [of course, T„b(n)=Tb„(n),so we con-
centrate on Tb„(n)].Solving Eq. (5.5) boils down to com-
puting lobe content pb(Lb„(1;n))and pb(L„b(1;n)). We

will discuss two approaches at solving for lobe content,
one based on a Markov-model approach, applied to
periodic forcing by MacKay, Meiss, Ott, and Percival
[28,29] and extended here to quasiperiodic forcing, and
one based on the study of the topology of lobe intersec-
tions with the bounded and unbounded regions and with
other lobes, applied to periodic forcing by Rom-Kedar,
Leonard, and Wiggins [26] and Rom-Kedar and Wiggins
[35] and extended to quasiperiodic forcing by BLW
[33,34].

The phase-space transport question studied in this sec-
tion, that of an initial uniform distribution of points in
phase space, is popular in chemical kinetics studies
[15—21], but we point out that a study of an initial distri-
bution that depends on energy levels would also seem
worthwhile, and we will discuss this latter problem as
well.

1. Markov models

pb (L„„(1))= (1 p)"p(Lb„(1)),—
pb(L, b(1))=0, (5.6)

and one finds

'Tb„(n)= [1—(1 p)"]p(rb ) . — (5.7}

For a sequence of maps the Markov method generalizes
in a simple manner: if we let p;=p(L„b(1;i))lp(r—b(i

The Markov-model approach provides an approximate
answer to the first transport question in the context of
periodic forcing, and has gained some popularity in the
application to molecular dissociation. Its advantages are
its conceptual simplicity and possible ease of implementa-
tion; its disadvantages are that it can lead to a poor ap-
proximation, one that can be even qualitatively incorrect
and can miss basic features of transport. For a two-
dimensional Poincare map derived from time-periodic
forcing, one has for the Poincare section the same con-
structs as in the time slices of the quasiperiodic case, ex-
cept that everything is independent of the sample time;
hence, we use the same notation as in the quasiperiodic
case, with the parameter n dropped. The Poincare sec-
tion is divided into two regions Rb and R„,and for an
elementary version of the Markov method often em-

ployed in chemical kinetics studies one further specifies
for each of these regions the stochastic part that can par-
ticipate in transport between R„andRb, denoted r„and
rb, respectively. Thus rb is the portion of Rb outside the
outermost surviving KAM torus, minus the islands of
stability, and calculating the area of this region approxi-
mately is not too difficult. One then assumes that once a
lobe maps from one region to another, its contents instan-
taneously diffuse throughout the region it maps into.
This rather unrealistic assumption allows one to deter-
mine lobe content in a simple manner. If we let

p =p(L„b(1))Ip(rb ), i.e., p is the percentage of rb occu-
pied by the captured turnstile lobe, then at the nth time
sample
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+1)},then the expression for pb{L„„(1;n))becomes for
n&1

Ru (n)

pb(Lb„(1;n)}=(1—po)(1 —p, ) . [1—p,„„]
Xp, (Lb„(1;n))

and one has

'Tb„(n)=[1—(1—po) . . [1—pI„,I]]p(rb(n)) .

(5 8)

(5.9)

b(4; n)

Since in general the p; are different, one has for the se-

quence of maps added freedom to enhance or diminish
aspects of transport over finite time scales. The previ-
ously mentioned influence of interference effects and rela-
tive scaling factors on the average lobe area are relevant
to expressions (5.8) and (5.9},since the p, are proportional
to the turnstile lobe area. One must also consider the
variation of p(rb(i)} under the Markov model, but as
should soon become clear, the dependence on p{rb (i }) is a
rather artificial consequence of the unrealistic approxi-
mation of infinitely fast diffusion. We lastly remark
that for po+p, + +p(„&]=const, the product
(1—

po ) (1—pI„ I I ) is maximal in the limit

pc=p, = =pI„ II (this is just the simple result that
the maximum volume of an n-sided box is associated with
a cube}, i.e., this product is maximal, given the con-
straint, in the single-frequency limit.

