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The dynamics of a Rydberg electron in a magnetic field is examined for clues to the analytic structure

of the electron wave function. A multichannel ph

ase-amplitude formulation proves successful in the in-

termediate range of radial distances, where the onset of diamagnetism reshapes the Coulomb wave func-
tions. Numerical integration of first-order equations in this range serves to illustrate the evolution of

wave functions.

PACS number(s): 31.15.+q, 32.60.+1i, 34.10.+x

I. INTRODUCTION

The diamagnetism of a Rydberg electron involves a
boost of its kinetic energy stemming from Larmor preces-
sion; this boost is proportional to the squared flux of a
magnetic field B threaded through the electron’s orbital.
The onset of a magnetic field also warps the otherwise
spherical symmetry of this orbital, a symmetry familiarly
described by a spherical harmonic Y, (6,¢). For an elec-
tron excited by a photon with linear polarization parallel
to B, ie., along 6=0, the warping replaces—at
sufficiently large r—the spherical distribution Y, (0,)
by a cylindrical oscillator’s Hermite-like function
G, (Br sinf,p), which represents a Landau orbital. This
replacement is accompanied by a modest distortion of the
relevant Coulomb radial function F(r) into an analogous
F(r cosf). [Note that Landau oscillation amplitudes are
O(100 a.u.) for strong laboratory fields.] The correspond-
ing warp for a polarization orthogonal to B is more novel
and radical, replacing Y, by an orbital analogous to
G, (Br cos6,¢), and forcing F(r) to turn progressively, at
large r, from a Coulomb into an oscillator function of
rsinf. The latter orbitals have been dubbed ‘“quasi-
Landau.”

The widespread occurrence of orbital warping, as an
excited particle (or aggregate) becomes exposed to fields

of different symmetry, has been stressed by Rau [1]. The
novel aspects of high Rydberg diamagnetism were initial-
ly detected and interpreted by Jenkins and Segre in 1939
[2], in low-intensity alkaline-element spectra. Greater at-
tention to them dates, however, from Garton and
Tomkins’s high-resolution intense spectra in 1969, which
revealed the evolution of barium Rydberg series into
quasi-Landau spectra extending 100 cm ™! beyond the
ionization threshold, as shown in Fig. 1 [3]. Most
features of Rydberg diamagnetism have since been inter-
preted qualitatively and then reproduced quantitatively
in extreme detail by numerical diagonalization of the
Hamiltonian (in a.u.) of a Rydberg electron

H———‘Vz——+1wrsm20 (1)

(w,= cyclotron frequency) in a basis of orbitals {,}.
[The last term of (1), the diamagnetic potential,
represents the kinetic energy of the Larmor precession,
which is not described by (1) explicitly.] The number of
¥; utilized approaches 10° in the most recent successful
comparison of theory and measurement for a Landau
spectrum with resolution approaching 1073 cm [4]. Cal-
culations of this kind confirm the adequacy of the Hamil-
tonian (1) without providing any indication of the mecha-
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FIG. 1. Photoabsorption spectrum of barium near the ionization limit in magnetic fields B of different strengths (Ref. [3]).
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nism responsible for the detailed and evolving structure
of the spectra.

Note, for initial orientation, the gradual emergence of
additional lines in the upper bank of Fig. 1, within each
gap between lines denoted by np and (n—+1)p, in the
range 37> n = 30. These lines might be attributed at first
to a breakdown of the selection rules that restricts the op-
tical transitions from the ground state 6s of Ba to np lev-
els; the angular anisotropy of diamagnetism affords opti-
cal excitation to all nl/ levels with odd / values. Further
consideration of degenerate perturbation theory labels
the set of additional lines to the right of np by ng, where g
corresponds to one eigenvalue of the perturbation matrix
V. This classification by indices (n,q) becomes less ob-
vious in Fig. 1 as n approaches 40 and the sequences with
different n start intermingling, but it has been pressed for-
ward with success using sharper spectra and more ela-
borate calculations.

A new element of the Rydberg diamagnetism has
emerged, however, with the advent of laser-
spectroscopy-resolution spectra of atomic H excited with
polarization orthogonal to B. Detailed classification of
individual lines, by quasi-Landau labels that imply ap-
proximate separability of the Hamiltonian (1), was found
to break down brusquely with increasing level energy,
when this energy approaches the ionization threshold to
within a small multiple of w, (~25 cm™! at a field
strength of ~6 T) [5]. The statistical distribution of level
spacings, with the Poisson-like character associated with
the occurrence of classification labels, turns at this point
rapidly into the distribution associated with the absence
of any classifying label and with the onset of classical
chaos [5,6]. The quasi-Landau spectral structures above
the ionization threshold clearly represent autoionization
energy levels, being degenerate with continua of Landau
levels to which they are coupled by the central field pre-
vailing at short radial distances. An early calculation of
classical orbits starting at large r and 6~90° and
governed by the Hamiltonian (1) had in fact shown them
to escape eventually along the B axis [7]. Nevertheless
the discovery of Ref. [5] has spurred extensive studies of
classical orbits governed by (1), chaotic or quasichaotic,
rather than inquiries into the circumstances of atomic
mechanics responsible for that phenomenon.

It is in fact well known that any one level of a mul-
tichannel spectrum of excitations can be classified as per-
taining to a single channel—a quasi-Landau channel in
our case—only when the spacing of nearby levels in all
interacting channels is sufficiently large [8]. (“‘Channel
interactions” imply exchanges of energy and/or angular
momentum between an excited electron and an atomic or
molecular core, changes that are described as transfers of
the system from one channel to another and occur gen-
erally at short radial distances.) The circumstances of
Ref. [5] indicate accordingly that the spectral evolution
shortly below the ionization threshold marks the limit
above which individual levels can no longer be assigned
to any single channel. The observed position of this limit
appears plausible because the spacing of the lower Lan-
dau levels converges there to its zero value, characteristic
of each of the series limits lying just above the zero-field
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ionization threshold. These points have been made in
Ref. [9] and illustrated with a model treatment. The limit
energy could not be evaluated at that time for lack of
quantitative information on the channel interaction that
prevails at short radial distances among all the Landau
and quasi-Landau channels. A more advanced model
treatment, yet also short of input data, has served quite
recently to interpret the striking effects of interactions
among Landau channels described in Ref. [4] [10]. Ade-
quate input data have then been provided for a strong-
field example (B ~10°-10* T) using an R matrix with ra-
dius <100 a.u. and a basis set of < 10° functions; the re-
sults demonstrate that quasi-Landau excitations appear
as interlopers of the Landau spectrum just above the ion-
ization threshold [10]. The immediate goal of the present
paper is to develop a quantitative treatment of the in-
teractions among all Landau and quasi-Landau channels.

A curious feature of this task, common to the treat-
ment of most multichannel phenomena, is that a rather
extensive assignment of spectral levels to specific chan-
nels is afforded for phenomena governed by nonseparable
Hamiltonians. Indeed interest in the diamagnetism of
Rydberg spectra has been enhanced by viewing (1), after
trivial separation of the ¢ coordinate, as the simplest pro-
totype nonseparable Hamiltonian in the coordinate pair
(r,0). Our task should thus deal with an approximate
separation of coordinates, presumably localized in re-
stricted ranges of their variation. An important tool for
this purpose has long been made available by Seaton [8].
One integrates a multichannel Schrodinger equation out-
wards from a center of mass, delaying any consideration
of boundary conditions at infinite distance. Thereby the
problem becomes more nearly separable. Belated imposi-
tion of the boundary conditions enforces then the non-
separability through a transparent procedure of linear
algebra [11]. Further analysis has been provided by R-
matrix procedures that confine the diagonalization of
complex Hamiltonians to the volume of an atomic or
molecular core and are complemented by semianalytic
wave functions at longer ranges [4,10].

