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Spontaneous emission in a Fabry-Perot cavity: The effects of atomic motion
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%e sho~v that the spontaneous emission of a moving atom inside a cavity is modified by two
diH'erent mechaiiisms. The first one is a Doppler-induced detuning of the cavity line that leads to
observable changes in. the spontaneous emission rate for atomic velocities in excess of a characteristic
velocity v„„=c/Q, Q being the quality factor of the cavity. In addition, spatial mode effects can
lead to a temporal modulation of tlie exponential decay rate. This modulation is observable for
velocities that do not exceed another characteristic velocity v, p which is typically several orders of
magnitude smaller than v„„.
PACS number(s}: 32.70.3z, 32.70.Fw, 42.50.Wm

I. INTRODUCTION

Spontaneous emission from an excited electronic state
probes the properties of the surrounding vacuum-field
fluctuations. By placing an atom near a metallic or
dielectric surface, the strength of the vacuum fluctua-
tions is modified, leading to an inhibition of spontaneous
emission [I]. This effect first became evident in fluo-
rescence rate measurements performed on complex dye
molecules radiating near a dielectric-metal interface [2].
Subsequent experiments have studied the modification of
spontaneous emission in a resonator structure [3] which
affects both the spectral density and the strength of the
vacuum fluctuations. Enhanced spontaneous emission of
a Rydberg atom in a microwave cavity [4] as well as in-
hibited spontaneous emission of a Rydberg atom mov-
ing between two parallel conducting plates [5] have been
demonstrated. Recently, the suppression of spontaneous
decay at optical frequencies has been measured for atoms
moving between two closely spaced conducting plates [6].
Moreover, enhanced and inhibited spontaneous emission
at visible wavelengths have been observed in a confocal
resonator [7].

Along with this position dependence [8], t, he rate of
spontaneous emission in a resonator may also depend on
the velocity of the atom [9]. For example, an atom whose
transition frequency is below the cavity cutoff, and would

undergo inhibited spontaneous emission when at rest,
may be brought into resonance by a suitable choice of
velocity (Doppler effect), thereby experiencing a. greatly
enhanced spontaneous-emission rate. In another situa-
t, ion, the atom at rest may find itself either in a node
or in an antinode of the cavity mode, witli correspond-
ingly drastically diA'erent spo»taneous-emission rates. In
contrast, a moving atom alternatively experiences both
these situations, the resultant effective rate of spont, a-
neous emission generally depending on its velocity.

These examples emphasize two quite distinct mecha-
nisms leading to velocity-induced modifications of spon-
taneous emission. In the first example, it is the Doppler
shift which tunes the atom in and out of resonance with
the cavity field, thereby probing the "spectral density"
of the vacuum fluctuations. This mechanism has been

II. TWO-LEVEL ATOM IN A LOSSY CAVITY

We consider a situation in which a two-level atom of
mass M traverses a small cavity designed so as to signif-
icantly alter the vacuum mode structure near the atomic
transition frequency. The atom enters the cavity in its
excited electronic state ~e) of energy h~o which is radia-
tively coupled to a long-lived lower electronic state ~g) of
zero energy. AVhile inside the cavity, the atom exchanges
both energy and momentum with the cavity field. Since
the cavity is not ideal, the emitted photon may escape
from the cavity, and the atom eventually ends up in its
ground state.

Taking into account the atomic translation along the
cavity axis (the z axis), the Hamiltonian of the combined
atom/field system reads

0 = H~+&F+H~F )

where

Hg ——T+ &iso(e)(e(

is the Hamiltonian of the free atom, and

(2)

is the kinetic-energy operator of its center-of-mass motion

considered in a previous paper [9]. In the second exam-
ple, it is the spatial variation of the strength of the field
fluctuations which leads to a position dependence of the
spontaneous emission, and —as we shall see—ultimately
to a velocity dependence which is quite distinct in nature
from the Doppler-caused velocity dependence.