2. The topology of lobe intersections

An exact determination of lobe content, and hence an
exact answer to the first transport question, necessitates a
consideration of the topology of lobe intersections. Until
now, we have discussed only the turnstile lobes L&„(1;n )

[L„b(1;n}],i.e., the lobes of the nth time slice that escape
[are captured] between the nth and (n +1)th time slice;
we now must consider other lobes Lb„(m;n) [L„b(m;n)),
defined to be for m ~1 the lobes of the nth time slice
which escape [are captured] between the (n+m —1)th
and (n +m)th time slice (see Fig. 19). For quasiperiodic
forcing, to find the true content of the turnstile lobes at
t =(2nlco2)n, one maps the lobes back to t =0 and sees
how much of them are inside and outside RI, (0),

b (1

FIG. 19. Labeling the other lobes in the lobe structure. For
simplicity of illustration we consider a case where there is only
one lobe for each Lb„(m;n), L„b(m; n), and we only portray the
lobes for m &1.

rewrite the first expression of (5.10) as

pb(Lb„(1;n))=p(Lb„(1;n)}

—g p(Lb„(1+n;0)AL„&(m;0)} (5.11)
m=1

(for n =0 replace the sum by zero). As n increases, the
lobe intersections become exceedingly complicated, and
the topology of the intersections is better appreciated by
recognizing the approximate self-similar behavior of the
preimages of the lobes as one evolves them backwards in
time. These issues are discussed in BLW [40] in the con-
text of two-dimensional maps, and we convey the essence
of the situation for sequences of maps in Fig. 21. Once a
lobe has completed one revolution around the bounded
region, it begins to wrap around other turnstile lobes, as
shown in Fig. 20 and highlighted by the shaded region in

I
I

I I I
I

I I I
I

I I I

1 I

0)

0

= [T, '(",0)o . o T, '[Lb„(1;n);n—1]]ARb(0)

=Lb„(1+n;0)ARI, (0),

pb(L b(1;n))=0,
(5.10)

b(2; 0)

where T, '(",n) denotes the map from the (n +1)th to
the nth time slice. Since the stable manifold can never in-
tersect itself, the only way for Lb„(1+n;0),n ) 1, to be
outside Rb(0) is for it to be inside the lobes L„I,(m;0) for
1 (m ( n, as shown in Fig. 20 (note that it is due to the
fact that the one-dimensional manifolds of each time slice
are subject to the same geometrical constraints as those
manifolds in the familiar case of periodic forcing that al-
lows a straightforward extension of lobe intersection
analysis to the quasiperiodic case). Hence one can

I I I I I I I I I I I I I

0 8 ~ 4

FIG. 20. Finding the content of a turnstile lobe. The param-

eters are the same here as in Figs. 9 and 12. In this particular
example, we wish to determine the content of the escape
turnstile lobe in the n =3 time slice, Lb„(1;3).Hence we map
the lobe back to the n =0 time slice [which gives the lobe

Lb„(4;0)]:the black part of the lobe is in Rb(0), and the speck-
led part is outside Rb(0) and inside the lobes L„b(1;0)and

L„b(2;0).
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FIG. 21. Illustrating the approximate self-similar behavior as

one maps a lobe backwards in time. In (a) we show a piece of
the lobe Lb„(4;0) in Fig. 20 that wraps around one of the
Lb„(1;0)lobes: we map this piece of lobe back another three
periods to obtain (b). The resulting piece of lobe looks approxi-
mately like the boundary of the lobe Lb„(1;3)mapped back
three periods (compare with Fig. 20). This is an example where
the approximate self-similarity is quite good: in general, since
one has lobes of varying shape wrapping around one another,
the approximate self-similarity is to be understood only very
loosely.

Fig. 21(a). This shaded region then itself repeats the pro-
cess of winding around the core under further evolution
backwards in time, as shown in Fig. 21(b). One then un-
derstands the lobe intersections in terms of pieces of
Lb„(1;n)repeatedly revolving around the core under evo-
lution backward in time until they intersect the turnstile
L„b(1;n), n & n: for each such piece the number of revo-
lutions before the turnstile intersection can vary from 1

to ~, and the period of each revolution can vary from
some minimum number to ~. One can construct a syrn-
bolic dynamics to describe the topology of these pieces
[40], but we will not dwell on this here, our goal being
merely to point out the comphcated nature of the inter-
sections, and yet the existence of a relatively simple
framework with which to understand the topology of the
intersections.