The R-matrix approach is, however, inappropriate to
the Rydberg diamagnetism, or other effects, which warp
the spherical symmetry progressively at increasing radial
distances rather than within a core region. A novel pro-
cedure to deal with this circumstance will be introduced
qualitatively in Sec. II. Its analytical development and an
initial numerical application will follow in Secs. III and
IV with fuller implementation deferred to later papers.

Part of the recent interest in Rydberg diamagnetism
stemmed from viewing it as a prototype for more com-
plex nonseparable problems, as noted above. The pro-
cedures to be introduced in this paper turn out to be
equally relevant throughout atomic and molecular phys-
ics, all of whose spectral and collision problems are cast
in a single mold by use of hyperspherical coordinates
[12]. Expansion into hyperspherical harmonics replaces
then all coordinates but one with sets of quantum num-
bers that characterize the shape of the system and its
channels of fragmentation or excitation. The adiabatic
procedure of integration of the hyperspherical Hamil-
tonian suggested in Ref. [12] has proved, however, inade-
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quate to account for the description of resonances in high
potential regions without excessive numerical labor, ow-
ing to its initial disregard of radial-angular correlations.
These correlations can now be included at the outset by
expansion into (hyper)spherical harmonics from which
resonances at high potentials emerge automatically [13].
The procedure to be introduced in the following section
is equally applicable to spherical and hyperspherical ex-
pansions, as will be indicated by parenthetical remarks in
the following sections.

II. THEORETICAL FRAMEWORK

Spectra of nonseparable systems display rather surpris-
ing evidence for particle concentration in regions of high
potential energy, as in the quasi-Landau states of
diamagnetism and in its analogs in multiparticle systems
[3,14]. Reference [13] has identified the mechanism for
this concentration in the diagonalization of the relevant
finite Hamiltonian matrix. Eigenvectors localized in re-
gions of highest and lowest potential energy, with
highest- and lowest-energy eigenvalues, are represented in
Ref. [13] as superpositions of the same small set of low-1
orbitals, orthogonalized by a switch from uniform to al-
ternate sign. Localization at low potentials is familiar;
orthogonalization of a finite basis combines with the mu-
tual repulsion of eigenvalues of finite matrices to generate
a corresponding localization at high potential.

This localization hinges, of course, on specific proper-
ties of the Hamiltonian. The matrix of Ref. [13] is tridi-
agonal with off-diagonal elements that couple higher-/ or-
bitals more weakly than those of low /. Strongly coupled
low-/ orbitals serve then to construct the eigenvectors
with lowest and highest energy.

The relevance of restricting the size of the Hamiltonian
matrix becomes apparent by contrasting the results of
Ref. [13] with those of earlier adiabatic treatments of di-
amagnetic and analogous Hamiltonians [15]. The adia-
batic procedure works out the angular dependence of the
wave function at each radial distance without reference
to angular-radial correlations, thus effectively allowing
unrestricted admixture of high-/ harmonics. Wave func-
tions orthogonal to low-energy states could then be con-
structed from this infinite basis of harmonics without
forcing their localization at high potentials. The ob-
served localization would thus be achieved only through
laborious nonadiabatic corrections [16].

In Ref. [13] the use of a finite basis of harmonics result-
ed from its treating the diamagnetic potential as a pertur-
bation of the degenerate manifold of hydrogenic states
with equal quantum number » and with spherical har-
monics Y, (0,¢), I <n. We proceed here to show how
the restriction to a finite set of harmonics flows instead
from the dynamics of the Hamiltonian (1).

A. Dominance and decline of the centrifugal field

The dependence of the Hamiltonian (1) on the angular
coordinates (8, ) is replaced by its dependence on quan-
tum numbers (/,m) through the unitary transformation
matrix of harmonics Y}, (6,9)=(6,|Im), yielding
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1d>  Id+1) 1,1,
247 22 1 8

=Hg +10ir¥(Im|sin®0|I'm) . )

H= r2(Im|sin?6|1'm)

This representation of the Hamiltonian in the indepen-
dent variables / and r isolates the influence of the centri-
fugal field in the single term /(/+1)/2r?%, whose magni-
tude increases with / and declines with increasing r.
Casting the problem in the (/,7) variables helps to illus-
trate how the dynamical influence of the centrifugal field
focuses the diamagnetic action onto a subset of lower-/
harmonics.

This focusing emerges even in the absence of a magnet-
ic field when (2) reduces to the Coulomb field Hamiltoni-
an H, diagonal in /. The decline of the centrifugal term
of (2) with increasing r gives way here to dominance of
the Coulomb term —1/r. Energy-normalized radial
eigenfunctions of H, are conveniently represented in
terms of the Milne phase ¢,(r) [17] as

172
2

é,

7Tdr

f(r)=a,(r)sing,(r), a,(r)= (3)

Figure 2 plots this phase, evaluated for a sequence of
(even) I values and for the zero eigenvalue of H,, boosted
by /7 at r =0 so as to converge to a value common to all /
as r— . The flatness of all ¢,., at low r reflects the
suppression of any phase increase by the centrifugal bar-
rier. Phase growth sets in as » approaches /(/+1)/2 and
leads rapidly to insertion of ¢,(r) into the bundle of
curves converging toward the V'8 course of ¢,(r). Fig-
ure 2 thus suggests that the transition of the whole
diamagnetic Hamiltonian away from dominance of the
centrifugal field might also prove rapid.

Note that the combined centrifugal plus Coulomb po-
tential, /(I +1)/2r*—1/r, turns negative at r =I1(I+1)/2
and bottoms out at r =I[(/+1). The locus r=I1(1+1)/2
marks the boundary from centrifugal to Coulomb domi-
nance. The latter locus, indicated in Fig. 2 by a curved

Milne phase (rad)

100 200 300 400
r (a.u.)

FIG. 2. Phase function ¢,(r) of eigenfunctions of the
Coulomb operator Hy, [Eq. (2)] with E=0 in the Milne form.
Each ¢,, defined modulo m, has been set at /7 at r=0, thus
ensuring that all ¢, coincide as r— . The dashed line marks
the lower-r bound of the region of approximate separability.
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boundary line, marks the onset of an asymptotic range
where phase and amplitude can be expanded into powers
of I(I+1)/r. The absence in Fig. 2 of curves with odd-/
values reflects the separability of the Hamiltonian (2) into
submatrices with even and odd /, due in turn to the iden-
tity sin’0=sin*(w—@). (Even I will be assumed in the fol-
lowing, for brevity, unless otherwise stated.)

