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The structure of the eigenstates of a hydrogen atom in parallel uniform electric and magnetic fields is
investigated using high-order classical perturbation theory. The Kustaanheimo-Stiefel transformation is
first used to convert the problem into an anharmonically perturbed four-dimensional isotropic oscillator.
A canonical transformation to a set of extended "Lissajous" action-angle variables is then introduced
that considerably simplifies the perturbation expansion, leading to a simple and compelling classification
scheme for the eigenstates. Extended Lissajous action-angle variables allow the construction of rotation-
al energy surfaces, which provide a compact geometrical picture that captures important details of the
energy-level structure of the system.
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I. INTRODUCTION

Atoms placed in relatively weak external fields react by
reorganizing their energy-level structure according to the
new set of exact or approximate symmetries which may
be imposed by the external perturbation. A case in point
is the quadratic Zeeman effect (QZE) in Rydberg atoms
[1—6], which has become a unique laboratory for the
study of chaos and nonintegrability in quantum systems
[7—12]. As well as experimental studies there have been
many quantum studies of Rydberg atoms in external
fields using high-order quantum perturbation theory
[13—24] or accurate numerical methods [25—34]. Not
surprisingly, in view of the large number of studies devot-
ed to this problem (only a fraction of which have been
cited), a plethora of experimental and computational data
exists. In order to interpret and consolidate these data
and provide new insights into any order underlying them,
classical and semiclassical methods have been used suc-
cessfully to identify new quantum numbers and provide
qualitative descriptions of the evolution of the energy lev-
els as a function of field strength [35—54]. When an
external electric field is added to the magnetic field the
level structure becomes even more complex (notwith-
standing field ionization) and again guidance from classi-
cal and semiclassical methods becomes indispensable.
One of the earliest calculations using high-order quantum
perturbation theory for this problem was by Johnson,
Scheibner, and Farrelly [24] who invoked Canterbury ap-

proximants to resum the divergent perturbation expan-
sion [55]. In any case, the essence of a classical study is
to build an accurate and concise physical picture which
captures the overall systematic trends contained in quan-
tum or experimental data. Accordingly, the major objec-
tive of this account is to develop a comprehensive classi-
cal theory of the electronic structure of hydrogenic Ryd-
berg states in external parallel electric and magnetic fields
in the regime where the diamagnetic term in the Hamil-
tonian is important [the Stark —quadratic-Zeeman effect
(SQZE)] [35,42 —47]. This approach, based on the deter-
mination of apt action-angle variables and high-order
classical perturbation theory, is exploited to develop a
compact geometrical picture which affords considerable
insight into the global behavior of the system as a func-
tion of field strengths and quantum numbers.

The SQZE has been studied experimentally rather
thoroughly in alkali-metal atoms but no experimental re-
sults evidently exist for the hydrogen atom itself. Studies
by Cacciani, and co-workers [42—46] indicate that devia-
tions from pure hydro genic behavior in alkali-metal
atoms can mask eft'ects that are implied by lowest-order
perturbation theory. In this paper high-order classical
perturbation theory is performed in both of the external
fields for the hydrogen atom with the aims of understand-
ing the robustness of low-order results, developing a
classification of the eigenstates and of encouraging exper-
imental studies of the hydrogen atom itself. An interest-
ing result is the finding that the fields mix at and beyond
third order in the combined fields, which implies that the
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and the electric and magnetic field strengths are F and y,
respectively. In atomic units the unit of electric field is
5.14 X 10 V/cm and the unit of magnetic field is
2.35X10 T (1 T=10 G). An approximate constant of
motion for the QZE found by Solov'ev [39,40] and Her-
rick [41] is given by [48]

level structure wi11 be much more complicated than that
assigned on the basis of low-order perturbation theory.