The intersection of lobes with R„(n)and Ri, (n), or

equivalently with other lobes, provides the framework for
exact computation of transport under quasiperiodic forc-
ing, and we compare this framework with the approxi-
mate Markov model, and with periodic forcing. Our
main interest is in the latter comparison, and we do not
wish to digress too much with the former. A discussion
of the deficiencies of the approximate Markov model has
been given by Rom-Kedar and Wiggins [41] and Wiggins
[23] (and is also pointed out by Zembekov [42]), and we
only highlight here some of the results. Previous studies
employing the Markov approximation show agreement
with exact results only at short time scales [21,43].
Indeed any practical implementation of the Markov
method entails exponential decay in transport rates,
whereas the exact theory allows both exponential and
power-law decay and the latter can indeed occur [36].
Even the short-time agreements can be viewed as rather
accidental, for there is no reason to expect that the way
lobes intersect one another bears any relation to the rath-
er unrealistic process that assumes infinitely fast diffusion
and disregards lobe intersections. In fact, we will soon
mention in the context of quasiperiodic forcing a simple
example where short-time agreement is not expected.

In comparing the exact transport theory for maps and
sequences of maps, a central difference to recognize is the
additional freedom in the latter case to enhance or dimin-
ish aspects of transport over finite time scales due to the
variation of lobe areas. One can study this variation and
exploit it to one's advantage by numerical simulation of
the lobes. In Fig. 22 we show two simple examples that
differ only in reversal of the sign of the amplitude for the
first forcing frequency. In Fig. 22(a) the areas of the first
six escape lobes are almost twice that of the average lobe
areas, while the areas of the first six capture lobes are
close to zero. Hence at short time scales the dissociation
rates are almost twice as large as the infinite-time average
flux. In Fig. 22(b) the situation is reversed: hence, after
five time samples the content of the bounded region has
changed significantly. A Markov-model approach would

imply that the turnstile lobe Lb„(1;5) contains a
significant fraction of points that were not initially in the
bounded region, but this is in fact not true since Lb„(1;5)
intersects with none of the captured lobes [on the scale
shown it looks possible that Lb„(1;5)just touches one of
the capture lobes, but at greater resolution this is seen to
not happen, which is consistent with the n =0 plot].
Despite the additional freedom of variation of lobe areas,
one must also bear in mind that the average turnstile lobe
area is maximal in a single-frequency limit, for lobe area
does play a central role in phase space transport.

To numerically determine lobe content at any sample
time t =(2mlco2)n for an initial uniform distribution in

phase space, one could initialize the turnstile with a uni-
form distribution of points and then evolve the system
backwards in time to t =0 and determine how many
points are inside and outside Rb(0). As mentioned ear-
lier, one might also be interested in an initial distribution
that depends on energy levels: for this one would employ
the same procedure as above, except that at t =0 one
would then weight the points in Rb(0) according to the
chosen distribution.
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FIG. 22. Using variation of lobe areas to enhance or diminish finite-time escape or capture for a fixed infinite-time average faux.
The Parameters for (a) and (b) are identical to those in Fig. 13, except that e is three times smaller here. The solid dot represents our
choice of q, (n) for these examples, and in the n = 5 sample for (b), Lb„(1;5) is the thin black lobe that touches the dot.

D. Lobe penetration of energy levels and dissociation
rates of a microcanonical ensemble

p(L„„(1+n;0) {i/0)
~0(n) =

p Lo
(5.12)

In addition to lobe area and lobe content, a third
feature of dissociation to study in terms of phase-space
transport is lobe penetration, meaning the ability of the
lobes to penetrate along the action, or energy, coordinate.
Indeed, there has been considerable interest in the ioniza-
tion and dissociation of a system prepared in a particular
quantum state [1—7,9,12,13], which in a classical context
corresponds to the escape of an ensemble of points initial-
ized on a particular level set of the unperturbed Hamil-
tonian. Previous studies have made no real connection to
lobe dynamics within the homoclinic tangle; often there
is discussion of such features as the presence of cantori
and overlap of neighboring resonances [7,13], but these
discussions are sometimes rather heuristic. As we have
stressed, the sole mechanism for dissociation is the
turnstiles of the homoclinic tangle, so any discussion of
dissociation ultimately needs to be related to preimages
of these turnstiles.