In this paper we study the dynamics of the spontaneous
emission of an atom traversing a lossy cavity, taking into
account the interaction of the atom with the spatial part
of the quantized vacuum field. In Sec. II, the model of
a two-level atom traversing a small and lossy cavity is
presented. In Sec. III, the dynamics of the spontaneous
emission is studied in some detail with emphasis on the
Markovian limit. Section IV finally contains the sum-
mary and discusses prospects for possible experiments.
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along the optical axis.
In Eq. (1), tlie forms of the free-field Hamiltonian HF

and of the atom-field interaction B~~ depend on the type
of cavity the atom is placed in. In our recently published
discussion of the Doppler-induced velocity dependence of
spontaneous emission we utilized a three-mirror ring cav-

ity [9]. For a given frequency u and a given polarization,
this kind of cavity supports two counterpropagating run-

ning modes, the momentum exchange between the atom
and one such mode being restricted to one unit h~/c.
The relative smallness of this quantity compared to typ-
ical atomic momenta allows one to neglect the atomic
recoil due to its interaction with the electric field. An-

other distinctive feature of running modes is that their
spatial intensity is uniform. Consequently, there are no
local modifications of the atom-field coupling which could
lead to a nontrivial velocity dependence in the rate of
spontaneous emission.

Here we consider instead a linear cavity of the Fabry-
Perot type. This kind of cavity supports one standing
wave per frequency and poses no limits on the momentum
exchange between atom and field: the mirrors serve as
an unlimited sink or source of momentum [10]. Also,
a standing mode gives rise to a spatial variation of the
atom-field coupling which leads to a nontrivial velocity
dependence of the rate of spontaneous emission.

To simplify matters we assume a quasi-one-
dimensional cavity of length I, bound by a perfect mirror
and a partially transparent input mirror which accounts
for the cavity losses. Following the procedure in Ref. [11],
the field quantization is performed with continuous-mode
functions reflecting the fact that the resonator is embed-
ded in a one-dimensional infinite half-space. If the trans-
mittivity of the input mirror is sufFiciently weak, the pos-
itive frequency part of the electric field inside the cavity
for frequencies in the vicinity of the atomic transition
frequency is

Et+l(z) = 8 cos(qz) d~ p(u))a(~),
0

where

V being the volume of the cavity, ~, the resonance fre-
quency, and q = u, /c the corresponding wave number.
In Eq. (4), p(u) is the spectral response function of the
cavity

where I' ' is the inverse ringing time which is related to
the cavity Q factor by Q = ~,/I'.

The photon annihilat, ion and creation operators a(u)
and at(a) introduced in Eq. (4) obey the continuous
quantization commutation relations

[a(4), a (u')] = b(~ —~') .

The vacuum state of the cavity is denoted ~(0)}. Appli-

cation of a photon creation operator at(~) generates the
one-photon-of-frequency-~ state in the sense

Higher-number states may be constructed in a similar
manner.

In the canonical quantization scheme, the free-field
Hamiltonian reads

and the atom-field interaction is, in the dipole and
rotating-wave approximation,

H~~ = —hg cos(qi) &p(~)a(~)a+ + H.c.
0

(10)

Here o+ = ~e}(g( is the negative-frequency part of the
atomic polarization operator, and i denotes the position
operator of the atom measured along the optical axis,
with [i,p] = ih In E.q. (10) the vacuum Rabi frequency
g is given by

h~,
hg = pZ = p

V~0
'

where p:—(e)d(g) is the dipole moment of the transition.
Expressions (5) and (11)for the cavity electric field per

photon and the vacuum Rabi frequency, respectively, are
the same as those obtained in the discrete quantization
scheme of an ideal cavity. Despite this similarity, how-
ever, the ideal cavity limit I' ~ 0 has to be performed
with care since the spectral response function y(u) be-
comes singular at ~, = ~0 for I ~ 0. The reason be-
hind this is that in the continuous quantization scheme
adopted here, the "photon" —i.e. , the excitation of mode
~—is an entity which cannot be ascribed a position "in-
side" or "outside" the cavity. The photon is, in fact,
everywhere; only its detection probability depends upon
whether it is measured inside or outside the cavity. Note
in this context that the electric field given in Eq. (4) is
the in-cavity part of the total electric field. The out-of-
cavity part is not given explicitly since it is not needed
here.

As it stands, the model developed so far may be char-
acterized by the following five parameters, all of which
have the dimension of a frequency. The atomic charac-
teristics enter the description via the electronic transition
frequency uo and the recoil frequency ur„= hq2/2M. The
properties of the cavity enter the description via the res-
onance frequency ~, and the decay rate 1". Finally, the
properties of both the atom and the cavity determine the
value of the vacuum Rabi frequency g.