The determination of action-angle variables reflecting
the actual dynamics of a system is a prominent and per-
sistent problem in treating resonant (degenerate) classical
systems like the QZE and the SQZE. This issue has
preoccupied celestial mechanicians and astronomers for
more than a century [35,56,57]. Several previous classi-
cal and semiclassical studies of the QZE and the SQZE
have relied on the intuition of astronomers by using the
Delaunay elements, which are often appropriate for per-
turbed Kepler problems [37,38,47,53,54,56]. In order to
make a connection with quantum mechanics, however, it
is necessary that the set of action-angle variables used be
physically motivated. The Delaunay elements, while con-
venient for application of classical perturbation theory,
do not necessarily prove to be the best variables in which
to understand the level structure. For example, they may
lead to singular quantization formulas [3,49,53]. The
problem of. determining good action-angle variables is
solved for the SQZE by a new transformation to uniform-
ly valid action-angle variables based on the Kus-
taanheimo-Stiefel (KS) transformation [58—61] and in-
sights gleaned from a group theoretical perspective
[62-70]. The final issue of import is the interpretation of
classical perturbation expansions containing numerous
complicated terms. The key is visualization [35,71]. Us-
ing the device of a rotational energy surface [72—77]
(RES), the global features contained in the perturbation
expansion are revealed at once in a simple and geometri-
cally pleasing fashion.

The article is organized as follows; Sec. II is devoted to
a description of classical perturbation theory as applied
to the SQZE Hamiltonian. The coordinates of Kus-
taanheimo and Stiefel are used throughout [58—61].
Next a canonical transformation to action-angle variables
is produced which collapses the —10 terms in the origi-
nal expansion to around 100. Much experimental effort
has been directed to the m=O case which emerges as a
special case of the present treatment {the azimuthal quan-
tum number m is preserved as an exact quantum number
in the SQZE). In Sec. III an alterative derivation of the
m=O case is presented which has the advantage of pro-
viding a nontrivial check of the more general case while
shedding considerable light on the symmetries present in
the SQZE. Construction of the RES's is described in Sec.
IV where results are presented. The paper concludes
with a brief discussion in Sec. V.

(3)A=4A —5A

where

A=
1 2 PXL——1 r

( —2H, )'" (4)

is the modified Runge-Lenz vector [78] and H p
=Ep is

the unperturbed Kepler energy. For the SQZE the corre-
sponding constant of motion is the following [42—47]:

Ay=4 A —5 A, —10PA, (5)

where

P=12F/(Sn y2) . (6)

A& is the lowest vanishing term in the perturbation ex-
pansion and at this order the fields obviously do not mix.
In order to go to higher order in both fields the methods
of classical secular perturbation theory will be used
[79—89]; these provide an integrable approximation to
the original Hamiltonian often called the normal form.
This method provides a straightforward way of calculat-
ing high-order expansions for mixed perturbations with
the aid of symbolic algebraic manipulation programs like
MATHEMATICA or SMP [35,71].

As noted, in the case of perturbed Kepler systems it is
common to work in terms of the Delaunay elements
which include the principal action n, the angular mornen-
tum, and its z component, together with their conjugate
angles. The angular momentum is not conserved in ei-
ther the QZE or the SQZE which suggests that a different
choice of action-angle variables than the Delaunay ele-
ments might be preferable. It turns out that perturbation
expansions in the Delaunay elements are unsatisfactory
for the QZE and SQZE in the limit m=O because they
lead to singular quantization rules at the separatrix
[3,49,53]. This problem has been studied for the m=O
case by Grozdanov and Rakovic [90] and Farrelly and
Krantzman [49]. Rather than work in terms of the De-
launay elements, classical perturbation theory is per-
formed in the Kustaanheimo-Stiefel coordinates which
allow the perturbation expansion to be readily converted
into an expression in terms of a set of particularly apt
action-angle variables. These elements are here called ex-
tended Lissajous (or simply Lissajous) action-angle vari-
ables because they can be viewed as being a generaliza-
tion of the variables introduced by Deprit [54(b)]. They
readily account for the Lissajous figures generated from
an isotropic harmonic oscillator Hamiltonian in two (or
more) dimensions and emerge naturally from the KS
transformation. The KS transformation was originally
designed to regularize the effect of the potential energy
singularity on the classical dynamics in the vicinity of the
origin. It allows the unperturbed Hamiltonian and any
perturbation to be written in terms of the canonical coor-

II. CLASSICAL PERTURBATION THEORY

In Cartesian coordinates and atomic units m,=e =Pi= 1 the Hamiltonian for the SQZE with the fields
parallel and along the z axis is [24,35,42 —47]

where E is energy and

(2)L, =xP —yP„=mfi,

2H=E= ,'(P„+P+P, )++—L,+ (x +y ) ——Fz—
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dinates and momenta of an isotropic four-dimensional
harmonic oscillator. For the SIZE the Hamiltonian is
first converted into a perturbed four-dimensional oscilla-
tor using the KS transformation, the normal form is then
constructed, followed by a transformation to action-angle
variables.