The transport equations, similar in spirit to Sec. VC,
are easily written down. Let Xo denote the level set of in-
terest of the unperturbed Hamiltonian, and ~o(n)
denote the percentage of points initially on the level set
that escape between the nth and (n +1)th time sample,
then

where p( ) denotes the number of points along the

specified curve. One typically chooses the initial distribu-
tion on the level set to be uniform along the angle coordi-
nate in action-angle space [which of course leads to a
weighted distribution in (x,p) space]. Given this frame-
work, one can divide the study of lobe intersections with
the unperturbed level sets into three regimes, depending
on the time scale t = (2n lco2)n.

(i) Short time scale small n F—or small . n the shapes
of the lobes Lb„(1+n;0)are not very convoluted and
their thickness normal to the unperturbed separatrix is
well approximated by the Melnikov expression (3.2). In
the small-n regime we can identify two aspects of the
lobes that affect penetration.

(a) The Melnikov function provides a measure of rela
tive penetration, as described below. Let

q", "( — 8s„8 , 2)v
S, Q

=q, 0( s)+e —( —s, 0, , ~0; ~v, )o+O(e )

denote the (x,p) component of a point on W'(r, ) and
W"(r, ), respectively, where q, 0( —s) is the (x,p) com-
ponent of a point on the unperturbed separatrix. Then
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Q s
Bq, 2—H(q,") H—(q', )=H(q, o)+eDH(q, 0). +O(e ) H— (q,=o) —eDH(q, =o).
BE ~=p e=p

=eDH (q,=o ). Bq," Bq',

BE BE e=p
+O(e ) . (5.13)

=eM(s, 8&, 82,'v)+O(e ) . (5.14)

The interpretation is thus that eM gives the first-order
measure of how the lobe boundaries span the energy lev-
els of the unperturbed Hamiltonian. In the small-n re-
gime, then, the previously discussed inhuence of relative
scaling factors and interference effects on the Melnikov
function have relevance on the lobes' ability to span the
unperturbed energy levels. Recall from Sec. V B that if
for any pair of frequencies (to„t02) we vary the ampli-
tudes (E, ,Ez) with Ef+Ez fixed, then ( leMl ), is maxi-
mal in the single-frequency limit corresponding to the
larger relative scaling factor [where ( ), denotes the
average over s E(—00, ao )]. For the small-n regime we
are interested in a finite s interval, so that, though
( leMl ), can have an infiuence in this regime, it is also
balanced by the added freedom of two-frequency forcing
to enhance or diminish leMl over a finite s interval for a
fixed ( leM l ), . Additionally relevant to lobe penetration
is the maximum value of leMl: though interference
effects cause ( l

eM l ), to dip below a linear increase as the
(E~,Eq ) weighting is varied from the lower to higher rel-
ative scaling f'actor (refer back to Fig. 16) leMl, „willbe
raised above a linear increase, so that the span of the un-
perturbed energy levels can be maximal in the two-
frequency case (see Fig. 23).

(b) In addition to a measure of the range of unper-
turbed energy levels spanned by the lobes, i.e., the relative
penetration, one is also interested in the absolute penetra-
tion of energy levels, i.e., in how the lobes penetrate any
particular level set, which is affected not only by lobe
width along the energy coordinate, but also the previous-
ly mentioned net oscillation and "breathing" of the lobe
structure. A measure of the net oscillation in the p coor-
dinate is given by the expression for r, [see Eq. (A4) in
the Appendix]: the amplitudes of the p, oscillation are
EdE; /co; for the co; component. The breathing of the lobe
structure is more difficult to study and, as previously ex-
plained, one will typically need to resort to numerical
simulation of the lobe structure. We wish to stress the
importance of the breathing and oscillations of the lobe
structure, for it can have a significant effect on dissocia-
tion: for example, it can allow portions of a high-
quantum-number bounded level set to initially be already
outside Rb(0). Though not explicitly mentioned in the
next two regimes, it should be understood that the net
breathing and oseillations are relevant there too.