It is worthwhile to recall the orders of magnitude these
parameters may assume under experimental conditions.
In the optical regime, atomic transition frequencies are
of the order of 10is Hz and the dipole moments are of
the order of p/euo 1, where ao is the Bohr radius and
e is the elementary charge. In microwave experiments,
typical transition frequencies are of the order of 10 Hz,
and dipole moments are of the order of p/eao 10 .
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A typical candidate for an optical experiment is the
Dz line of sodium with a transition frequency ~p/2z
5 x 10i5 Hz and recoil frequency u„/2z 2.5 x 104 Hz.
For a cavity of volume 1 mm3 we then find for the vac-
uum Rabi frequency g/27r 5 x 10s Hz. For cavities with

Q 5 x 10 . 5 x 10, we have r/27r 10io 105 Hz,
which is smaller than the frequency spacing of the cor-
responding ideal cavity b~/27r = c/2l 1.5 x 10'i Hz.
Hence typical situations are such that (i) the vacuum
Rabi frequency and recoil frequency are of the same or-
der, and (ii) the photon escape rate I' is generally larger
than all of the other characteristic frequencies. This sit-
uation is sometimes called the weak-coupling regime.

A possible candidate for microwave experiments is the
63p3/'l ~ 61d3/~ transition in rubidium, with a transition
frequency ~p/27r 2.2 x 10io Hz and a recoil frequency
ur„/2z 1.2 x 10 Hz. For a cavity of volume 1 cms
we find g/2z 3.6 x 104 Hz (we assume p/eao —3600).
For the superconducting Nb cavities of the Garching mi-
cromaser experiments [16] with Q 2.2 x 10io, we find
r/2z 1 Hz, but of course faster decay rates can easily
be obtained by increasing the temperature of the res-
onator. Perhaps the most distinguishing feature of the
microwave regime, as compared to the optical regime is

(i) the smallness of the recoil frequency, and (ii) the dom-
inance of the coherence-preserving Rabi frequency g over
the incoherence-inducing photon leakage rate I' in ex-
tremely high-Q cavities, a situation sometimes called the
strong-coupling regime.

Schrodinger dynamics (12) takes place exclusively in the
one-excitation subspace of the entire Hilbert space. The
general ket in such a subspace may be written

I@(t)&= e ""l&(t))le&I(0&&

+e * " d~7"(~)14(~ t)&lg&[~'(~)l(0&&]
0

(14)

where the exponential e ' "and the integration measure
7'(u)du have been introduced for future convenience.
Here 1$(t)) is the partial amplitude of the center-of-mass
motion of the atom in the excited state, and 1$(u, t)) is

the corresponding partial amplitude for the atom in its
ground state with one photon of frequency u present.

In terms of the partial amplitudes 1$(t)& and 1$(~,t)),
the Schrodinger equation (12) takes the form

ill&(t)& = Tl&(t)) —~g«s(qz) d 17(~)I'l&(~ t))
0

(15)

if l&(~ t)) = [T+~(~-~o)ll&(~ t)) - f g' cos(qz)l&(t))

(16)

where the kinetic-energy operator T and the spectral
function 7(~) have been introduced in Eqs. (3) and (6),
respectively. We note that in Eq. (15) 1$(~, t)& enters
only via the integral quantity

l~(t)& —= d 17(~)l'l&(~ t))
0

(17)

III. DYNAMICS OF SPONTANEOUS EMISSION

The spontaneous emission of an atom moving inside a
lossy cavity is given by the solution of the Schrodinger
equation

ih —liIi) = H14&,
Bt

subject to the initial condition

l~(t = o)& = 14(t = o)) le&I(0&&

(12)

(13)

which describes an excited atom in the translational state
P(z, t = 0)—:

(zlzz(t

= 0)) entering the cavity whose field
is in the vacuum state. With this initial condition, the

To derive the equation of motion for this quantity, we
formally integrate Eq. (16),

1 4(~, t)) = ig' dt'exp
I

— [T+ &(~ —~o)](t —t')
1h )

x cos(qz) 1$(t')& (18)

with 1$(~, t = 0)) = 0 in accordance with the initial
condition (13). To proceed, we mult, iply this expression
by the Lorentzian 17(~)lz and integrate the resulting ex-
pression over ~, see Eq. (17). Extending the integration
to —oo and closing the contour in the lower complex u
plane, one finds

i .r'~
le'(t)& = ig dt'exp —— T+"