The KS transformation starts by relating the original
coordinates to a set of coordinates in a four dimensional
space using [59,61]

dt =4r =4IuI' .
ds

Multiplying through by 4r gives the Hamiltonian

K =4= —,'(P„+coIuI )+2y IuI (u f+u4)(uz+u3)

(21)

This Hamiltonian, in turn, can be converted into a system
of four coupled anharmonic oscillators by making the
transformation to a new time variable s (regularization),

r=TQ

where

(7)

where

—4FIuI (u, —u2 —u3+u4) (22)

Q& Q2 Q3 Q4 co =4ym —SE . (23)

Q2 u)

Q3 Q4

Q4 Q3

u) Q2

u)Q4 Q3 Q2

Scaling the coordinates and momenta yields
8

4 2

& =—=-,'(P'. +
I

I')+2',
I

I'(",+".)(",+.,')

IuI =u +u +u +u
The two sets of coordinates are related explicitly by

x)=z=u) Q2 Q3+Q42 2 2 2

x2=y=2(u&u2 —u3ug) y

(10)

(12)

x2 =x =2( u ) u3+ u 2ug) (13)

The dynamical variables can be related by using the mo-
menta P„which are conjugate to u,

P„='(P„P2,P3,P4 }

for which the following constraint holds:

u &P4
—u4P&+Q3P2 —u2P3 =0

where
3 4

QP„dx,= QPdu;.
i=1 i=1

Thus

Px = TPu
1

2T
where

P„='(P„,P„,P„,O) .

(14)

(15)

(16)

(17)

(18)

In view of Eq. (15}the system is subject to the restriction

P~ —m —u )P4 Q4P) — u3P2+ u2P3, (19)

enforcement of which converts the SQZE Hamiltonian
into

+~trt+ (u'+u')(u'+u'}1 1
2

1 4 2 3

—F(u, —u2 —u3+u4) . (20)

and u='(u, , u2, u3, u4), r='(x„x2,x3,0), and T satisfies
the orthogonality relation (superscript t means trans-
pose),

T'T='TT= IuI2

In Eq. (9),

4F
IuI2(u2 —u2 —u2+u2) (24)

Q) =

Q2=

Q3=

Q4=

(ei+P4)
v2

(e3+P2)

(~2+73)
v'2

(e4+Pi)
v'2

92 P3
2

P3=

P4
v'2

(25)

Next a transformation to action-angle variables is
desired: Based on previous studies of resonant systems a
transformation is sought which will convert the normal
form into an expression containing the action variables n
and A, and the angle conjugate to A„namely, p „

Z

[35,87,92]. A solitary angle is expected to persist because
the problem is resonant [62]. The initial transformation
rs

q; =(2I,. )' sing;, p,. =(2I, }' cosP;

where i=1,2,3,4. Two further transformations are then
performed in order to eliminate all but one angle; first,

The normal form was obtained in these coordinates using
the symbolic manipulation program MATHEMATICA as
implemented on a Macintosh IIci personal computer
[91]. The raw expansion, a tenth-order polynomial in
coordinates and momenta, contained approximately
100000 terms through fourth order in each field. Previ-
ous [92] analysis of the QZE suggests that a considerable
simplification of this expression might be achieved by
performing the following sequence of transformations.

First, a transformation to new coordinates and momen-
ta is made, equivalent to a rotation in phase space,
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(I, +I&)
I)=, Pt =P, +/&,

(I, I—&)
Iz —

2
((lt —4a 4b

(I, +Id )
I3=, p3=p, +pd,

(I, Id)—
(()4=4.—6 .