(ii) Intermediate time scale medium n. I—n this re-

By definition [22,32] the first-order term in the last line of
(5.13) is eM(s, 8„8i', v). Hence

0

H(q,"(—s, 8„8z,v) ) H(q—', (
—s, &i, ez ', v))

gime n is, on the one hand, large enough that the lobes
Lb„(1+n;0)wind around Rb(0), wrapping around other
escape lobes and intersecting other capture lobes (recall
the earlier discussion of the approximate self-similar be-
havior of the lobes to help make sense of this intermedi-
ate regime); however, n is still small enough that the
penetration process has not yet approached saturation. It
is in this intermediate regime that explicit numerical
simulation of the lobes is most worthwhile, for the analyt-
ical tools and constructs applicable to the limiting re-
gimes of small n and large n (to be discussed next) have
only partial relevance here. The Melnikov function, use-
ful in the small-n regime, offers no accounting for how
the lobes further penetrate the energy levels by repeatedly
winding around the core and wrapping around other
lobes. Additionally, until the penetration process ap-
proaches saturation, the large-n constructs we will men-
tion (such as the outermost surviving KAM-type torus)
may have little relevance. The constructs of both limit-
ing regimes will have some relevance, though: the
intermediate-n lobes wrap around the small-n lobes, and
hence the penetration of these small-n lobes does affect
the penetration of the intermediate-n lobes. Conversely,
the large-n constructs, such as the outermost surviving
KAM-type torus, will serve as an inner barrier that limits
penetration. The single- and two-frequency comparisons
will thus be influenced by the comparisons in the two lim-
iting regimes, but a true comparison will necessitate nu-
merical simulations on a case by case basis.
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FIG. 23. Plot of M,„asa function of E& d, with
(E& +E2 )d:E d . The parameters are identical to those of
Fig. 16. M,

„

is per unit (2n. /a)Ed, and the horizontal axis is
per unit Ed.
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(iii) Long time scale —large n .For large enough n the
ability of the lobes to penetrate the unperturbed energy
level saturates. In principle one could study dissociation
in terms of lobe dynamics until saturation, but to do this
would be quite computer intensive (a large-n calculation
might be interesting nevertheless). Other constructs are
useful in this regime and have been employed in the
single-frequency case: in particular, the outermost sur-
viving KAM-type torus provides a phase-space boundary
that encloses a region in phase space whose points remain
bounded for all time. Hence the escape lobes can never
penetrate past this torus, which thus acts as a barrier to
lobe penetration. In this respect there is interest in the
overlap of neighboring resonances [13],for such an over-
lap disallows a surviving KAM-type torus between the
two resonances, and thus can be used as a tool for es-
timating the location of the outermost surviving KAM-
type torus. We remark parenthetically that Arnold [44]
indicates how original KAM theory extends to quasi-
periodically forced one-degree-of-freedom Hamiltonian
systems.

Goggin and Milonni [12,13] study one-frequency and
two-frequency dissociation thresholds for an ensemble of
points on a level set corresponding to the ground state of
the Morse oscillator: they numerically compute the forc-
ing intensity needed to dissociate 5% of the level set once
the dissociation process has been saturated. They pro-
vide numerical evidence that two-frequency forcing has a
lower threshold intensity, and argue that this lowering is
a consequence of the additional resonances created by the
additional forcing frequency, which facilitates resonance
overlap and hence dissociation. We add two
qualifications to their results. First, the sole numerical
comparison for dissociation they offer keeps one of the
frequencies in the two-frequency problem fixed at what is
almost the "best" available frequency (i.e., lowest single-
frequency threshold intensity), so that much of the com-
parison amounts to one between a relatively poor single-
frequency forcing (high-threshold intensity) and a com-
bination of one good and one poor frequency in the two-
frequency problem, a somewhat unfair comparison. Nev-
ertheless, their comparison offers some evidence of a
lower two-frequency threshold, though not so striking as
their visual comparison suggests at first glance. Second,
the presence of additional resonances alone does not en-