I
~. —~o —i—

I
(t —t') «s(qz) 14'(t'))

h i,
' 2) (19)

up to corrections of order r/a, which stem from the ex-
tension of the ~ integration in Eq. (17) towards —oo.
Using Eq. (17) in Eq. (15) and differentiating Eq. (19)
with respect to t, we arrive at

ilail@(t)& = T+~»i~ —i—
I le(t)& ng cos(qz)lg(—t)&,

'~

(21)

ihlg(t)& = Tlg(t)& —hg cos(qz)1@(t)&, (20)
where 6 = u, —u0 is the detuning between the cavity
resonance frequency and the atomic transition frequency.
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Equations (20) and (21) are very similar to the fre-

quently studied pair of Schrodinger equations which
describe the interaction of an atom with a classical
standing-light mode [1'2]. The only difference is the ap-
pearance of I in the equation for 4 which accounts for
photon leakage through the partially transparent input
mirror. In fact, these equations are quite universal, and
have been studied to some extent in Ref. [13] with the
roles of Iqi) and 14) interchanged to account for a decay
of the upper level to levels other than the ground state.

The effective Hamiltonian pertaining to the pair of
Schrodinger Eqs. (20) and (21) may be diagonalized in
the band-theoretic framework developed in Ref. [14]. Al-

ternatively, a multiple time-scale analysis similar to the
one developped in Ref. [15] may be used to integrate
Eqs. (20) and (21).

In this paper we concentrate on the weak-coupling
limit in which the photon leakage is t;he fastest of all
processes. In this case a Markov approximation may be
employed, and the results are easily compared to those
obtained in the standard Weisskopf-Wigner theory where
the effects of the atomic motion and the spatial mode
variation are neglected.

carried out with the result

q(x+p&lwz) 1

~ + „/M-;—r/2

where

1
+ "'+"""'

~, .
/

.
/

I&(i))

(27)

I
c no+ (28)

2M 4 (6'+ qp/M —iI'/2

1

6' —q p/M —iI'/2) (30)

is an effective atomic detuning. Upon inserting Eq. (27)
into Eq. (24) and using Eq. (22) to transform back to the
Schrodinger picture, we finally obtain

(i)) = (z+ v) ly(~)) (29)

where

A. Spontaneous emission in the Markovian limit

To derive an equation for the excited-state amplitude

1$(t)) which is valid in the limit of large I', we temporar-
ily transform to an interaction picture via the unitary
transformation

is a (non-Hermitian) generalized kinetic-energy operator
and

4 i
6'+ qp/M —iI'/2

14(&)) = exp
I

-T't
I 14(~))(h ) (22)

—2lgz 1

6' —
qp/M —i I'/2 )

(31)

Ic'(&)) = exp —T~
l l@(~)) (23)

in terms of which the Schrodinger equations (20) and (21)
become

ihlg(t)) = hg cos q I

—i + t
I

14(t)—),( p
M ) (24)

ihlc(~)) = h
I

b —i-
I lc(~))

( .rl-
—hg' cos q I

i + t'
I 1$(—i)) .

( p
(25)

To proceed, we formally integrate Eq. (25) to obtain

l~(~)) = ig' .r
dt exp i

I
6 —i— (t —t')—

x cos q I
i + —~'

I l(t(t')) (26)
p
M )

Equation (24) shows that 1$) is a slow variable if g is
small compared with 1". This allows us to perform the
Markov approximation in Eq. (26). To be specific, we

replace 1$(t')) by 1$(t)) in Eq. (26), but leave the cosine
function intact. Using the Baker-Campbell-Haussdorff
formula to disentangle the operator-valued argument of
the cosine, z+pf'/M, the integrat. ion over t' is then easily

is a momentum-operator-dependent "optical" potential.
The Schrodinger equation (29) describes the dynamics

of the upper-state probability amplitude in the Marko-
vian limit I' )) g. The separation of the effective Hamil-
tonian in Eq. (29) into a kinetic and a potential part,
respectively, reveals the two different roles they play for
the dynamics of the spontaneous emission, i.e., for the
time dependence of the overall upper-state probability

P(~) —= (4(&)l&(~)) = f ~*10(*,~)l' (32)

The imaginary part of T, which is spatially uniform, im-
plies different loss rates for different velocities resulting
from a simple Doppler effect. In contrast, the imaginary
part of the optical potential V is spatially modulated,
and accounts for different loss rates at different positions
within the cavity. In addition, the optical potential leads
to the scattering of atoms into different velocity states,
which in turn have different Doppler-induced decay rates.