(27)

This converts the normal form K into the following ex-

pression:

~F 4 Ao
+m = =2n F+ F + F

CO Q) Q)

A3 A4

The constraint (19) requires that I, =I,=n Th. e final

transformation to the Lissajous action-angle variables is (29)

Ib —m+ A„pb—

Id =rn —A„

+4~, )

(28) where the coefficients are given explicitly in terms of the
Lissajous variables in Table I. Alternatively, the normal
form (29) may be inverted to yield the energy directly,

1E=—
211

AOF &~ nA4 3n Ao n A&
—n AOA4 n A5

3 4

+ +F + +Fy +
16 2 32 512 128 128 256

3
—5n A 0 3n A 0 A

&
n A & & &

2 1n A o A 4 7n A
~

A 4

4096 1024 1024 8192 4096

7n AOA5 n A6

4096 2048
+

21n A 9n A A 9n A

65536 8192 32768

9n AoAz n A3 4
5n A4 n Az

16384 8192 2048 512
+ +y4 (30)

Ao =24n A,
A ] 72nm 136n 408n Az

A~ = —12000nA,'+4128nm A, —12000n A,
A 3

—427 560A, +71 280n m —7272nm —855 120n A, +213 840nm A, —85 5 12n '
A ~

= —6n A,~ —2nm '+ 6n 3 4nX+—8nX cos tb A,
A, = —272nA,3+272n 3A, —168nXA, +336nXA, cos Pz"z
A6= —13156nA, —3320n'mt+140nm —2776n X+8312n At+512n'cos'(bz —512n'cos P„"z "z

7704nXA—, +512nA, cos Pz —512nA, cos P„+664nmtX+3032nm A, —1024n m cos P„"z "z "z
+1024n m cos P„+512nm cos Pz —512m n cos P„+5552n~X cos Pz —1024n A, cos P„"Z "2 "z z "Z

+1024n A,icos P„+15408nA,cos Pz —132$nm~cos P„—1024nm A, cos P„"z "z "z "z
+4844n + 1024nm ~ A, cos P „"z

347nAz 253n m 115nm 286n X
6 3 6 3

154nXA,
+72n cos P„72ncos tb„—— +72nA, cos P„—72nA, cos P„2 z "z z

46nm ~X
+29nm A, —144n m cos P„1+44mncos P„2 2

z z

572n 'X cos tb
„ —144n'A, cos P„z

92nm Xcos Pz z

+72nm cos tb„—72nm cos P„—"2 "z
308nA, Xcos P„

+144n A cos + +
3

607n '
6

3
—144n'm~A, cos P„+144nm A, cos tb„—"z "2

TABLE I. Coefficients occurring in the expansions (29) and (30). The quantity X= [ [n' —(m + A, ) ][n t —(m —A, )~]] '~ .
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This expression agrees with previous low-order results in
the limits that either field is zero and with the low-order
results of Cacciani, and co-workers [43—45]. The ap-
proximate constant of motion A& is given explicitly by
the following expression:

n A&=2[[n —(m +A, ) ][n (—m —A, ) ]]' cos2$„

dt =27"
ds

(35)

u~ —,v~ —,P ~&OP, P ~&OP, (36)&n' &n' Qs V 7

together with the following rescaling of the coordinates
and momenta:

—3 A, —2m +2n —10PA, . (31) where 0=& 2E—gives

This compietes the derivation of the normal form and its
transformation to action-angle variables for arbitrary
values of m. In the next section the particular case m =0
is considered.

2 '(P +—P )+ '(u +—v )Q V

2

+ (u +v )(u v )
— (u —v ) .

8n4 2n' (37)

III. NORMALIZATION WHEN NE =0
AND LOW-FIELD LIMITS

Although a special case of the theory developed in the
preceding section, the problem with m=0 merits con-
sideration in its own right [35,88—97]. This ease has
mainly been studied in the parabolic coordinates original-
ly applied by Edmonds and Pullen [93] to the QZE and
followed shortly thereafter by Reinhardt and Farrelly
[48] who not only generated the normal form for the
QZE in these variables but provided the first convincing
graphical demonstration that a good approximate invari-
ant exists. Robnik and Schrufer [88] subsequently ex-
panded the QZE to sixth order in the magnetic field in
these variables. For the SQZE parabolic coordinates are
especially useful because the pure Stark effect in hydro-
gen is separable in this coordinate system [90,98]. In
fact, the separation constant is essentially A, itself [78].
A second advantage of considering the SQZE system in
these coordinates is that it provides an alternative deriva-
tion of the normal form which provides a nontrivial and
independent check of the expansion (31).