sure enhanced resonance overlap, for if one has, for ex-

ample, twice as many resonances at half the width, it is
not obvious that one has gained anything. Since forcing
intensity is proportional to the sum of the squares of the
electric fields, however, it is possible to have in the two-
frequency problem at least twice as many resonances at
more than half the width for the same intensity as the
single-frequency problem. It is thus plausible that with
the ideal frequency combinations one will have enhanced
resonance overlap, and a lower threshold intensity.

After distinguishing between the above three regimes,
we point out that much of the previous studies of ioniza-
tion and dissociation focus on a fairly specific situation:
the threshold regime, where the forcing intensity is at the
threshold where ionization and dissociation just begin.
This corresponds to the situation where the lobes

Lb„(1+n;0) intersect the level set only in the saturation
regime (large n) . Another interesting situation that
deserves study is what we will call the post-threshold re-
gime, where the forcing intensity is larger than the
threshold intensity for the level set concerned, and the es-
cape lobes L&„(1+n;0)thus play a role in dissociation
for small and medium values of n. As should be clear
from our discussion, the threshold and post-threshold re-
gimes can have qualitatively different behavior and neces-
sitate different methods of investigation. We end this sec-
tion with three remarks to highlight these differences and
some of the issues in the post-threshold regime.

(i) Constructs relevant to the threshold regime, such as
cantori, resonance overlap, and the outermost surviving
KAM-type torus, may have little relevance to the post-
threshold regime. For example, in the case where the
concerned level set intersects the turnstiles, it should be
clear that issues such as resonance overlap can have little
relevance.

(ii) The penetration dependence on forcing frequency in
the threshold and post-threshold regime may differ. In
the threshold regime, the frequency of the concerned lev-
el set can have particular relevance; for example Goggin
and Milonni [13] offer evidence that for one-frequency
forcing it is best to force near this frequency (i.e., one ob-
tains the lowest threshold intensity near the level-set fre-
quency). A reasonable argument for this phenomenon is
that as one increases the forcing intensity to find the
threshold regime, and hence moves the outermost surviv-

ing KAM torus to smaller and smaller action values, hav-
ing a nice thick 1:1 resonance at the concerned level set
awaiting the incoming KAM torus will facilitate reso-
nance overlap and hence facilitate moving the KAM
torus inside the level set. For the post-threshold regime,
however, the relevant neighboring resonances will have
already overlapped and the level-set frequency may have
less relevance.

(iii) Consider a particular scenario as an example of the
more varied questions one can address in the post-
threshold regime (also of interest for comparing with
quantum-mechanical calculations). Suppose we force at
some fixed intensity and some fixed frequency tuned, say,
to the ground-state dissociation energy, and ask how dis-
sociation rates change for an initial distribution of points
on a high-quantum-number level set as we increase the
quantum number, i.e., move closer to the separatrix. On
the one hand, for a fixed forcing intensity and frequency
the turnstile lobes are fixed, so that as the level set of in-
terest approaches the separatrix its intersection with the
turnstile can approach a constant length, so that the
numerator of (5.12) approaches a constant. However, the
arclength and period of the level set increases to infinity,
so that the transition rate falls to zero.

E. Chaos

We close with a comment on the chaotic nature of the
dynamics associated with quasiperiodic forcing, or
equivalently, with sequences of maps, and the ability to
detect a chaotic response to quasiperiodic forcing. It has
of course been widely appreciated for a long time that the
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H(D(i);1)

D( D(3)

H(H(D(1);1);2)

FIG. 24. A traveling horseshoe map sequence.

chaotic nature of the dynamics in homoclinic and hetero-
clinic tangles of two-dimensional maps is understood in

terms of the presence of a Smale horseshoe map. How

does one understand chaos for sequences of maps? As de-

scribed rigorously in BLW [33,34], and as discussed heu-

ristically here, chaos is understood in terms of the pres-
ence of a traveling horseshoe map sequence

[H(;n );n C Z ] (see Fig. 24). The sequence consists of a
bi-infinite sequence of domains

[.. . ,D( n), .—. . , D( —1),D(0),D(1), . . . , D(n), . . . ]

such that H(D(n);n) intersects D(n+1} in a
horseshoelike fashion. The result is chaotic dynamics rel-

ative to a time-dependent Cantor set of points.