B. Spatial modulation neglected

Let us first concentrate on the kinetic part alone. Set-
ting V = 0 in Eq. (29), the resulting equation is equal in
form to the one derived in our previous work describing
the spontaneous decay of an atom traversing a ring cav-
ity [9]. In this limit an atom which enters the interaction
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region with velocity component v along the optical axis
undergoes a purely exponential decay P(t) = exp( —p„t)
where t, he decay rate is given by

+ 1
1" i, I + 4(b' + qn)'/I' 1 + 4(b' —qv)'/I'

(33)

Setting v = 0, u, = ~o, and u„= 0 (i.e. ,
b' = 0) in the

above formula, and using Eq. (11) to express the vacuum
Rabi frequency in terms of the cavity volume V and the
atomic dipole moment p, we readily find the well-known
relation [1]

detuned with respect to the other component.
However, a standing wave is not to be considered as

two counterpropagating running waves [10], a fact which
is manifest in the optical potential which we have ne-
glected so far, and whose influence we shall discuss now.

C. Standiu0, -wave eA'ects

To identify the role played by the spatial variations of
the cavity mode function, it is convenient to transform
Eq. (29) to a moving frame in which the atomic motion
becomes slow. This Galilei transformation is achieved by
means of the unit, ary operator

fe =O, b'=0 —
4 g y fJ' ) (34) pG„= exp ——Mv z-

h M
(35)

where pg ——(I/4rco)(4uop /3lic ) is the free-space value
of the spontaneous decay rate and A

—= 2n. /q is the wave-

length of the transition.
The decay rate p„ is a superposition of two Lorentzians

centered around v = +b'/q. These two Lorentzians ac-
count for the int, eraction of the atom with two symmet-
rically Doppler-shifted counterpropagating cavity field
modes. The full width at half maximum of these
Lorentzians is given by v, v = c/Q. If the atom at rest
is in resonance with the cavity field, b' = 0, an increase
in atomic velocity leads to a noticeable decrease in the
spontaneous decay rate for velocities which are close to
or exceed the "characteristic cavity velocity" vga ~ For
v = v~~„ the decay is half as fast as given by the stan-
dard expression (34). On the other hand, if the cavity is
strongly detuned, b' ) qv, ~„, and the atom is at rest, it
will rarely decay since it is detuned with respect to both
counterpropagating waves. An increase of the atomic ve-
locity, however, will lead to an increase of the decay rate.
This increase is a result of a pure Doppler shift which
tunes the atom in resonance with one component of the
two counterpropagating waves, while it gets even more

P(t) = e ~"' dze "~ '~!gS(z 0)! (37)

where p„has been defined in Eq. (33), and

where v is the initial atomic velocity. In terms of the
transformed ket!g'(/))—:G„!P(t)), the Schrodinger equa. -
tion is formally identical to Eq. (29) with the transformed
quantities Z' and V' obtained from 7 and V by the sub-
stitution p ~ j+ Mv in the Lorentzian denominators
and z ~ z + vt in the exponents of V. Under the as-
sumption that the momentum spread in the atomic rest
frame remains small, the Schrodinger equation for !P')
may be further simplified by setting p = 0 (Raman-Nath
approximation), so that eventually, with i, :—i + vt,

h!g! 1+e '& ' 1+e
ih. !y') =—, . + . !!y') .

4 b'+ qv —iI'/2 b' —qv —iI'/2r

(36)

Being diagonal in the position representation, this equa-
tion is easily integrated to obtain the overall upper-state
probability

i1(z, t) = "
cos(2qz + qvt)+, sin(2qz + qvt) !

y„sin(qvt)
qv rI'1+ 4 b"-+ q2v~ I'z (38)

accounts for the local variation of the spontaneous de-

cay due to the spat, ial modulation of the resonant, inode
function. Further simplification of this somewhat opaque
expression is achieved by noticing that the amplitude of
the spatial sine function never exceeds 2g2/I'~, a quantity
which is assumed to be small. That is, we may neglect
the spatial sine function in Eq. (38) so that

q(z, t) = y„sin(qnt)
cos(2qz + qvt) .

qv

If the atom is initially well localized around some zo,
the excited-state probability P(/) = exp[—y„t —il(zo, f)]
displays an oscillatory behavior superimposed on the

standard exponential decay. If the atom enters the cavity
at an antinode of the cavity field, for example, zo ——0,
its decay is initially twice as fast as in the case where the
spatial mode function has been neglected. If the atom,
however, enters the cavit, y in a region of a node of the
cavity field (zo —A/4, for example), the atom does not
decay at all initially. Only after some time, when the ve-
locity of the atom brings it into a region of nonzero fie)d
strength, does the decay start to take place.