The Hamiltonian (1) is first written in cylindrical coor-
dinates and it is assumed immediately that m =0,

y'2 1H=E= —,'(P +P, )+ p
——Fz—(32)

where

Normalization is effected in this set of coordinates after
which a transformation to action-angle variables is per-
formed. Again, the raw normal form in terms of the par-
abolic coordinates and momenta contained many
thousands of terms. The transformation to action-angle
variables in this case proceeds by exploiting the exact
SU(2) symmetry of the unperturbed problem, i.e., the
two-dimensional harmonic oscillator. The unperturbed
four-dimensional oscillator Kv [obtained by eliminating
the perturbation in Eq. (24)] may be written in terms of
the actions I, , i=1,2,3,4 of Eq. (27),

K0 = =I1+I2+I3 +I4=2= (38)

B1 B2 3 4~NF —2n F + F3+ F2+ F4
m =0 g g3 g6 g9 F12

B4 Bs 2 B6 2 2 B7 4+ ~2+ ~F+ 10~ F +

Setting m =0 in Eq. (28) reveals that in this limit
Ib = Id = A, w—hich collapses Eq. (38) into a two-
dimensional harmonic oscillator [compare Eq. (37)].

The normal form may be written entirely in terms of
the oscillator action-angle variables, and through fourth
order in each field it becomes

p=x +p

Using semiparabolic coordinates [88,96],

p=uv, z =
—,'(u —v ), r =

—,'(u +v )

and performing the Levi-Civita regularization [93,97],

(33)

(34)

(39)

The coeScients are given in Table II. This expression
agrees with Eq. (29) when m is set to zero in that expres-
sion. The normal form (39) can be inverted to give the
energy directly,

1

2n

B0F nB4 3n B0 n B& n4B,

2 2 8 2
+y +F + +Fy —n B0B4+

2

+F
—5n4B03 3n5BOB& n B2 21n BOB

g 2
+ +Fy

2 8
+

7n B1B4 7n B0Bs n B6
4

+
2

21n'B4
+F +

16

nB3 5n B4 nB79 4 2 S

V 8
+9n BOB& 9n B, 9n BOB2

2 8 4 2
(40)
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TABLE II. Coefficients occurring in the expansions (39) and (40).

B0=3nA,

51n A,
Bl =—

8 8

375nA, 375n A,B =—
16 16

53 445n A, 53 445n 'A,' 10689n
512 256 512

B =—
4

nA2 3 nA cos fg n cos Pgz+n
8 8 2 2

13nA, 13n A,B~=- +
16 16

21nA, cos Pz '+ 21n'A, cos Pz
Z

B =—
6

1363nA 4 423n 3 A 2
517 5 931n A, cos $„69nA, cos pz

256 128 256 64

379n cos~P„z
64

nA, cos P„
+n' icos P„—

z

n'cos P„"2

192

—13nA4 37n3A& 35 5 23nA, cos'p„
512 768 1536

7n ' A,'cos P „ z

12

32192

89n'cos Pq 9nA, cos P„"z "z +
9n'A, 'cos P„2

16

9n'cos P„"z

32

n2=A, . (41)

Ignoring terms which are higher order than quadratic in
y and in the limit F=O Eq. (29) reduces to the correct
limit [61],

l y'n4E= — + [1+A+(m/n) ] .2' 16 (42)

IV. ENERGY-LEVEL CLASSIFICATION
AND ROTATIONAL ENERGY SURFACES

The expression for the energy developed in terms of
action-angle variables in Eq. (30) provides a convenient
vantage point from which to scrutinize the energy-level
structure. To begin with it is illuminating to consider
only Eq. (31) which expresses the approximate invariant
A& in terms of the new set of Lissajous action-angle vari-
ables. This expression leads to an immediate
classification of the eigenstates. It is worthwhile to re-
view briefly the situation for the QZE where the corre-

which agrees with Eq. (30) when m is set to zero there.
Various low-field limits can be examined to provide

further checks of the results and agreement was obtained
with previous results in the various limits [13,99,100].
When the magnetic field is absent the energy expression
(40) agrees with the second-order quantum result given
by Landau and Lifshitz [98] (apart from a constant,
unimportant in the limit of large n) in terms of the para-
bolic quantum numbers n