We shall view the main role of the diamagnetic poten-
tial in Eq. (2) as that of mixing Coulomb functions with
different / through the action of its off-diagonal elements.
Specifically these elements mix only for |/ —1I’|=2 be-
cause the matrix of sin’@ is tridiagonal, here as in Ref.
(13]. The mixing is effective at any given r, of course,
only to the extent that the Coulomb functions depart
from zero significantly at that r, thus excluding those
(l,r) regions where centrifugal dominance quenches
Coulomb functions. Here we see how the diamagnetic
action is effectively confined at any given r to the finite set
of [ components lying below, or modestly above, the
curved boundary drawn in Fig. 2.

[Centrifugal dominance and the curved boundary are
also apparent in atomic and molecular phenomena free of
diamagnetism, particularly so when viewed in hyper-
spherical coordinates [12]. In the hyperspherical Hamil-
tonian analogous to (2), the usual radial variable 7 is re-
placed by an inertial radius R and the orbital number / by
a ‘“‘grand angular momentum” number A. The complicat-
ed set of Coulomb interactions among electrons and nu-
clei remains inversely proportional to R, but the effective
atomic number—unity in (2)—turns into a matrix C,,
that does not commute with A, thus playing a role corre-
sponding to that of the diamagnetic term of (2). The
Hamiltonian has thus the form

) a2 [A+GBN=-5)27-1 | cC,.
oM | ar® R? R

for an aggregate of N particles with total mass M. The
transition from dominance of the centrifugal field to that
of Coulomb interactions is then controlled by the
effective ratio of the noncommuting centrifugal and
Coulomb terms of (4).]

, 4)

B. The onset of diamagnetism

The diamagnetic potential in Eq. (2) is much weaker
than the centrifugal and Coulomb terms for r values on
the order of 100 a.u. and B values <10 T, i.e., of labora-
tory strengths. (Fields of astrophysical strengths are
overwhelming at lower r, posing problems altogether
different from those considered here.) A major influence
of diamagnetism emerges nevertheless wherever centrifu-
gal dominance in the /th channel gives way to dominance
of the Coulomb field which commutes with the diamag-
netic potential. The orbital parameter [ ceases
here to be a good quantum number, allowing unrestricted
mixing of the /th wave function (3) with lower-/ func-
tions.

We face thus the task of tracing the evolution of wave
functions 1/1,0(r,6,zp), each of them identified at

r <<ly(ly+1) by its angular dependence Y,O,,,( 6,9) and

. . !
by its radial dependence «<r o™ (The magnetic number
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m remains ‘“good” at all r.) This function will be
represented at larger r as a superposition of components
with different / values,

¢,O(r,9,<p)= 21‘, Y,m(G,q))F”O(r),
(5

S0t

QI+ 1)

The mixing of / components by the magnetic field also
modifies the phase of each / component, whereby F ,Io(r)

Iy+1
rO

Fllo(r) 81[0 as r—0 .

no longer remains proportional to the regular Coulomb
function (3) but is represented by

F,,O(r)=a,(r)[sin¢1(r)a,,0(r)+cos¢,(r)b”0(r)] . (6)

The ratio b,,o( r)/a,,o( r) equals the tangent of the phase

shift imposed upon the I/th component of (4). The
modulus of the pair {a;, ,by } represents instead the am-

plitude of this component.
Casting F,,O(r) in its form (6) diagonalizes the Coulomb

term H, of the Hamiltonian (2). The residual, diamag-
netic and nondiagonal, term of (2) will then be “dressed”
in Sec. III, by factors analogous to (6) that quench it in
the ranges (/,r) of centrifugal dominance. The rise of
these factors accompanying the centrifugal decline will
then induce seemingly erratic oscillations of the diamag-
netic effect to be displayed in Sec. IV.

The evolution of the set of functions (5) through the
onset of diamagnetism will be described in Sec. III by
adapting and complementing a semianalytic phase-
amplitude treatment that was developed in the 1960s [18]
but does not appear to have been utilized in the mean-
time. The thrust of Ref. [18(a)] is to identify linear super-
positions of eigenfunctions F 1, On which the diamagnetic
action is variationally stable. That is, one construct at
each radial distance eigenchannels of the diamagnetic po-
tential characterized by a phase shift §,(r) common to all
components F,,o(r); the value of each 8, measures the

effective strength of diamagnetism in the pth channel, ac-
cumulated in the range O <r'=<r. The wave function of
each eigenchannel, at any given radial distance r, can be
represented as a superposition of eigenfunctions F, ,,o(r) of

the Hamiltonian (2) with different initial orbitals /),

£ = IEF,,O(r)Blop(r)
0

=a,(r)sin[¢;(r)+8,(r)]C,(r) . (7

The dependence of the coefficients B,o » and Cy, on the ra-

dial distance r in Eq. (7) implies that the superposition of
eigenfunctions F), ,,o(r) varies in each interval (r,r +dr) to

encompass the additional contribution of diamagnetism
in that interval. Accordingly each function f,(r,!) does
not represent an eigenfunction of the Hamiltonian (2).
The analytical development of this procedure in Sec.
III and its numerical implementation in Sec. IV for the
Rydberg diamagnetism of the H atoms form the core of
the present paper. A main element of the eigenfunction

evolutions consists of numerous level crossings, that is, of



4780

phase degeneracies of two functions yielding amplitude
transfers between them. Their aggregate effect will pro-
vide the desired matrix of interaction parameters between
observable excitation channels. Specifically, Sec. IIT will
describe how to calculate the eigenvalues of eigenvectors
of a reaction matrix K(r), denoted as a “short-range K
matrix” in Ref. [19] and equivalent to an R matrix. Its
semianalytic procedure, implemented numerically in Sec.
IV, displays the evolution of eigenvalues and eigenvectors
as r increases, thus depicting the mechanism of wave-
function propagation which remained obscure in earlier
procedures. Transformation of the K matrix to the basis
of “fragmentation channels,” to be introduced in Sec.
II D, provides the input for the calculation of transitions
among Landau and quasi-Landau states by Seaton’s mul-
tichannel quantum-defect theory [8] which was outlined
in Ref. [9] and reported extensively in Ref. [19].

The opportunity of identifying a complete orthogonal
set of eigenfunctions of an atomic or molecular Hamil-
tonian at its center of mass and of following its evolution
to ionization or dissociation has long been apparent.
Reference [12] stressed this opportunity, recalling from
Ref. [20] that the expansion of Fy (r) at r— o into ex-

ponentials of r provides the elements of a pair of Jost ma-
trices J, ,7“0 that encompass all collision and spectral data of

interest. The most critical part of the evolution of the set
{1/110}, Eq. (5), appears to center in the band of the (/,r)

space astride the curved boundary in Fig. 2, which is to
be described in Secs. III and IV. The remainder of the
evolution, at larger r values, will probably prove less criti-
cal, as anticipated by introductory discussions in the
remainder of Sec. II.

[Multiparticle systems also display channel interac-
tions that presumably stem principally from amplitude
transfers among hyperspherical eigenfunctions in the
range of parameters where the centrifugal dominance
subsides. The centrifugal quantum number ! is replaced,
of course, by the grand angular momentum number A.
The higher dimensionality of hyperspherical bases com-
plements A with additional sets of quantum numbers indi-
cated globally in Eq. (4) by the index a of the Coulomb
matrix C,,. Alternative incompatible sets a, analogous
to those of alternative angular momentum couplings,
prove relevant, e.g., at the limit of minimal inertial ra-
dius, R —0, as anticipated on p. 48 of Ref. [21], and at
the opposite limit, R — o, where different sets label
different fragmentations of the system.]