In general, the efFect of the spatial mode variation on
the decay of the atom results is an oscillation with period
A/v. This period has to be comparable to the lifetime y
in order to lead to observable effects, thereby setting the
atomic velocity to n n d = (c/Q)(g/I')2.
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IV. DISCUSSION

In this paper, we have shown that the spontaneous
emission of a moving atom inside a cavity is modified

by two diA'erent mechanisms, each of which is observ-
able on a diA'erent velocity scale. The modification of
the spontaneous emission due to a Doppler-induced de-
tuning of the cavity line is observable for velocities which
exceed the characteristic velocity v,a„= c/Q, while the
modulation of the exponential decay rate due to spatial
mode effects is observable for velocities which do not ex-
ceed the characteristic velocity v~od, which is smaller by
a factor (g/I') than v„„. This means that the decay
of fast atoms is primarily governed by the spectral cav-
ity response function (sometimes called "mode density" ),
while the decay of slow atoms is primarily influenced by
the spatial structure of the cavity modes.

Experimentally, the inhibition of spontaneous emis-
sion of fast atoms is most easily confirmed in the op-
tical regime. For a cavity of 1-mm linear dimension and
quality factor Q = 10s, we have I'/2z = 5 x 107 Hz.
The lifetime of an atom at rest inside the cavity is then
I'/(2(g( ) = I/2z x 10 sec and v = c/Q = 3 m/sec. At

this velocity, the time of flight of the atom through the
cavity is by 0.3 x 10 sec, which is long enough to ensure
decay. With the weak-coupling parameter g/I' = 10
on the other hand, we have v d ——0.3 mm/sec, so
that spatial mode effects require exceedingly slow atomic
beams.

In fact, the influence of the spatial mode structure
should be most easily observed in microwave experi-
ments. For a cavity of 1-cm linear dimension and quality
factor Q = 0.5 x 10, we have I'/2z = 4.4 x 104 Hz

and a lifetime at rest 0.3 x 10 s sec. In this case, the
weak-coupling parameter is g/I' = 0.8. Accordingly, the
spatial mode structure influences the dynamics of spon-
taneous decay most dramatically for atoms of velocity
slower than 3.6 x 10z m/sec.

ACKNOWLEDGMENTS

This work is supported by the U.S. Office of Naval
Research Contract No. N00014-91-J205, by the National
Science Foundation Grant No. PHY-8902548, and by the
Joint Services Optics Program.

' Permanent address: Institute of Physics, Polish Academy
of Sciences, Aleja Lotnikow 32/46, 022-668 Warsaw,
Poland.

t Also at Department of Physics, University of Arizona,
Tuscon, AZ 85721.

[1] E. M. Purcell, Phys. Rev. 69, 681 (1946).
[2] K. H. Drexhage, in Progress in Optics XII, edited by E.

Wolf (North-Holland, New York, 1974).
[3] D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).
[4) P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys.

Rev. Lett. 50, 1903 (1983).
[5] R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev.

Lett. 55, 2137 (1985).
[6] W. Jhe et al. , Phys. Rev. Lett. 58, 666 (1987).
[7] D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld,

Phys. Rev. Lett. 58, 1320 (1987).
[8] F. De Martini et al. , Phys. Rev. A 43, 2480 (1991).
[9] Z. Bialynicka-Birula, P. Meystre, E. Schumacher, and

M. Wilkens, Opt. Commun. 85, 315 (1991).
[10] B. W. Shore, P. Meystre, and S. Stenholm, J. Opt. Soc.

Am. B 8, 903 (1991).
[11] L. I&noll, W. Vogel, and D.-G. Welsch, Phys. Rev. A 43,

543 (1991).
[12) A. P. I&azantsev, G. J. Surdovich, and V. P. Yakovlev,

Mechanical Action of Light on Atoms (World Scientific,
Singapore, 1990).

[13] B. Ya. Dubetskii, A. P. Kazantsev, V. P. Chebotaev, and
V. P. Yakovlev, Zh. Eksp. Teor. Fiz. 89, 1190 (1985) [Sov.
Phys. —JETP 62, 685 (1985)].

[14] M. Wilkens, E. Schumacher, and P. Meystre, Phys. Rev.
A 44, 3130 (1991).

[15] J. Mizerski, W. Miklaszewski, and S. Stenholm, J. Opt.
Soc. Am. B 8, 509 (1991).

[16] G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev.
Lett. 64, 2783 (1990).