VI. CONCLUDING REMARKS

Invariant manifolds offer a basic framework for study-
ing classes of nonintegrable systems. For a periodically
or quasiperiodically forced nonlinear oscillator such as
the Morse oscillator, the stable and unstable manifolds of
the corresponding Poincare map's homoclinic tangle pro-
vide a precise criterion for the partial barriers between
bounded and unbounded motion and for the sole mecha-
nism of transport across these partial barriers, the
turnstiles. Having identified these phase-space structures
one can study a variety of transition rates between
bounded and unbounded motion, and hence perform a
classical study of molecular dissociation.

Addressing the quasiperiodically forced Morse oscilla-
tor necessitates a basic extension past the ubiquitous
single-frequency case, for one must generalize from two-
dimensional maps to sequences of two dimensio-nal maps,
or equivalently to a three-dimensional Poincare map act-
ing on a sequence of two-dimensional phase slices. As we
have seen, however, the constructs associated with
iterates of a two-dimensional map are fairly robust: a
fixed set of partial barriers and turnstiles generalizes to a
sequence of partial barriers and turnstiles, and the Smale
horseshoe map generalizes to a traveling horseshoe map
sequence. A generalized Melnikov function and a
double-phase-slice sampling method provide the analyti-
cal and computational tools for studying two-frequency
dissociation in the context of sequences of maps and com-
paring with the single-frequency case. On the one hand,
infinite-time average flux is seen to be maximal in the
single-frequency limit associated with the larger relative
scaling factor; however, lobe penetration of the level sets
of the unperturbed Hamiltonian can be maximal in the
two-frequency case. Additionally, the variation of lobe

This material is based upon work supported by the Na-
tional Science Foundation and the Office of Naval
Research.

APPENDIX

We include here a few mathematical details about the
quasiperiodically forced Morse oscillator.

(i) The expression for an orbit on the unperturbed
separatrix (xs(t s),ps(t —s)) —is solved by setting

H =Do, where H is the unperturbed Hamiltonian, and

using x =p lm to obtain

x =++2D /m (2e '"—e 2ax)1/2

One can integrate this to obtain x and hence p =mx

1x (t —s)= —lnh

1+[too(t —s) ]
2

coo(t —s }
pz ( t s}=2+2mDO—

1+[coo(t —s) ]

(Al)

where too= a+2Dolm. —
82

(ii) The expression for the invariant 1-torus r, in X is

solved by setting z =1/x and studying the Morse system
atz =0,

z=0,
p =ed [E, cos(co, t +8, ) +Ep cos(co2t +82 )], (A2)

which is solved by

areas in the two-frequency problem gives one added free-
dom to enhance or diminish aspects of transport over
finite time scales for a fixed infinite-time average flux.

Melnikov theory and the results based on this theory
are valid in the near-integrable regime; however, in prac-
tice fairly large perturbations are allowed (refer, for ex-

ample, to Fig. 5). More significantly, we stress that the
basic framework used here, i.e., the use of invariant mani-

folds to partition phase space, identify partial barriers
and turnstiles, and study molecular dissociation via

phase-space transport and lobe dynamics, does not re-

quire near-integrability.
For simplicity of discussion, we have focused on two-

frequency forcing; however, a similar analysis applies to
multiple-frequency systems with more than two forcing
frequencies, and indeed to more complicated forcing time
dependences than quasiperiodic, as explained in BLW
[33,34].
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z(t)=0,

p(t)=ed sin(co, t+8, )+ sin(to2t+02 )
CO) C02 0

The expression for z, is thus given by

(A3)
full autonomous system phase space. Employing the
standard procedure of deriving and solving a linear
differential equation for b,'" in t [22,32], one obtains