C. The range of approximate separability

Once the centrifugal dominance has subsided for a set
of lower-I values, 0</=<L, the corresponding phase
{¢,(r)} grow smoothly with r, as shown in Fig. 2 well on
the right of the curved boundary. A steady state should
prevail in this range of the (r,l) variables affording the
approximate separability of the Hamiltonian (2) that is
suggested by the pattern of the spectra of Fig. 1 for
n > 30 and of the spectra of Fig. 3 calculated for a broad
range of n in Ref. [13]. Eigenfunctions represented in ap-
propriate coordinates should display the localization in /
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derived in Ref. [13]. Figure 3 shows that the eigenvalue
spectrum preserves a constant pattern as n increases; the
pattern of localization in the scaled variable [ /V'r is also
preserved.

Note at the outset that the fixed-n eigenvectors of Ref.
[13] differ from the fixed-r eigenvectors characterized in
Sec. II B by a phase shift §,(r) common to all their har-
monic components (6): Corresponding antinodes of hy-
drogenic radial functions with equal »n and different !/
spread over a sizable range of r values [22], whereas the
components (6) are superposed at equal r. Indeed the
Hamiltonian (2) does not display the features of the
fixed-n Hamiltonian of Ref. [13] that have been indicated
as critical in the first paragraph of Sec. II. Eigenvectors
of (2) calculated by R matrix on a fixed-r surface display
only a limited localization [23]; this result is understand-
able since the phase ¢,(r) of their components (6) range
over several quadrants.

Separable wave functions of a pair of variables (x,y)
are generally represented as f(x)g(y). Anticipating only

E/n%=

L L L L
0'00 5 10 15 20

Eigenvalue number N

L L 1 L 1 L
25 30 35 40 45 50 55

0 4 8 12 16 20 24 28 32

{

FIG. 3. Eigenvalues ey and eigenvectors {a;,b;} of the di-
amagnetic Hamiltonian within hydrogenic shells with principal
quantum numbers N =(10,50, 100), from Ref. [13].
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approximate separability we shall use the notation
f(x)g(x;y) to indicate that g(y) may depend parametri-
cally, i.e., weakly, on x. The construction of quasisepar-
able eigenfunctions, to be reported in a separate paper, is
expected to proceed as follows. Recall that Sec II B dealt
with a short-range K matrix to be constructed and diago-
nalized on successive lines r =const of the (r,!) plane.
We anticipate here the construction of a set of quasise-
parable wave functions of the form

Xq(r,l)=sin¢q(r,l)gq(¢q;l) . (8)

The phase ¢, replaces here the coordinate 7 of Sec. II B
insofar as wave fronts of (8) are represented by curves
¢,(r,1)=const of the (r,I) plane in contrast to the
straight lines » =const over which the phase shifts 8,(r)
and coefficients B,Op(r) of Eq. (7) remain constant. In fur-

ther contrast to Sec. II the functions y,(r,/) are to be
eigenfunctions of the Hamiltonian (2), whereas the f »(r1)
of Eq. (7) are not. The construction of eigenfunctions (8)
defined over a limited portion of the (,/) plane—i.e., on
the right of the curved boundary line in Fig. 2—appears
to present a novel challenge.

D. The asymptotic range: Fragmentation channels

In the limit of r— o the wave fronts ¢,(r,/)=const
for eigenfunctions x,(r,/) of the Landau or quasi-Landau
type—i.e., localized in the (r,0) plane astride the axes
6=0° or 6=90°—should reduce to rcos@=const or
r sinf=const, respectively. Whether or not this require-
ment will be met automatically, by extending the formu-
lation outlined in Sec. II C to a larger-r limit, remains to
be determined. In the positive case the sets of states
represented by the eigenfunctions (8) constitute the “frag-
mentation channels.” (See, e.g., Chap. 7 of Ref. [19].) In
the negative case, a further transformation of the eigen-
functions x,(r,l) will be required to represent the frag-
mentation channels.

III. PROPAGATION
OF THE RADIAL FUNCTIONS F”o(r )

The radial eigenfunctions F(r) of the Hamiltonian (2)
with energy eigenvalue E defined by Egs. (4) and (5) are
governed by the Schrédinger equation

S[(Ho—E)8y+Br2UyFy, (r)=0 ©)
T

where
B= %“’g’ Up=v,8p+ w48y =1+

vy =1—[4l(I+1)—3]"", 9"

wip=—L1—QI+142) [ 1—(+1+1) 2] 7172,

The nonzero matrix elements of sin?6 converge to 1 and
—1, respectively, as [ increases, thus reproducing one
feature of the matrix that yields the eigenvector localiza-
tions in Ref. [13]. The structure (6) of F 110(") ensures that

(HOI—E)F”O in (9) reduces to the propagation of the
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coefficients {ay (r),by (r)}, which is thus contributed by

the cumulative action of the matrix Br?U, combined
with the propagation of the Coulomb field functions
{a;sing;,a;cosd;}. The following evaluation of this con-
tribution mirrors the treatment of Ref. [18(c)]; it is well
known in atomic mechanics but will be presented sequen-
tially in some detail.

A. Propagation of the amplitudes {a; (r),b; (r)}
0 0

The contribution to {a,,o(r),buo(r)} from the matrix

BrU,, over a radial interval dr’ is propagated from r’ to
r by the Green’s function of H,, —E,

Gi(r,r")=ma,(r)a,(r')sin[¢,(r)—¢,(r')], (10)
which is identified by its behavior at r' =7,

G,(r,r)=0, (10a)

%G,(r,r’)|r,=r=2 , (10b)
and has the property relevant to us

(Ho—E) [ dr'Gy(r,r)f(r)=—f(r) . (11

To verify Eq. (11) note that, whereas direct application of
(Hyy—E) to Gy(r,r') yields no contribution, one may
split the —1(d /dr)* term of H,, by applying first d /dr
to G,(r,r’) and then the residual —1d /dr to the limit of

integration in (11), whence (10b) yields just the right side
of (11).
Equation (11) serves now to represent F, ,,O(r) as the sum

of the regular eigenfunction (3) of H, and of the contri-
bution of the diamagnetic potential Br'*S . U,.F 11, (r') in-

tegrated over r' and propagated from r’ to r by the
Green’s function G,(r,r’),

F”o(r)=alsin¢,(r)+ fordr,GI(r,rl)Brlz % U,IIF”O(r') .

(12)

Upon entering this expression in Eq. (9), the operator
H,,— E wipes out the a;sing, term of F, 1, and reduces its
integral term to —Brzzl,U,,:F”o(r) thus cancelling the

second term of Eq. (9).
Returning now to the expression (6) of F, u,(r) in terms

of the coefficients {a”o,buo }, we see that Eq. (12) amounts
to setting in (6)

a,,o(r)=1+7rf0rdr’a,(r’)cos¢1(r’)Br'22 U,,.F,,,O(r’) ,
<

(13a)
by, (r)= —wfordr’a,(r’)sin¢,(r’)Br’22 Uy Fy (r') .
<

(13b)

Instead of solving Eq. (9) we have thus actually replaced
it by a system of coupled integral equations in {a,,o,b,lo}.
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This system is, however, easily accessible to numerical
solution since a simple differentiation reduces it to the
system of coupled first-order equations,

dano 2 (aa) (ab)

oy TBr g(Lu' ap, Ly by ) (14a)
dby, 2 (ba) (bb)

dr :'n'Br ;(LII' 01110+L11r bI'Io)’ (14b)

with
L{# =a,(r)cos,(r)Uya,(r)sing,(r) ,
Lif2 =a,(r)cosd;(r)Uya;(ricosd,(r) , (140)
c

L = —a,(r)sing,(r)Uyap(r)sing,(r) ,
L% = —a,(r)sing,(r)Uya;(r)cosd,(r) .