&
and n2. The connection with

the parabolic quantum numbers is made via the relation

sponding quantity to A& is simply A as defined in Eq. (3).
A takes values in the range ( n, 4n )—and the two ex-

tremal values correspond to different limiting types of
classical motion with a separatrix occurring at A=O.
Trajectories with A & 0 have the full symmetry of the po-
tential and are usually labeled rotational. As A ap-
proaches its maximum value the trajectories become lo-
calized along the p axis (in cylindrical coordinates) and
correspond to the ridge states of Fano and co-workers
[101,102] and Rau [103,104] which give rise to the 3/2fico
quasi-Landau resonances [1,35,101—108]. The second
class of trajectories with A &0 are vibrational in charac-
ter and occur in degenerate pairs. This leads to splittings
in the eigenvalue spectrum due to tunneling. The separa-
trix between the rotational and vibrational types of tra-
jectory occurs at A=O and is clearly visible in Poincare
surfaces of section [3]. For the vibrational states A, itself
is a fairly good constant of motion making the problem in
this limit similar to the Stark effect in hydrogen. In the
Hamiltonian (1) the quantum number m appears as a pa-
rarneter and the dynamics must therefore be examined at
each value of m. It is of particular interest to note that,
based on first-order classical perturbation theory, the dy-
namics can be divided into two broad categories depend-
ing upon the ratio m In [53,54]. If m /n & I /v'5 both vi-
brational and rotational trajectories exist while if
m In ) I /&5 only rotational trajectories occur. The
separatrix disappears when m /n = I /v 5.
phenomenon has important consequences for quantiza-
tion; when m/n & I/&5 (the separatrix exists) a quanti-
zation formula is needed which goes smoothly from the
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regime where A (0 to that where A) 0. When only rota-
tional motion exists then a different quantization formula
is needed to treat the single class of rotational states. In
this case quantization formulas based on classical pertur-
bation theory performed in the Delaunay elements give
good agreement. However, such formulas are singular at
the separatrix and technically invalid in the limit m=0
[53]. They perform best when m ln ) I/&5, i.e., for the
rotational states.

Stated somewhat differently, Herrick [41] (see also
Alhassid, Hinds, and Meschede [63] and Kalnins, Miller,
and Winternitz [64]) has shown that the QZE can be
viewed as falling between two exact dynamical symmetry
limits: 0 (4) D 0 (3)&00 (2) and 0 (4) DO(2) 0 (2)
[The subscript A, in 0 (3)& indicates that the generators of
the Lie algebra are those of a nonstandard angular

/

I

t
'

momentum having components (A„,A, L, )]. As the
value of m increases the fomer dynamical chain becomes
more appropriate. By contrast, in the pure Stark limit
the latter symmetry chain is more fitted. Therefore an in-
teresting competition between the two symmetry chains
is expected to take place as m and I' are both varied.

The general situation is somewhat similar in the SQZE
to that in the QZE. If the electric field is gradually
turned on then the energy-level classification scheme is
expected to evolve smoothly from the QZE limit. In
some ways the problem is simpler than the QZE because
increasing the electric field leads to A, being a better in-
variant or quantum number (it is exact in the pure Stark
limit). For the m =0 case and based on low-order pertur-
bation theory Cacciani et aI. [43—45] have shown that
three classes of state exist, labeled I, II (vibrational), and
III (rotational). The effect of the electric field is to break
the degeneracy of the vibrational states in the QZE giving
rise to two distinct classes of vibrational state. If the
electric field continues to be increased, first one class of
vibrational state vanishes (at P=0.2) followed shortly
afterwards by the rotational states (at //3=1. 0), leaving

/

I

I,

/

/

(

1

(c)