6"(O,s, B„Bz,v) —6'(O, s, 0, , 02, v)

(x,(0)),p, ( 0)))
r

11mX ~~,Ed
E, E,

sin(8, )+ sin(Bz )
Nl N2 0

=M (s, 0„0~;v)+ lim b, "(t,s, 0„02;v)
0

—lim b, '(t, s, 8„0~;v). (A9)

Using (Al) and that pt, (t) is odd in t

i =1,2 . (A5)

(A4)

(iii) Calculation of the Melnikov function. From (3.1)
M{s 01 '92 v) —Il +I2 where

E;d
I; = f pz(t) cos[to;t+(to;s+8;)]dt,

The nonhyperbolicity and infinite radius of ~, means that
the convergence of the Melnikov integral and the vanish-
ing of the two limits is not guaranteed without additional
analysis. The Melnikov integral was explicitly shown to
converge in (iii). The two limits in (A9) vanish as long as

lim DH(qh(t —s))=0,

and

4E;dI =-
i sin(to, s +8;) lim

t~ oo, —oo

r)q;'"(t,s, Bi,B~;v)

COOt

X
2 sin(co;t)d(toot), i =1,2 .

1+(toot)

(A6)

Solving the integral gives

2p
I, = — E;de ' sin(to;s+9, ), i =1,2 . (A7)

a

is bounded. The first condition is easily seen to hold, and
it should be noted that it does not require hyperbolicity,
only that ~, be of saddle-type stability. The second condi-
tion is seen to be satisfied for the component p", " due to
(A3). Both x",& o and x', "o limit to infinity as t ~ ao, —oo,
but their difference is

Note that (A7) is valid for cv; )0; for co; =0 the integrand
in (A6) is identically zero and hence I; vanishes. The
Melnikov function is thus discontinuous at co; =0 due to
the nonvanishing of the Melnikov amplitudes in the limit
~, ~0. This nonvanishing is due to the fact that
ph(t) 1/(toot-) for large

~
t~

(iv) The Melnikov approximation of manifold separa-
tion. If we assume difFerentiable stable and unstable mani-
folds we obtain by Taylor expanding in e

d( ,s„0&8', ,v)e

b, "(O,s, 8„82;v) —b, '(O, s, 0„92;v)

I IDH(qp {—s) ) ff

(A8)

where qt, ( —s) = (xi, ( s),pz ( —s) ) and—

b,' "( t, s, 0, , 02; v )

dq', "(t,s, 9„02;v)= DH(q„(t—s) ).
e=O

with q", " the (x,p) component of an orbit on the per-
turbed stable and unstable manifold, respectively, in the

SQ &, Qx,'&o x&'=o (p~'&o p~'=o)
Pl

(A10)

and hence the bounded oscillations of p in (A3) imply
bounded oscillations in x at infinity. The constant of in-
tegration in (A10) may become unbounded in the con-
cerned limit, but since

BH
[qh(t —s) ]-1/(t —s)2

BX

wefor large ( t —s (, all really need is
for dx", "{t,s, 8„82', v)/Be, or equivalently

0
x","o ( t, s, 0„8z,v ) x","o(t —s), n—ot to diverge faster

than t with increasing
~
t ~, which is guaranteed by the

fact that for large
~
t ~, x","o( t —s)- ln

~
t —

s~ and
~x",&o(t, s, 8„82,v)~ decays to bounded oscillations with

0

zero mean as t approaches ~, —~ asymptotically
(indeed, numerical studies show that the x component of
points on the perturbed stable and unstable manifolds
grows logarithmically for large ~t~ with increasing and
decreasing time, respectively, which would imply that the
constant of integration in (A10) remains bounded any-
way). We remark that the excellent agreement in Fig. 5
between the exact manifold separation and the Melnikov
approximation (3.2) can be taken as confirmation that
both limits in (A9) indeed vanish, and that the assump-
tion of differentiable stable and unstable manifolds is val-
id.
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