The matrix Ly, Eq. (14c), represents the diamagnetic
potential Br’U,. “dressed” by Coulomb field eigenfunc-
tions, as anticipated in Sec. II. This matrix may also be
viewed as equivalent, in our real representation, to a com-
plex matrix exp(iHyr)V exp(—iHy.r) of the type that
familiarly represents a perturbation in the interaction pic-
ture. Numerical solution of Eqgs. (14) appears feasible but
not very apt to provide physical interpretation. It may
serve nevertheless to check the results of the following
approach.

See Note added in proof at the end of the paper.

B. Eigenchannels of phase shift

The process of solving the system (14) numerically
could extend, in principle, over the whole range of r even
though it is more effective in the range r ~I(/+1) where
|l,—1| remains small. However, one does not readily see
how to draw from it the formation of states localized in
regions of high or low potential, or—more
immediately—how to take advantage of the smooth
trend of the phases ¢,(r) at large . A physically mean-
ingful stepping stone toward these goals has been intro-
duced in Ref. [18(a)]. One identifies at each r linear su-
perpositions of solutions F’ ,,O(r) for which the diamagnet-

ic potential has added an equal shift §, to all the relevant
Coulomb phases ¢;. The physical meaning of this selec-
tion becomes apparent by imagining the diamagnetic ac-
tion as truncated at the given r: in this case §, would
represent the entire non-Coulomb phase shift observable
through elastic collisions of an electron with the field
thus truncated. (The study of phenomena involving a
field truncated at alternative radial distances » belongs to
the mathematical procedure called invariant imbedding
[24].)

Each eigenphase shift 6, is identified and evaluated as
the arctangent of an eigenvalue of the reaction matrix K
whose calculation amounts to solving the system (14) by
an alternative procedure. Notice initially that a solution
of Eq. (9) in terms of the K matrix is represented by mul-
tiplying the expression (6) of F, ,,O(r) with the reciprocal of

the coefficient matrix ay,
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ZF”O(")(G 41)101'
%

I . (15)

0

=a,(r) |sing,;(r)8; +cosd; 3 by (a 1,
IO

Inspection of this equation identifies the coefficient of
cos¢, as the reaction matrix

K][l(r): zbllo(a‘l)l - (16)
10

0

Applying the same transformation to (14) yields the inter-
mediate equations,

a
day,

-1
12 dr (@ e

0

=mBria,(r)cosd,(r)

X 3 Upa(r)[sing;(r)8,+cosg,(r)K, ], (17a)
A

dby
0 (a _1)1 I

dr 0
10

= —mPBria,(r)sing,(r)

X 2 U,Aak(r)[sinqﬁ;\(r)SA,,+cos¢k(r)K;L1,] .
A

(17b)

It should be stressed here that the multiplication by
(a _1)101' introduces singularities in Egs. (15)-(17) wher-

ever the detla,,oi vanishes. These singularities are in-

herent in scattering theory and are often the loci of im-
portant parameters. For example, a pole occurs in the K
matrix whenever an eigenphase shift transverses an odd
multiple of 90°. Analogous poles may prove significant in
the following.

Note next the structure of the gradient of Eq. (16),

dby,

dK . 1 dla ")
= - , + _ 7
dr lo dr (@ Dyt bu, dr Iyl
dbllo da)\lo

ar (01)101'_§K1x—d7(01)101'} :

(18)
The first term in the last brackets of (18) coincides with
the left-hand side of Eq. (17b); the second term in the
brackets consists of the matrix product of —K;; and of
the left-hand side of (17a). A single nonlinear first-order
equation that determines K ;- results thus by equating (18)
to the sum of the right sides of Egs. (17b) and of (17a), the
latter multiplied by K, on its left,
ddKr" = —7f3r? 3 a,(r)[8,;sing; (r)+ K ycosdy(r)]

Ap

XU,,a,(r)[sing,(r )8, t+cosd,(r)K ]
(19)
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This basic result of Ref. [18] determines, in essence, the
phase shifts generated by the diamagnetism, which are
central to the phase-amplitude approach. The residual
determination of amplitudes conjugate to phase shifts is
treated in Ref. [18] for single channels only and will be
extended here to our multichannel case.

Direct integration of Eq. (19), to yield the matrix K
as a function of r, proves unnecessary. Reference [18(a)]
has designed a procedure that replaces (19) by equations

dd . d{p(r)|l) ,
d—:Spp'+sm[8p(r)—-8p:(r)] ; T(”p (r)
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that determine the eigenvalues tand, () and eigenvectors
(I|p(r)) of K., parameters that are more instructive
than K itself. To this end, enter the expression

Ky(r)=3 (I|p(r))tand,(r){p(r)|l') (20)
P
in Eq. (19), and matrix-multiply the result by

cos8,{p(r)|I) on its left and by {I'|p’(r))cosd, on its
right. The resulting equation condenses into

=—mBr’* 3 (p(H)l)a,(r)sin[¢;(r)+8,(r)|Uysin[¢(r)+8,(r)]ap(r){I'|p'(r))
L

=3 (pMIDMP (1) (I'lp'(r))
Lr

after utilizing the orthogonality relation

> A (drr)ll,> (I'lp'(r))
<

d{llp) _ 98y _
+§l‘,<p(r)|1) o 5 0. (22)

The transformation of Eq. (19) into (21) has condensed
three separate physical elements into the single matrix
kernel

M) = —naBria,(r)sin[¢,(r)+8,(r)]

mw

X Uysin[¢;(r)+8,(r)]a;(r), (219
namely (1) the diamagnetic interaction Br2U; from (9),
(2) the dressing of this interaction by Coulomb radial
functions {a,sing,(r),a;cosd,(r)}, and (3) the phase
shifting of these functions by the diamagnetic interaction
accumulated throughout the range O<r’<r. [This last
element replaces the occurrence of K on the right of (19).]
Insertion of these diverse elements into a single matrix
may prove convenient for the numerical integration pro-
cedure to be described in Sec. IV but raises a serious chal-
lenge for the interpretation of its results.

The diagonal and off-diagonal elements of Eq. (21)
separate out neatly. The former afford direct evaluation
of successive increments to each eigenphase shift §,(r).
The latter afford the corresponding evaluation of the in-
crement of each eigenvector component after a further
two-step transformation: (a) division of (21) by
sin[8,(r)—8,(r)]; (b) projection onto the eigenvector
(p'(r)|I'), yielding

dip(y/dr="3 | S {pMIDMP(I'lp'(r))
p'(£p) | I’

{(p"(NH|I")
Sin[8, (r)—5,(r] 29

The operation (a) presents a problem in the event of near
degeneracy of two eigenphases, 8,(r)~38,.(r). The result-

[

ing singularity, of a type frequent in atomic theory [25],
will play a main role in Sec. IV.