FIG. 1. Level curves of A// as /I, and (//„ are varied with"z
m =0 and n= 30. In each case the abscissa, P„,ranges between

z—~ and m and the ordinate, A„ranges from the most negative
to the most positive value which it can take. The actual values
are immaterial. The vibrational states of the SQZE are the ro-
tating states in the rotor picture while the SQZE rotational
states are localized in the two wells. In (a) P=O, in (b) P=0.2,
and in (c) @=1.0. FIG. 2. Same as Fig. 1 but rn = 1.
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vibrational and two rotational. They examined the case
n=30 and m=1. This conclusion was based on examina-
tion of the analogs of Figs. 1 —4 in the Delaunay actions
but note that some of the separatrices they observed may
have arisen because of the nonanalyticity of the perturba-
tion expansion in certain limits. The present choice of
action-angle variables allows a uniform categorization of
states previously thought distinct. Examination of level
curves of A& in the current action variables for the case
n=30 and m=1 reveals that for m=1 the picture is
essentially the same as m=O; namely, two classes of vi-
brators and a single class of rotational states. This is por-
trayed in Fig. 2 which is qualitatively similar to Fig. 1.
Examination of a much wider range of P values than ac-
tually shown here leaves these conclusions unchanged.
Admittedly, for nonzero m values some of the vibrational
states become localized between the ever expanding rota-
tors at low F. These, nevertheless, maintain true vibra-
tional character and may have been labeled as rotational
in Ref. [47]. Waterland, Delos, and Du [47] did note that
there was very little difference between some of their ro-
tational and vibrational states. In any case, the compara-
tive simplicity of the phase portraits in Figs. 1 —4 seems
to indicate the advantage of working with the Lissajous
action-angle variables. The best zero-order action vari-
able in either the Zeeman or Stark limits is 2, rather
than the Delaunay element corresponding to the angular
momentum.

In the pure QZE, as m is increased the volume of phase
space supporting vibrational states shrinks until
m /n = I/&5 when the vibrational states, along with the
separatrix, have vanished altogether, leaving only rota-
tional states. By contrast, in the SQZE it is the rotational
states which finally vanish leaving only vibrational states.
It is therefore of considerable interest to examine the
SQZE in this regime in order to look for a competition
between the symmetries of the various classes of states.
For the moderate value of m=4 in Fig. 3(a) it is already
apparent that the rotational states are starting to dom-
inate. This expansion is curtailed, however, as the elec-
tric field grows. Already in Fig. 3(b) the vibrational
states are growing in and the rotational states are totally
absent in Fig. 3(c). The situation is more complex when
m /n = 1/&5 in Fig. 4. For P =0 the rotational states are
the only states present. As P is increased the vibrational
states again start to grow; however, in Fig. 4(b) the QZE
vibrational states are mapped onto two kinds of "rotor"
states; freely rotating states and states trapped in two
wells which have appeared. Phase space no longer legiti-
mately can be thought of as a hindered rotor, resembling
more the intrinsic kind of resonance found in molecules
like formaldehyde [35,110,111] or coupled spin systems
[112]. As the electric field continues to be increased the
normal Stark limit is achieved. It would be of consider-
able theoretical and experimental interest to study in
great detail the regime corresponding to Fig. 4(b).

Alternatively, the level structure may be understood by
taking advantage of the connection between the QZE, the
SQZE, and the asymmetric top [35,76,77]. The normal
form Eq. (39) and the energy (40) can both be written en-
tirely in terms of the components of a generalized angular

J —
(J2 J2 )i /2sjng

J —
(J2 J2 )1/ cosg

(43)

where

9, =2/ (44)

In terms of these variables the lowest-order SQZE energy
for m=O is given by

1 + y'nB FB
2n 2 2

(45)

with

B0=3nJ) (46)

and

B~=—(J2+5J3) . (47)

This gives for the energy

2 2

16 2
+ (J+5J )

— J (48)