C. The amplitude matrix

The recasting of the eigenfunction F,,O(r), Eq. (6), in

terms of the reaction matrix K;.(r), in Egs. (15) and (16),
has factored out the amplitude coefficients a ,,O(r) and

thereby part of the information content of Eq. (14a). We
shall restore here this information, recasting F, ,lo(r) once

again as the superposition of eigencomponents character-
ized by eigenphases shifts §, and amplitude coefficients
A pl (r ).
0
With reference to Egs. (15), (16), and (20), we write

Fy (r)=a,(r) |sing,(r) 3 {Ilp(r))
P

+cosg;(r) 3 (I|p(r))tand,(r)

3
XE (p(r)ll')amo
<
=2a,(r)sin[¢,(r)+8p(r)]Ap10(r) , (24)
P
with
A (r)=—3— 5 (p(r)I"Vap, (r) (25)
Pl cosd,(r) 4 Ho™™

We shall construct here an equation for 4 p,o(r), combin-
ing the three separate equations for its factors
{1/c0s8,,{p(r)[l'},ay (r)}, namely, in essence, the diag-
onal portion of Egs. (21), (23), and (14a), with b,,o(r)
represented as 3. K (r )a,.lo.

All three terms of the equation will be cast convenient-
ly in terms of the matrix M 1(1’,"’ ) defined by Eq. (21), com-

plemented by adjustments appropriate to each term.
This procedure yields
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The factor sin(8,—3,) in the denominator of (23)
reduces similarly to 8,(r)—5,(r), which is on the order
of Br’/2.

A. Eigenphase shifts

The complete set of calculated eigenphase shifts is
presented in Fig. 6(c), for a field strength B=5 T, r <200
a.u., and E=0 in Eq. (9). In this range the ratio of the
diamagnetic and Coulomb potentials remains <107%,

7,
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and only ten phase shifts become appreciable on the vert-
ical scale of Fig. 6(c). Figure 6(a) shows the first four
non-negligible eigenphase shifts emerging from the cen-
trifugal barrier on an enlarged scale, r <25; Fig. 6(b)
shows the first seven shifts for » <70 a.u.

These figures display a complicated network of avoided
crossings; all the intersections are actually avoided as no
crossing is compatible with the pole singularity of Eq.
(23). This large, seemingly surprising, amount of channel
interaction stems from the commutability of diamagnetic
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the integral of the coefficient in Eq. (14), ~Br3, remains
<< 1 up to radial distances of several hundred a.u. In this
range the solutions a,,o,b,,0 depart but little from their in-

itial values (8, ,0) and the reaction matrix K.(r) remains

<<1. The eigenvectors {I|p(r)) of K, depart neverthe-
less significantly from their initial values §,,), because
the denominator in Eq. (23) is of the same order as its
numerator. [A corresponding analysis of Eq. (31) shows
that the amplitude factor 4 p,o(r) coincides, to lowest or-

der in w?, with the eigenvector {p(r)|l,). The relation-
ship Aplo(r)~( p(r)lly) in this weak-field range reflects

the small value of the off-diagonal (/1) components of
the eigenfunctions F ”0(r ), Eq. (6).]

To lowest order in o2, the right-hand side of the
differential Eq. (23) for K (r) reduces to the expression
—aBr2L{%® from (14c). This approximate form of (23) is
readily integrated numerically, thus anticipating and il-
lustrating a part of the results to be presented in Sec. IV.
Note particularly that K,,(r) is tridiagonal, like L{??, in
this approximation. It may thus prove more practical to
obtain K;.(r) first, and then to diagonalize it, than to fol-
low the procedure of Sec. III B in the weak-field range.

Let us then examine how L?® varies with increasing r.
The diagonal element L * is proportional to
sin’¢;(r)=[1—cos2¢,(r)]/2; the L factor of this expres-
sion is constant, but the rapid oscillations of cos2¢,/2
cancel the integrated contribution of any additional con-
stant (or slower varying) factor. [The occurrence of a fac-
tor oscillating with the double frequency 2¢,(r) is a
feature of the phase-amplitude procedure of Sec. III A.]
The factor sin’¢,(r) also occurs in the expression of the
off-diagonal elements of L ?*’ when cast in the form
L%, = —mBr2U;;_,a,(r)a; _,(r)sing,(r)sing; _(r)

=—mBriU;,_,a;a;_[cos(é;— ;)
+sin(¢; —¢;_,)cot2¢, ]

Xsin%¢, . (32)

In this expression the factor cot2¢, also oscillates rap-
idly but its poles do not contribute to the relevant in-
tegration by principal part. The key term in the brackets
is thus cos(¢;, — ¢, _,), whose argument decreases smooth-
ly from 27 to O as r increases. The variation of this
term —positive at low 7, then dropping rapidly to nega-
tive values over an extended range, and finally positive
again (Fig. 4)—has a decisive influence on the structure
of the whole matrix K;(r) at any fixed value of r.

Figure 5 shows the trend of diagonal and off-diagonal
elements of K.(r) as functions of both ! and r. The
values of these elements are scaled by the numerical fac-
tor Br’’? so as to remain comparable throughout the
range 0 <r =200 a.u. The sign of the diagonal elements
is negative because the diamagnetic potential is positive.
Their magnitude tends to increase with /, then decreasing
abruptly at the largest / values, where the centrifugal bar-
rier excludes electrons from the diamagnetic action.

The sign of the off-diagonal elements K;;_,(r) alter-
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FIG. 4. Dependence on r of the cos[¢;(r)—¢,_,(r)] of Milne
phase differences.

nates as a function of /, in contrast to the sign of diagonal
elements, reflecting the oscillation of the cosine factor in
Fig. 4. The whole matrix would thus resolve into three
independent submatrices if one off-diagonal element were
to vanish at each node of K;; _, separating the ranges of
its positive and negative values. These nodes do not actu-
ally often coincide with even values of /. Sufficiently
small values of K;;_, do, however, occur very often in
the proximity of the first node in [/, thus effectively
separating a low-/ submatrix. The corresponding effect is
more elusive for the second node. Both nodes will never-
theless prove helpful in interpreting the eigenvalues and
eigenvectors of K;(r) to be presented in Sec. IV.

The alternation of sign of the off-diagonal K;,_,, as /
increases, combined with the uniform sign of the diagonal
K}, implies that the ratio K;; _,/K,, alternates in sign.
This ratio is indeed negative at low- and high-/ values and
positive at intermediate /, where the cos(¢; —¢;_,) is also
negative. We recall here that a sign reversal of the ratio
of off-diagonal and diagonal elements had a central role
in the study of localization of Ref. [13], where the rever-
sal was dubbed a “‘conjugation.” No immediate connec-
tion between these sign reversals is apparent at this point.

IV. THE EIGENPHASE SHIFTS
AND EIGENVECTORS AT SHORT RANGES

The theoretical framework laid out in Sec. II provides
a new perspective on the evolution of atomic and molecu-
lar nonseparable wave functions. In this study of Ryd-
berg diamagnetism we examine the eigenphase shifts and
eigenvectors of the short-range reaction matrix K;.(r), as
functions of the radial distance r, evaluated in accordance
with Sec. III. We do so by exploring only the weak-field
range r <200 a.u., sufficient to reach the effective onset of
the approximate separability, which was outlined in Sec.
II C and requires further analytic development.