An interesting way to examine the structure of phase
space is thus to use the idea of a RES in which the energy
of a system is plotted as a function of the direction of the
angular momentum vector J [35,72—76]. The unper-
turbed Kepler energy which dominates the energy expan-
sion has been subtracted in order to bring out further the
rich structure of the perturbation. The components of
angular momentum are interpreted as Cartesian coordi-
nates of a position vector whose length is equal to the to-
tal energy which is plotted radially outwards. Figure 5 is
a collage that shows RES's as the electric field is progres-
sively increased from zero for m=O. Figure 5(a) is the
pure QZE and the separatrix is clearly visible. The vibra-
tional states are localized in the dimples of the RES. As
P is increased the separatrix vanishes and one class of vi-

brational states disappears (localized in the dimple of the
RES which is not visible in Fig. 5). The vibrational states
in the visible dimple in Fig. 5 start to take over phase
space until in Fig. 5(c) the rotational states (localized
around the lobes of the RES) have been displaced alto-
gether. Figures 5(a) —5(c) should be compared to Fig. 1.

It is also possible to construct RES's for nonzero m nu-
merically by means of the following mapping:

momentum J with components (Ji,J2,J3) through the
mapping,

n 2

J =/J/
4

A,J)=
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(a)

(c)

FIG. 5. Rotational energy surfaces corresponding to n=30
and m =0. In (a) P=0, in (b) P=0.2, and in {c)P= 1.0. The sur-

faces have been shaded gray to indicate where the energy is neg-
ative. The surfaces are computed using the full energy expres-
sion Eq. (30) except that the unperturbed Kepler energy and the
paramagnetic term (when present) have been omitted. The en-

ergy of the RES is therefore the nontrivial portion of the pertur-
bation energy. The radius of each RES has been offset by the
most negative energy. The Cartesian coordinate system is
defined as follows with reference to (a). One axis runs along the
long axis of the body. A second orthogonal axis around which
the angle 0, varies [see Eq. (44)] emanates from the dimple in
(a). The third axis is orthogonal to these. The orientation is

kept constant between all figures. The contours are level curves
corresponding to the intersection of the RES with spheres of
progressively increasing energy. The contours are spaced arbi-
trarily. For pseudocolored versions of some of these RES's see
Ref. [35] (also [71]).

g2
I
Jl2 + lml )

4

where

(49)

(50)

order terms. The trends in Figs. 6 and 7 when m is
difFerent from zero are qualitatively the same as when
m=O and reveal the smooth transition from the pure
QZE to the pure Stark limit. When I =n/v'5 {see Fig.
7) the competition between the two dynamical symmetry
chains is apparent for small to intermediate values of P.
As P is increased, again the usual Stark limit is achieved.
In Fig. 8, m=29 and the figure shows the RES in the ex-
treme that m and n are very close in value. The ap-
proaches described here can also be extended to study the
hydrogen atom interacting with a circularly polarized mi-
crowave field [113].

As in the m=0 case the unperturbed energy (together
with the paramagnetic term) has been subtracted from
the energy. Figures 6 and 7 are montages corresponding
to Figs. 3 and 4 although calculated including the high-

CONCLUSIONS

A comprehensive classical treatment of the SQZE has
been presented. The combination of high-order classical
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(a}

(c) (c)

&x

FIG. 6. Same as Fig. 5 but m =4. FIQ. 7. Same as Fig. 5 but m =n /&5.
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(a) (b)

(c)

FIG. 8. Same as Fig. 5 but m =29.

perturbation theory with a theoretically sound choice of
action-angle variables provided a simple and compelling
picture of the changes in the eigenstate structure as the
magnetic and electric fields were varied, in tandem with
changes in the quantum number m. The device of a RES,
constructed using the Lissajous action-angle variables,
provides a simple and compact geometrical picture of the
energy-level structure of the SQZE. While quantization
of this system was not discussed, a comprehensive and
numerically accurate approach to semiclassical quantiza-
tion of the QZE has been presented elsewhere [92]. Past
attempts to quantize this type of system have encoun-
tered singularities associated with the classical separatrix.
In this paper uniformly valid action-angle variables were
introduced which will allow the development of a
singularity-free uniform quantization scheme. Extension
of this approach to quantization of very high-order classi-

cal perturbation expansions is straightforward, and is ex-
pected to rival quantum methods in the low field limits.

Note added in proof. We thank Dr. A. Deprit for in-
forming us of Ref. [54(b)], which contains technical de-
tails of the Lissajous transformation.
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