The eigenshifts 8,(r) and the eigenvectors (I|p(r))
have been calculated through the interplay of the diago-
nal and off-diagonal parts of the matrix equation (21).
The kernel M I(l‘,"’ " of this equation simplifies in the weak-
field range through disregard of the very small phase
shifts 8,(r) and §,(r) in Eq. (21'); thereby the indices
(p,p") also drop out replacing Eq. (21’) by

M, = —mBra,(r)sing,(r) Uy (r )sing . (r)a(r) . (33)
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The factor sin(5,—9,)
reduces similarly to §,(
of Br'72.

in the denominator of (23)
r)—38,(r), which is on the order

A. Eigenphase shifts

The complete set of calculated eigenphase shifts is
presented in Fig. 6(c), for a field strength B=5 T, r <200
a.u., and E=0 in Eq. (9). In this range the ratio of the
diamagnetic and Coulomb potentials remains <1074,
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and only ten phase shifts become appreciable on the vert-
ical scale of Fig. 6(c). Figure 6(a) shows the first four
non-negligible eigenphase shifts emerging from the cen-
trifugal barrier on an enlarged scale, r <25; Fig. 6(b)
shows the first seven shifts for » <70 a.u.

These figures display a complicated network of avoided
crossings; all the intersections are actually avoided as no
crossing is compatible with the pole singularity of Eq.
(23). This large, seemingly surprising, amount of channel
interaction stems from the commutability of diamagnetic
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FIG. 6. Eigenphase shifts §,(r) of the (short-range) reaction matrix K(r) for three ranges of r: (a) r =25 a.u,, (b) r =70 a.u,, (c)

r <200 a.u. O, avoided crossings treated as diabatic.

and Coulomb potentials noted in Sec. Il B. Varying the
field strength up to 10 T would merely stretch the ordi-
nates of Fig. 6, without distorting its curves, because the
matrix (33) is linear in 8. [The eigenvectors {/|p(r)) are
similarly independent of 3 in our range.]

Even though all channel crossings are avoided in prin-
ciple, it is a good approximation to treat many of them
[ten of them in Fig. 6(c)] as diabatic. This classification
implies that each of the pair of channel labels, and the
corresponding eigenvector of K;.(r), remains practically
unaffected by disregarding the occurrence of the crossing.
This is the case specifically if the eigenvectors of the two
channels lie in different subspaces of the / parameters.

B. Anatomy of channel mixing at very short ranges

Consider here the crossing in Fig. 6(a) at r=14.3 a.u.
and §~2X 1077, which seems, but is not, diabatic. At
this range only three channels have non-negligible phase
shifts. The channel labeled “1”’ remains unaffected by the
crossing of “2” and ‘““3.” All three of these eigenvectors
can be identified, as r traverses the crossing, by the varia-
tions of their spherical coordinates (6,¢) with respect to
Cartesian axes /={0,2,4}, with / =4 corresponding to
0=0 and with /=0 in the ¢=0 plane. Figure 7(a) shows
the variations of (0, ¢,), (0,,¢,), and (65, ,); Fig. 7(b) the
angle © between the directions of (60,,¢,) at r and its
direction at the initial radius r =13.5. The final value of
O falls well short of 90°. If © had reached 90°, the cross-
ing could have been viewed as diabatic, by interchanging
the labels of “2” and “3” and keeping each vector in a
fixed direction.

In this example, the vector 1 maintains its direction,
orthogonal to the plane of 2 and 3. In general, one might
expect the plane of two vectors involved in the crossing
to tilt in the multidimensional space of parameters /.
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FIG. 7. Orientation of the eigenvectors p={1,2,3} as r in-
creases through the avoided crossing at r ~14.5 a.u. (a) Spheri-
cal coordinates, solid line: (0,,¢;); long dashes: (6,,¢,); short
dashes: (6s,¢;) in the basis space /={0,2,4}. (b) Angle
©=arccos{2(r)|2(13.5)).
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FIG. 8. Components (I|1(r)) of the eigenvector with the
largest phase shift §,(7) in the range 0 <r <13 a.u.: solid line:
1=0; dashed line: 1=2; dotted line: 1 =4.

However, the tilt appears to be negligible for most of the
numerous crossing displayed in Fig. 6.

Figure 6(a) also shows three avoided crossings at r < 14
involving all the three eigenvectors labeled above as
{1,2,3} whose components are restricted in this range to
1=1{0,2,4}. Figure 8 plots the values of the three com-
ponents {(0|1(r)),(2|1(r)),{4[1(r))}] through the
range 0<r <13 au. The curve (2/1(r)) displays a
feature of general significance, namely, negative values
over a very brief range near r=0, corresponding—
through orthogonality —to initially positive values of the
component {0|2(r)). These signs are promptly reversed
as r increases, owing to the rapid drop and sign reversal
of cos(¢,—¢,) displayed in Fig. 4. The similar behavior
of the cos(¢;—¢;_,) for all I values, as soon as ¢,(r)
departs from I, implies full generality of such prompt
sign reversals.

Three avoided crossings among the eigenvectors
{1,2,3} are also apparent in the range of Fig. 6 covered
by the plots of (I[1(r)) in Fig. 8. The crossing of |1)
and [2) at r~9 a.u. generates in Fig. 8 a sudden drop of
(0|1(r)) from ~0 to —1, accompanied by a drop of
(2]/1(r)) from 1 to ~0. [The earlier drop of {0|1(r))
from ~1 to ~0 near r=S5 a.u., accompanied by the rise
of (2|1(r)) from 0 to 1, reflects instead no evidence of
another crossing.] The second crossing in Fig. 6(a) at
r~11 a.u. involves the eigenvectors |2(r)) and |3(r))
exerting no obvious influence on the components
(1|1(r)) plotted in Fig. 8. The third crossing, at r ~12.5
a.u., involves |1(r)) and |2(r)) once again, manifesting
itself in Fig. 8 through sharp variations of all the com-
ponents I|1(r)).

A final comment concerns the (adiabatic looking) close-
ness of approach at two avoided crossings shown in Fig.
6(a) at r ~11 and r ~14.5 a.u. This effect has been traced
to destructive interferences among the terms of the 3,
in the square brackets of Eq. (23).

C. Eigenvectors

Figure 9 shows histograms of all the eigenvector com-
ponents I|p(r)) with non-negligible §, at r=170 a.u. a
value selected to illustrate most clearly the subdivision
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into three blocks anticipated in Sec. III D. The values of
the index p ={1,2, .. .10} are labeled in the order of des-
cending values of |5,(170)].

The low-/ block consists of p ={3,7,9}. The eigenvec-
tor p =3, corresponding to the largest of the three eigen-
values displays the alternation of sign of the three “large”
components with /={0,2,4}. The remaining com-
ponents are small. This eigenvector thus matches the
characteristics of a state localized at a high potential, as
anticipated from Ref. [13] at the outset of Sec. II. Simi-
larly the eigenvector (|9) has its largest components at
1=0,2,4 with uniform sign, corresponding to a localiza-
tion at low potential. The localization of the eigenvector
(1|7) in physical space is less clear from Fig. 9. [The
lack of detailed correspondence between the eigenvectors
of K;(r) evaluated at a fixed  and those studied in Ref.
[13] has been anticipated and explained in Sec. I1 C.]

The block of eigenvectors centered at intermediate-/
values consists of p ={2,4,5,6,8} whose increasing num-
ber of nodes corresponds to a decrease in [5,| values.
This contrast reflects the negative value of the
cos(¢; — ¢, _,) characteristic of this block, anticipated in
Sec. III D.

The third, high-/, block consists of the two eigenvec-
tors {(I|1) and (I]/10) with highest and lowest 18,1, re-
spectively. The low value of |51o| reflects the early stage
of development of its eigenvector, just emerging from the
centrifugal barrier. The high value of |8,| reflects the
next stage of development of the eigenvector, whose wave
function ~a;(r)sing;(r) with /=16 has the largest am-
plitude @; and the longest wavelength over the range of »
preceding r=170 a.u. [Both of these characteristics
hinge on the low value of d¢,/dr at r~170 a.u.,
representing the low electron velocity near the exit from
the barrier and the lower value of the acceleration that
persists through a range of r ~ (I +1).] These features of
the eigenvector |1(r)) at »=~170 a.u. will be illustrated
further in Sec. IV E.

The subdivision in blocks, primarily between the
second and third ones, is vitiated as r varies by the mix-
ing of eigenvectors at channel crossings as well as by
non-negligible values of off-diagonal elements K,;.(r). For
example, the crossing at # ~190 a.u. and [8,|~0.0016 be-
tween the eigenvectors with p =7 and 10 (labels assigned
at r=170 a.u.) intermixes even eigenvectors of the first
and third blocks, at least locally. The eigenvector p =1,
sharply localized at / =9 when r =170 a.u., spreads over
several values at r ~ 195 a.u., because the matrix element
K 6,14 is not negligible in the intervening range.

D. Radial development of the low-/ block

The three eigenvalues of the low-/ block of K;.(7), la-
beled as {8;(r),84(7),84(r)} at r=170 a.u., experience di-
abatic crossings throughout the range 100 <r <200 a.u.
with minor exceptions in the case of 8,(r). Their varia-
tions through this range appear accordingly rather free
from influences of interactions with other eigenchannels.
Figure 10 displays the growth of these three eigenphase
shifts, lifted out of Fig. 6(c).

The rate of growth of each curve is clearly oscillatory,
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thus suggesting at first blush a residual influence of avoid-
ed crossings. These oscillations do instead reflect simply
those of the factor sin’¢, of Eq. (32), which are transmit-
ted to 8,(r) through the [7dr'Li?”(r’). This is verified
by plotting the nodes of the second derivative, d28p /dr?,
and comparing them with the periodicity of sin’p;. Re-
call that ¢,(r) itself grows as V'8¢ to O(I(I+1)/r) and
thus independently of / [26]. Accordingly both the nodes
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of d?8,/dr* and the Milne phases {d,,,¢,} were plot-
ted against V'r, the slope of the nodes being found linear
and twice as large as those of the {¢;(r)}.

E. Sequential leapfrogging into the middle-/ block,
through quasidiabatic crossings

Most of the avoided crossings observed in Fig. 6(c),
other than previously discussed, fall into a single class
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FIG. 9. Histograms (/|p ) of the eigenvector components at r =170 a.u., with p values in order of decreasing 15,(170)].
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p=1{3,7,9} in descending order of [6,,(170)!. Solid line: §,(r)
eigenvalues of K- with (1,1')={0,2,4};+, 8,(r) of full matrix
K"'(r).

emphasized in the Fig. 11 graphs. This class may be
characterized with reference to the remark in Sec. IVC
that the largest component of the eigenvector with
highest |8(r)| value at r =170, labeled there as |8,|, has
the near-maximal / value, namely, /=16. Tracing back
this eigenvector in Fig. 11 [or 6(c)] on a diabatic path, we
notice that it first emerges from the centrifugal barrier at
r~120 a.u. and that it experiences as many as five avoid-
ed crossings within the range 120 <7 <170 a.u. Many of
these crossings appear to be quite adiabatic, rather than
quasidiabatic; the component {16]/1(r)) has nevertheless
maintained its initial predominance. [The appreciable
(18]1(r)) component at » =16 appears to have been gen-
erated by the coupling within the high-/ block.]

Inspection of the five quasidiabatic tracks indicated on
Fig. 11 by dashed lines, and of the relevant eigenvector
components, shows the persistent dominance of their ini-
tial / component to be strikingly general. These lines
represent the dominant contribution to each §,(r) by a
single diagonal component M, (r), Eq. (33), ie,
arctan f odr'M 4(r"). This dominance subsides, merging
into the set of middle-/ block eigenvectors, only after the
high-/ eigenvector has been leapfrogged by that with the
next higher /.

Inspection of the various plots of 8p(r) versus 7, and
reference to the histograms of eigenvector components in
Fig. 9 and in our files, suggests that we have in fact ex-
hausted the diversity of crossing phenomena in the range
r <200 a.u.

V. DISCUSSION

The motion of a Rydberg electron, subject to centrifu-
gal, Coulomb, and magnetic forces is nonseparable owing
(in part) to noncommutativity of the operators that
represent centrifugal and magnetic forces. The theoreti-
cal framework described in Sec. II localizes the critical
range of noncommutative interactions at intermediate ra-
dial distances. The electron’s response to the combined
actions in this range can be evaluated by a rather trans-
parent phase-amplitude procedure described analytically

p=1{1,2,4,5,6,8,10} in descending order of |8,,(170)|. Breaks
in some curves reflect removal from Fig. 6(c) of praoints indicated
by + in Fig. 10. Dashed line: arctan [ dr'M,(r') for
1={10,12,14,16,18]}.

in Sec. III. Section IV contains the application of this
procedure and an interpretation of several of its results.
Remarkably, the construction of eigenfunctions Fy (r)

by this method is rather trivial in the range of weak di-
amagnetism, but sheds little light on the dynamical pro-
cess. It is the study of eigenvalues and eigenvectors of
the short-range reaction matrix that proves rewarding.

Completion and implementation of the program out-
lined in Sec. II requires the development of quasi-
separable wave functions at larger radial distances where
the centrifugal field no longer dominates but remains
non-negligible. It also requires developing a subsidiary
procedure to match the quasiseparable wave functions to
those constructed in the intermediate range. Achieve-
ment of these goals should afford confining the phase-
amplitude procedure to a rather narrow strip of the (r,/)
domain. Work in this direction is currently underway,
and will be reported later.

The broad relevance of the present development to
multiparticle systems has been noted in Sec. I and
through occasional further remarks. It has also been
presented more extensively in a conference paper [27].

Our initial exploration of wave functions in the critical
intermediate range, previously treated by opaque varia-
tional (or equivalent) procedures, might give impetus to
analogous studies of other atomic and molecular prob-
lems. This hope has encouraged publication of a progress
report at this time.

Note added in proof. Numerical experience with in-
tegration of (14), extended to » ~1600 a.u., has shown it
preferable to the more articulate procedure developed in
the following Sec. III B. That is, integration of (14) may
be followed by determining {I|p(r)) and 8,(r) directly
from (16) and (20).
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